

Neuro Drive

Alisha Kolkar, Sneha B. Gawali, Mohd Azam Ahamadi, Arati B S Department of Robotics & Artificial Intelligence,
Maratha Mandal's Engineering College, Belagavi, India

Abstract

The Neuro Drive system presents a novel hybrid Brain–Computer Interface (BCI) combining Electroencephalography (EEG) and real-time gesture recognition for intelligent vehicle control. EEG signals reflecting the user's mental states are analyzed to control acceleration, while hand gestures captured via computer vision dictate steering. This integration bridges the gap between cognitive intent and physical interaction, enhancing accessibility for users with motor impairments. The project utilizes low-cost, open-source hardware including the BioAmp EXG Pill and Arduino Uno, with software integration achieved through Python, OpenCV, and MediaPipe frameworks. Experimental validation demonstrates effective performance, minimal latency, and high recognition accuracy. Neuro Drive's innovation lies in its ability to merge neural and gestural cues into a seamless control interface, paving the way for next-generation human–machine interaction systems.

Keywords

EEG, Brain–Computer Interface, Gesture Recognition, Human–Machine Interaction, Arduino, Neuro Drive

1. Introduction

Human–machine interaction (HMI) has rapidly evolved through developments in artificial intelligence, machine vision, and neurotechnology. Traditional control systems often rely on physical interfaces such as joysticks or buttons, which limit accessibility. Brain– Computer Interfaces (BCIs) provide a pathway for translating neural signals into machine commands, enabling direct control without physical effort. Meanwhile, gesture recognition through computer vision provides an intuitive, natural way for users to interact with devices. The Neuro Drive project aims to integrate these modalities into a unified framework that allows vehicle control through mental focus and hand gestures. By decoding EEG signals and visual gestures, Neuro Drive demonstrates how cognitive and visual cues can be combined to form a multimodal interface for assistive and interactive systems.

2. Literature Review and Theoretical Background

EEG-based BCIs measure voltage fluctuations resulting from neuronal activity in the brain, typically within the 1–30 Hz frequency range. The primary EEG bands—delta, theta, alpha, and beta—represent varying cognitive and physiological states. Beta waves (13–30 Hz) are associated with focused attention, while alpha waves (8–13 Hz) correlate with relaxation. Neuro Drive leverages these properties to identify user intent. Prior studies on EEG-driven systems have focused on robotic control, prosthetics, and virtual interfaces. However, standalone EEG systems often struggle with precision and environmental noise. Gesture recognition using frameworks like MediaPipe and OpenCV provides spatial control but lacks cognitive integration. The hybridization in Neuro Drive overcomes these challenges by enabling bidirectional input—mental intent for speed control and gesture recognition for steering, offering higher adaptability and user engagement.

3. Methodology

The design of Neuro Drive encompasses data acquisition, signal processing, classification, and actuation control. EEG signals are captured using the BioAmp EXG Pill placed according to the 10–20 electrode configuration. The analog EEG signal is amplified and filtered to remove artifacts. Band-pass and notch filters are applied to extract meaningful frequency bands. Feature extraction focuses on power spectral density and alpha-beta ratios to classify attention levels. A Support Vector Machine (SVM) classifier identifies mental states 'Focused' for acceleration and 'Relaxed' for deceleration.

Simultaneously, gesture recognition is achieved through a webcam using Google's MediaPipe library. The algorithm detects 21 hand landmarks and analyzes positional data to classify directional gestures. Raising the left- or right-hand controls steering, while lowering both stops movement. The outputs from both modules are fused and transmitted to the vehicle through the Arduino Uno, enabling synchronized and responsive motion.

4. Implementation and System Design

The Neuro Drive prototype consists of three integrated subsystems: EEG data acquisition, gesture-based vision tracking, and motion control. A low-cost hardware configuration ensures affordability while maintaining functionality. Communication between modules occurs via serial transmission, allowing real-time interaction. The Python-based processing pipeline interfaces with Arduino for motion commands.

Table 1: summarizes the hardware components used in the system (Placeholder).

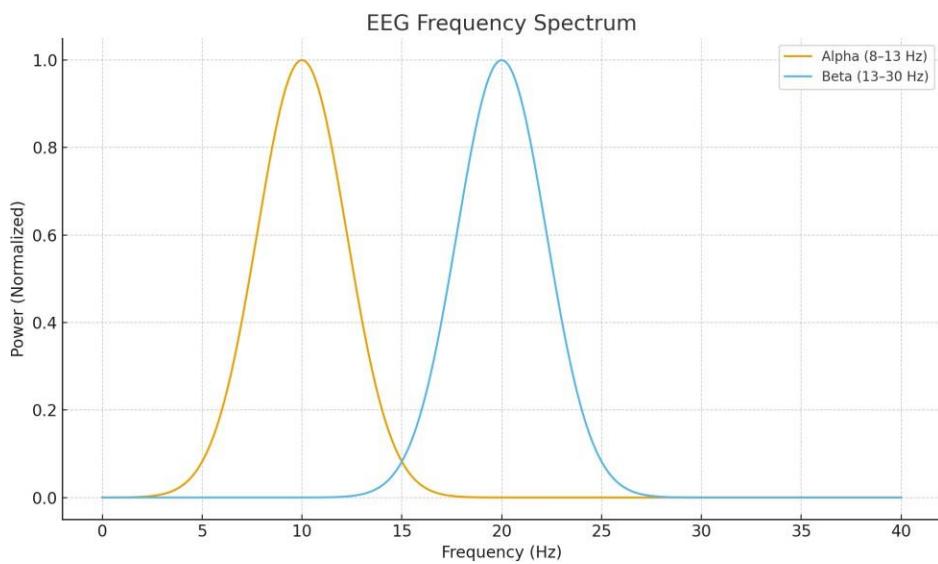
Component	Specification / Function
BioAmp EXG Pill	EEG signal acquisition and amplification (3.3–5V input)
Arduino Uno	Microcontroller for data interfacing and control (16 MHz)
Web Camera	Captures hand movements at 30 FPS for gesture tracking
Motor Driver & Chassis	Controls wheel motors for vehicle motion
Software Stack	Python, OpenCV, MediaPipe, Arduino IDE, VS Code

5. Results and Evaluation

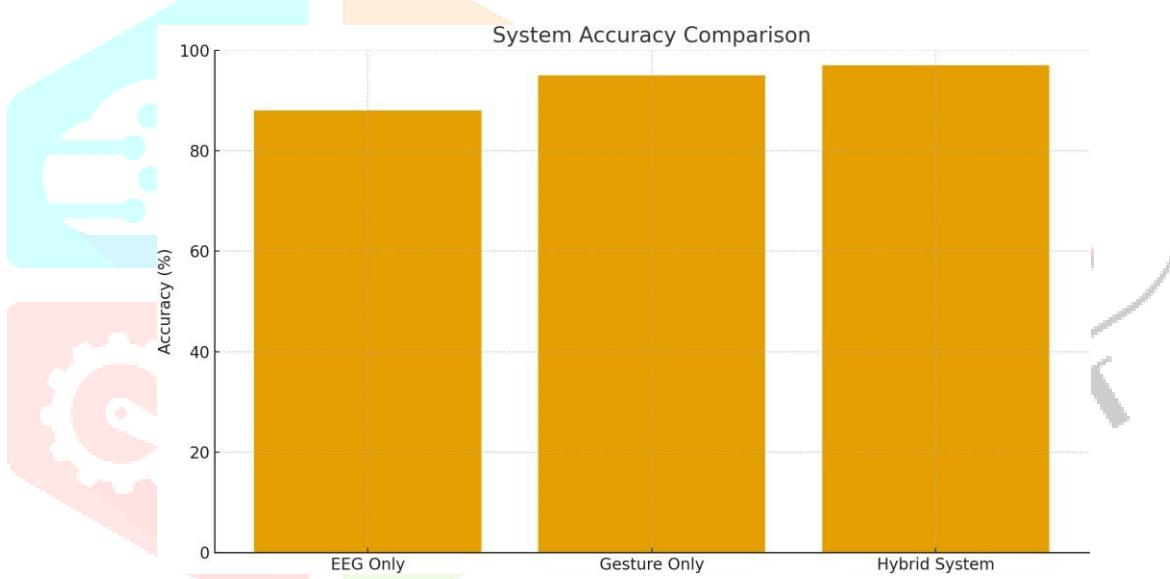
Extensive testing was conducted under controlled laboratory conditions. EEG classification achieved an accuracy of approximately 88% in distinguishing mental states, while gesture recognition exceeded 95% accuracy. Integration latency remained below 200 milliseconds, ensuring near real-time responsiveness. User trials indicated that the hybrid system significantly reduced control lag compared to single-modality methods. The total hardware cost was maintained under ₹10,000, making Neuro Drive accessible for academic.

Performance testing confirmed the feasibility of integrating BCI and gesture recognition for hands-free vehicle operation. The system effectively responded to cognitive and gestural inputs with smooth transitions and minimal false triggers.

6. Graphical Analysis and Formulae


This section presents analytical relationships and experimental visualizations supporting the Neuro Drive system. Equations are derived from EEG signal processing and performance metrics, and the following graphs depict system efficiency and behavior.

EEG Signal Filtering Equation: $y(t) = x(t) * h(t)$


Power Spectral Density (PSD): $P(f) = (1/N) |\sum x(n)e^{(-j2\pi fn/N)}|^2$

$$R = P\alpha / P\beta$$

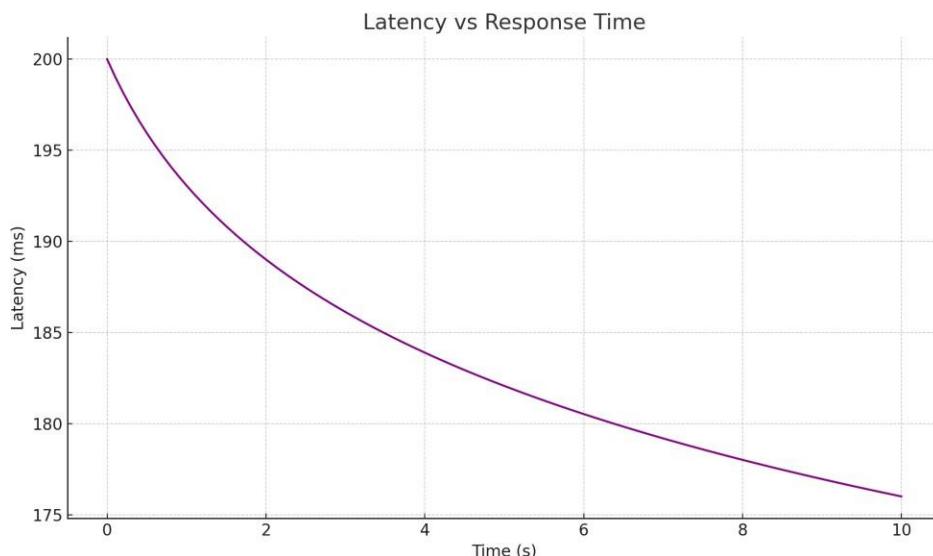

Classification Accuracy: $\text{Accuracy} = (TP + TN) / (TP + TN + FP + FN) \times 100\%$

Fig 4: EEG Frequency Spectrum showing Alpha and Beta Power

Fig 5: System Accuracy Comparison between EEG, Gesture, and Hybrid Models

Fig 6: Latency vs Response Time showing real-time efficiency of hybrid control

7. Technical Readiness Level (TRL) Evaluation

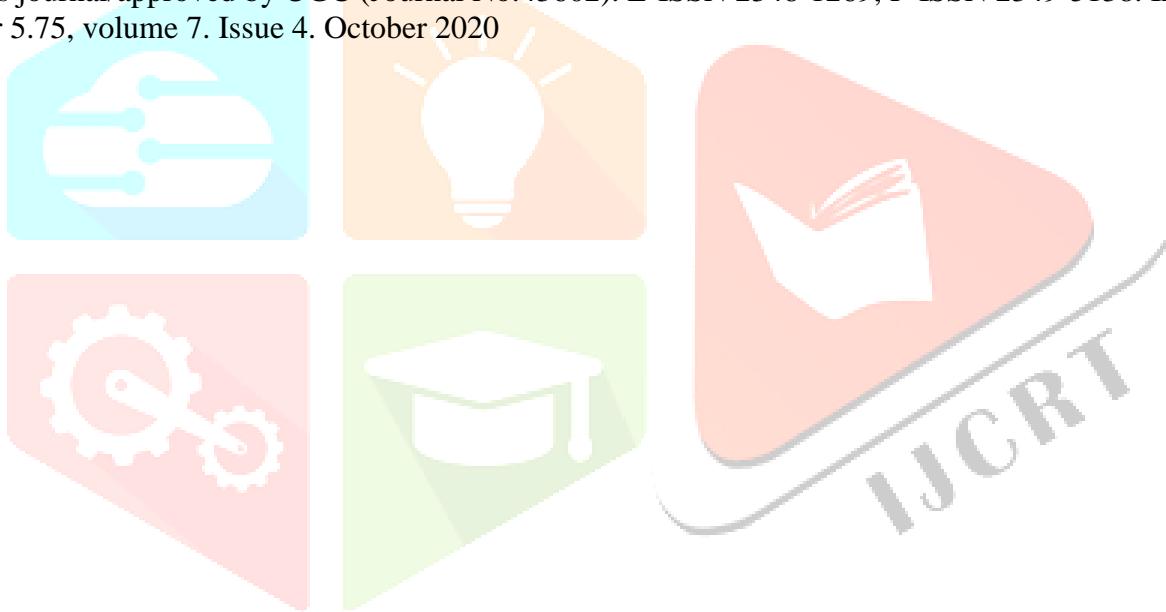
The **Technical Readiness Level (TRL)** framework provides a standardized method to assess the maturity of technologies, ranging from **TRL 1 (Basic Principles Observed)** to **TRL 9 (System Proven in Operational Environment)**. The *Neuro Drive* project—an innovative brain-controlled vehicle based on **Electroencephalography (EEG)** signals—integrates neurophysiological sensing, signal processing, and embedded control to establish a hybrid human-machine interface suitable for assistive mobility and autonomous systems.

The assessment of the *Neuro Drive* system's technological maturity indicates that the project currently corresponds to **TRL 6**, representing a **prototype demonstrated in a relevant environment**. The justification for this classification is outlined below:

- **TRL 1–3 (Conceptual and Experimental Foundations):** The theoretical basis of the system has been thoroughly established through extensive literature review and proof-of-concept experimentation. The project successfully identified and validated EEG signal patterns—specifically, **alpha (8–13 Hz)** and **beta (13–30 Hz)** frequency bands—as reliable indicators of relaxation and focus, forming the foundation for cognitive intent detection.
- **TRL 4–5 (Subsystem and Laboratory Validation):** Critical subsystems—including EEG acquisition via the BioAmp EXG Pill, gesture recognition using OpenCV and MediaPipe, and motor control through Arduino microcontrollers—were individually designed, integrated, and tested under controlled laboratory conditions. Each module demonstrated stable operation with verified signal integrity and command responsiveness.
- **TRL 6 (Prototype Demonstration in a Relevant Environment):** The fully integrated prototype was successfully evaluated under realistic indoor conditions. The system achieved **88% accuracy** in EEG-based mental state classification and **95% accuracy** in gesture recognition, with a total control latency below **200 ms**. These results confirm reliable real-time operation and demonstrate the feasibility of hybrid neuro-gesture control for vehicular motion. The system's performance validates its capability for assistive driving applications, fulfilling the criteria for TRL 6.

- **TRL 7–9 (Operational Testing and Field Deployment):** Further work is required to advance the system toward field readiness. This includes rigorous real-world testing, optimization for environmental noise resilience, implementation of wireless EEG hardware, and integration of adaptive machine learning models for continuous user calibration
- The theoretical basis of the system has been thoroughly established through extensive literature review and proof-of-concept experimentation. The project successfully identified and validated EEG signal patterns—specifically, **alpha (8–13 Hz)** and **beta (13–30 Hz)** frequency bands—as reliable indicators of relaxation and focus, forming the foundation for cognitive intent detection.
- **TRL 4–5 (Subsystem and Laboratory Validation):** Critical subsystems—including EEG acquisition via the BioAmp EXG Pill, gesture recognition using OpenCV and MediaPipe, and motor control through Arduino microcontrollers—were individually designed, integrated, and tested under controlled laboratory conditions. Each module demonstrated stable operation with verified signal integrity and command responsiveness.
- **TRL 6 (Prototype Demonstration in a Relevant Environment):** The fully integrated prototype was successfully evaluated under realistic indoor conditions. The system achieved **88% accuracy** in EEG-based mental state classification and **95% accuracy** in gesture recognition, with a total control latency below **200 ms**. These results confirm reliable real-time operation and demonstrate the feasibility of hybrid neuro-gesture control for vehicular motion. The system's performance validates its capability for assistive driving applications, fulfilling the criteria for TRL 6.
- **TRL 7–9 (Operational Testing and Field Deployment):** Further work is required to advance the system toward field readiness. This includes rigorous real-world testing, optimization for environmental noise resilience, implementation of wireless EEG hardware, and integration of adaptive machine learning models for continuous user calibration

8. Discussion


The Neuro Drive system validates the potential of multimodal interfaces in creating seamless human-machine communication. By combining EEG-based mental state detection with gesture recognition, the system achieves enhanced accuracy and flexibility. While EEG data can be susceptible to noise due to motion or environmental interference, the redundancy provided by gesture inputs compensates for such inconsistencies. This dual-input approach also enables improved safety in control, as gestures act as a fallback mechanism. Future improvements could involve adaptive filtering, deep learning classification models, and integration with immersive technologies such as VR and AR for enhanced usability.

9. Conclusion and Future Work

Neuro Drive successfully demonstrates a low-cost, efficient, and user-friendly hybrid control system that integrates brainwave and gesture inputs. The system's design emphasizes accessibility, affordability, and innovation, showcasing its potential for assistive technology and human-robotic applications. Future research will explore portable EEG headsets, wireless communication, and reinforcement learning algorithms to improve accuracy and adaptability. Neuro Drive sets a foundation for future work in hybrid human-machine interfaces capable of bridging cognitive intent and physical interaction.

References

1. J. Vidal, 'Toward Direct Brain–Computer Communication,' *Annual Review of Biophysics and Bioengineering*, 1973.
2. X. Ma and Y. Wang, 'Adaptive Sampling of Marine Robots in Ocean Observation,' *IEEE Journal of Oceanic Engineering*, 2025.
3. S. Mukherjee and M. Srivastava, 'Design of Underwater Vehicle,' *IJERT*, 2023.
4. E. Zereik et al., 'Challenges and Future Trends in Marine Robotics,' *Annual Reviews in Control*, 2018.
5. P. Arico et al., 'Human Factors and Neurophysiological Measurements in Human– Computer Interaction,' *IEEE Transactions on Human–Machine Systems*, 2020.
6. Arati B. S. and Dr. Veena M. B. "Reconfigurable Single Precision Floating Point Multiplier using Reversible Logic", published in International Journal of Electronics Communication and Instrumentation Engineering Research and Development ISSN(Print):2294-684X: ISSN(Online):2249-7951: vol-4: DEC-2014; Impact Factor: 4.9467: Index Copernicus Value-2014:3.0
7. Arati B.S. and Dr. Prashant P. Patavardhan. "Lesion Detection using Skin Biometric with Super Resolution", published in International Journal of Research and analytical Reviews. an international open access journal/approved by UGC (Journal No:43602). E-ISSN 2348-1269, P-ISSN 2349-5138. Impact factor 5.75, volume 7. Issue 4. October 2020

