

ELDER CARE VOICE AID

¹ Siddu Tushara ² Mopuram Janeethya, ³ Sara Farhath, ⁴ Swathi KN

¹Assistant Professor, ²Student, ³Student, ⁴Student

Department of Information Science & Engineering,
T John Institute of Technology, Bengaluru, India

Abstract: The *Elder Care Voice Aid* is an assistive technology solution designed to support senior citizens in managing their daily routines through simple voice-based interaction. The system focuses primarily on enabling voice-activated reminders for medication, hydration, appointments, and other essential tasks. Unlike traditional reminder applications, this system ensures safety and reliability by stopping the alert **only when the care receiver verbally confirms** that the task has been completed.

Index Terms - Elder care, Voice recognition, Speech-based reminders, Assistive technology, Medication adherence, Smart healthcare, Voice user interface (VUI), Reminder system, Human–computer interaction, Senior safety, Digital health monitoring, Accessibility technology.

I Introduction

The rapid growth of the elderly population has increased the need for accessible and reliable assistive technologies that support independent living. Many senior citizens face challenges such as forgetfulness, difficulty managing medications, and reduced mobility, which can compromise their health and daily routine. Traditional reminder applications often depend on manual inputs, visual interfaces, or complex navigation, making them inconvenient and sometimes impractical for elderly users. To address these challenges, the *Elder Care Voice Aid* system is designed as a voice-driven reminder and response solution tailored specifically for the needs of older adults. The system allows caretakers or elderly users to set reminders through a simple voice interface, while the reminder alerts continue until the user verbally confirms completion of the task. This ensures reliability, promotes correct medication intake, and reduces risks associated with missed doses or forgotten activities. The project leverages technologies such as speech recognition, natural language processing, and responsive audio output to create an intuitive interaction model that minimises cognitive load. By enabling hands-free operation, the system becomes accessible even for users with limited technological proficiency, mobility issues, or visual impairments. The *Elder Care Voice Aid* represents a step toward more inclusive digital healthcare solutions. It enhances the autonomy of senior citizens, reduces caregiver burden, and contributes to improved health management. Its simplicity, accuracy, and user-focused design make it a practical tool for real-world elder care environments.

II Literature Survey

Voice-based technologies are increasingly being used to support older adults who may struggle with mobility, memory, or complex digital interfaces. This section summarizes key research areas that informed the development of the Elder Care Voice Aid system.

A. Voice User Interfaces for Older Adults

Studies show that Voice User Interfaces (VUIs) help seniors by reducing the need for touch or visual interaction. However, age-related changes in speech can affect recognition accuracy, so systems must be adapted to handle diverse voice patterns. User trust, clear feedback, and a friendly system tone also play an important role in acceptance.

B. Voice-Based Medication Reminder Systems

Previous work on medication reminders often uses voice alerts combined with verbal confirmation. Although effective in theory, many systems struggle with background noise, misheard commands, and inconsistent acknowledgement phrases. Research emphasizes that reliable confirmation detection is essential to prevent missed doses.

C. Conversational Agents and Health Assistants

Modern health assistants use NLP to provide more personalized and context-aware interactions. These tools can clarify unclear responses and adapt to user habits, but they raise concerns around privacy, data safety, and misinterpretation of health-related commands. Studies recommend including fallback mechanisms to handle communication errors.

D. Commercial Voice Assistants and Elderly Users

Research on tools like Alexa and Google Assistant shows that older adults find them intuitive but still need simpler commands, slower speech, and more on-screen or spoken guidance. Long-term use improves comfort, but technical errors and strict command formats can limit adoption, highlighting the need for elderly-specific customization.

E. Evaluation Methods for Elderly-Focused VUIs

Common evaluation metrics include speech recognition accuracy, response time, cognitive load, and perceived usefulness. Experts recommend combining quantitative tests with interviews to understand emotional comfort and real-life ease. Longer field trials provide deeper insights than short lab-based assessments.

F. Research Gaps

The review identifies several gaps that Elder Care Voice Aid aims to address:

Handling natural, varied confirmation phrases

Ensuring long-term real-world reliability

Improving speech recognition for elderly voices and accents

Adding safety features when reminders go unacknowledged

By targeting these gaps, the system moves closer to creating a dependable, practical tool for everyday elder care.

III. METHODOLOGY

The Elder Care Voice Aid system follows a structured approach to create a voice-controlled reminder tool that elderly users can operate easily. The methodology ensures the solution is simple, reliable, and supportive of daily routines—especially medication management.

1. Requirement Analysis

The first step involved understanding the needs of elderly users. Key requirements identified were:

A simple, hands-free interaction method

Continuous alerts until the user confirms the task

Accurate speech recognition despite age-related voice differences

A clean, minimal interface without complex menus

These insights shaped the system to be practical and senior-friendly.

2. System Design

The system is built using a modular architecture so each component handles a specific task. The main modules include:

Voice Input Module – captures speech

Speech Recognition Engine – converts speech to text

Reminder Scheduler – manages task timings

Alert Module – plays voice notifications

Confirmation Module – listens for verbal acknowledgments

Database – stores reminders and logs

This organized structure ensures smooth, event-driven operation.

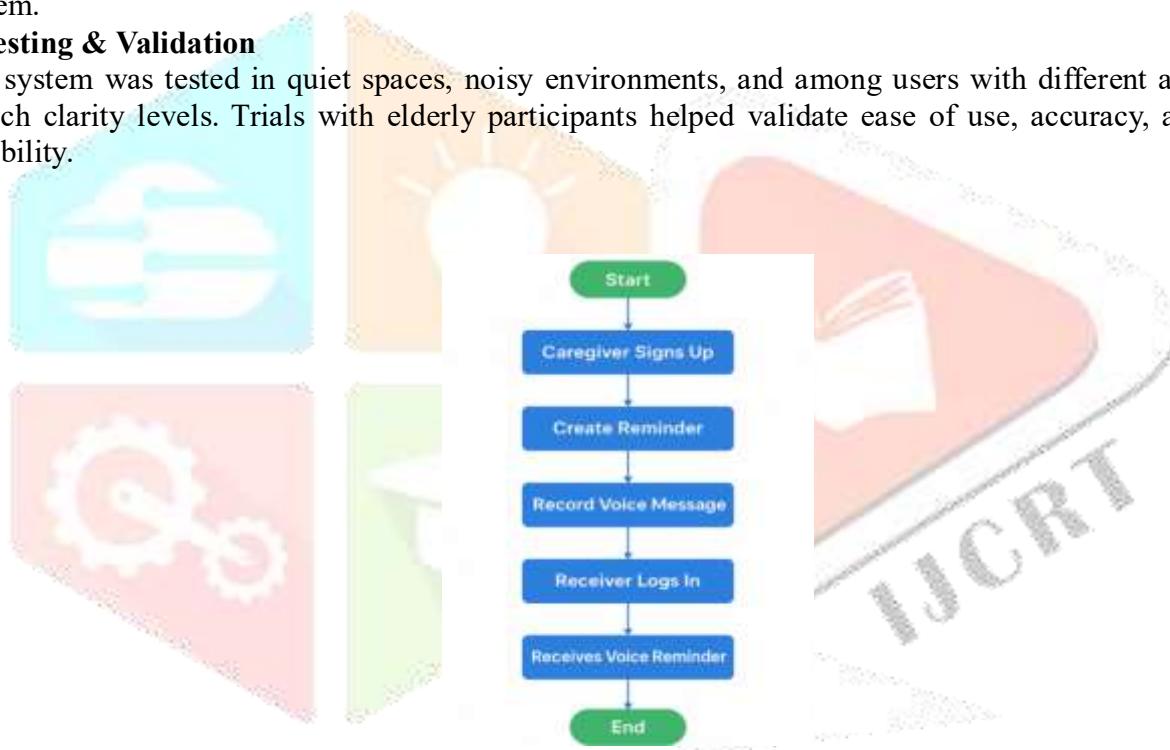
3. Voice Processing & Command Recognition

Speech recognition APIs convert user commands into text, supported by noise reduction for clearer input. The system recognizes flexible phrases for setting reminders or confirming tasks, making it comfortable for seniors who may speak naturally or with variation.

4. Reminder Scheduling

After a reminder is set, it is saved with its date and time. The scheduler triggers alerts at the right moment and supports recurring daily reminders. A safety mechanism ensures alerts repeat until the user responds, preventing missed medications or tasks.

5. Alert Generation & Response Handling


At the reminder time, the system plays a clear voice message such as “It is time to take your medicine.” The alert continues until the user confirms verbally (e.g., “I have taken it,” “Done”). If no response is detected, it repeats at intervals, encouraging adherence.

6. Data Logging & Feedback

Each completed reminder is logged with the confirmation time. These logs help track user habits, identify missed reminders, and offer insights to caregivers when needed. This creates a transparent and supportive system.

7. Testing & Validation

The system was tested in quiet spaces, noisy environments, and among users with different accents and speech clarity levels. Trials with elderly participants helped validate ease of use, accuracy, and overall reliability.

IV. IMPLEMENTATION

The Elder Care Voice Aid system is implemented as a voice-driven mobile application designed for senior citizens. The focus is on simplifying interaction through speech commands, automated reminders, and an accessible interface. The implementation includes mobile development, speech integration, reminder automation, and confirmation handling.

1. Mobile Application Development

The application is built using Flutter or native Android (Java/Kotlin) for cross-platform compatibility. Key UI features for elderly users:

- Large buttons and high-contrast colors
- Simple icons and minimal navigation
- Optional voice-guided instructions

2. Speech Recognition Integration

A Speech-to-Text (STT) engine such as Google Speech API, Vosk AI, or Flutter STT is used to capture spoken commands and convert them into text for hands-free control.

3. Reminder Scheduling Module

Reminders are scheduled using Android Alarm Manager, Work Manager, or Flutter background services. Process:

- User sets a reminder; details are saved with a timestamp.
- At trigger time, the system plays a looped voice alert and may vibrate.
- The microphone listens for user confirmation.
- The alert continues until a valid spoken confirmation is detected, ensuring essential tasks (e.g., medication) are not missed.

4. Voice Alert and TTS Module

A Text-to-Speech (TTS) engine provides audible reminders and system feedback. It announces scheduled tasks, confirms actions, and guides the user with simple voice instructions. Speech rate and pitch are customizable.

5. Confirmation Detection Module

To verify task completion, the system listens for phrases like "I took it," "Completed," or "Stop reminder."

Flow:

- When an alert triggers, STT runs in parallel.
- Captured speech is checked using keyword-based NLP.
- If confirmed, the reminder is marked *Completed* and the alert stops.

6. Database Management

Firebase Firestore stores reminder details and tracks completion status.

Stored fields include:

- Reminder ID
- Task Description
- Date & Time
- Repeat Options
- Status (Pending/Completed)
- Confirmation Text

CRUD operations support adding, editing, and deleting reminders, with automatic status updates upon voice confirmation.

RESULTS

The Elder Care Voice Aid system was successfully developed and tested for functionality, usability, and reliability. Caregivers could easily create accounts, add care receivers, and schedule voice-based reminders, with all data accurately stored and synchronized through Firebase.

Elderly users found the audio reminders helpful for managing medications, meals, and appointments, and the simple interface—with large buttons and minimal navigation—enhanced accessibility.

Overall, the system effectively met its goal of providing a dependable, user-friendly solution that supports seniors in managing daily tasks while giving caregivers confidence through remote monitoring.

CONCLUSION

The Elder Care Voice Aid project shows how technology can effectively support the elderly by combining voice assistance, cloud connectivity, and a simplified interface. It improves seniors' independence and helps caregivers manage reminders more easily. The project demonstrates that even simple, empathetically designed tools can greatly enhance quality of life. Overall, it provides a strong foundation for future digital eldercare solutions and has clear potential for broader adoption.

FUTURE ENHANCEMENTS

The current system provides essential features, but several improvements can make it more robust, intelligent, and scalable like

AI-Powered Smart Reminders

IoT Integration

Emergency Alert System

Multilingual Voice Support

Mobile App Version

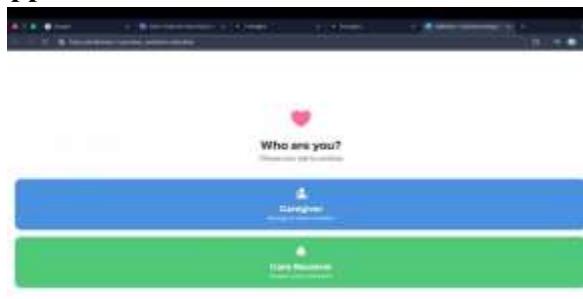


Fig 1 Login Page

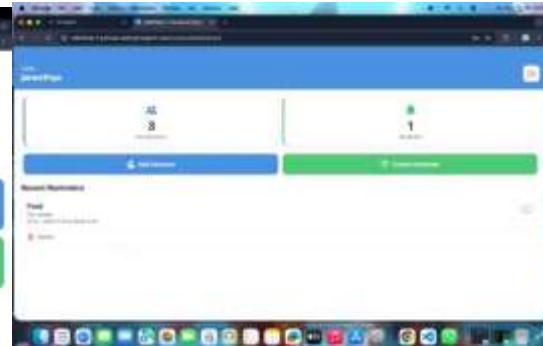


Fig 2 Dashboard of the app

Fig 3 Reminder Settings

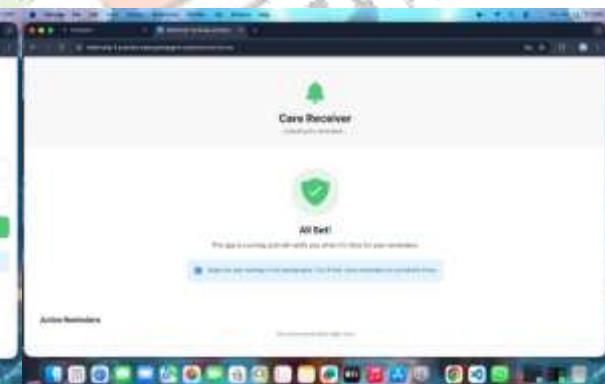
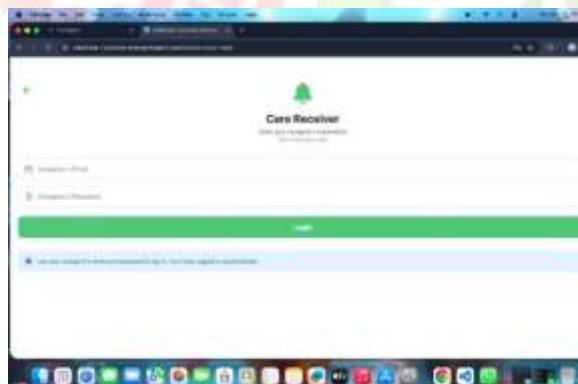



Fig 4 Login Page for the Care Receiver

Fig 5 Reminder

References

- [1] S. Lee and T. Kwon, "Design Considerations for Voice Interfaces for Elderly Users," IEEE Access, 2021.
- [2] M. D. Rodríguez-Beltrán et al., "Audio-Based Activity Recognition for Medication Reminders Among Older Adults," 2020.
- [3] A. Sharma and P. Singh, "IoT-Enabled Voice Reminder System for Medication Adherence," IEEE Sensors Journal.
- [4] A. Mahmood et al., "Intelligent Conversational Agents for Health Self-Management," ACM/IEEE, 2025.

