www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

APy, 'NTERNATIONAL JOURNAL OF CREATIVE
@a% RESEARCH THOUGHTS (1JCRT)

An International Open Access, Peer-reviewed, Refereed Journal

VID VERIFY-DEEPFAKE VIDEO DETECTION

1B. Chaithanya Lakshmi, 2M. Sathwika, 3S. Maneesha, “T. Tagore Ravi Chandra ,>Bobby K. Simon,
12345tudents Assistant Professor Computer Science and Engineering (Cyber Security),

Hyderabad Institute of Technology and Management,
Medchal, Hyderabad, Telegana, India

Abstract: This paper presents a system based on Convolutional Neural Networks (CNNs) for detecting
deepfake videos. It tackles the growing threat of Al-generated visual manipulation. Deepfake technology
allows for the creation of very realistic videos that can spread false information, lead to identity theft, and
harm reputations. The proposed system examines extracted video frames to find pixel-level inconsistencies
and visual flaws that separate real content from fake. By using a lightweight, frame-based CNN architecture,
the model achieves high accuracy and keeps computational demands low. This approach addresses the
shortcomings of traditional deepfake detection methods.

The system is trained on various datasets that include both authentic and manipulated videos. This helps
improve its ability to generalize across different deepfake generation techniques. Experimental results show
strong performance and scalability, confirming the model’s ability to accurately detect deepfakes. This
method provides a practical and efficient way to fight the misuse of deepfake technology in areas like
cybersecurity, media verification, and digital forensics.

Keywords: Deepfake Detection, Convolutional Neural Networks (CNN), Artificial Intelligence (Al), Video
Forensics, Digital Media Security.

I. INTRODUCTION

The rapid rise of synthetic media, particularly through deepfake technology using GANs and autoencoders,
has made it harder to tell real videos from fake ones. These realistic manipulations present serious risks in
politics, journalism, entertainment, and personal safety by enabling identity theft, misinformation, and false
evidence. Traditional detection methods that look for visual flaws, like unnatural blinking or inconsistent
lighting, are becoming less effective as deepfake algorithms improve. Many CNN-based models also fail to
capture broader contextual features, which hurts their detection accuracy.

Vid-Verify tackles these challenges with a strong, frame-based deepfake detection system that merges
computer vision with deep learning. Its tailored CNN architecture is designed to spot signs of pixel-level
manipulation while keeping efficiency. By using thorough preprocessing and frame extraction techniques,
Vid-Verify guarantees reliable performance across different video qualities and deepfake styles. The project’s
key contributions include creating a complete detection framework, optimizing the CNN architecture, and
assessing model performance with standardized datasets and metrics.

[JCRT2511497 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | e196

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

1. LITERATURE SURVEY

R. Tolosana et al. [1] offered a detailed look at face manipulation techniques and fake detection methods.
They covered the growth of deepfake generation and the related detection methods. This important work
highlights the ongoing challenges in keeping detection accurate, especially with the fast pace of new synthetic
media technologies. The authors Gupta, Rahul, Cheshtha Kapoor, and Jayesh Yadav [2] researched faceless,
paperless, and cashless transaction systems within digital payment ecosystems. As digital transformation
speeds up, similar issues in authentication and security arise in both financial transactions and media
verification systems. These issues call for effective validation mechanisms. Ghosh, Gourab [3] studied how
the spread of smartphones and internet access has changed digital services, creating both opportunities and
challenges for secure online interactions. This wave of digitalization has not only changed payment systems
but has also built the framework for widespread synthetic media distribution. Manvita Joshi [4] developed a
mobile-based secure transaction framework that shields users from fraud through additional security layers.
Similar security structures are key in deepfake detection systems to stop manipulation and ensure reliable
media authentication.

Yuvaraj, S., and N. Sheila Eveline [5] looked at the shift from physical to digital transactions, highlighting
how traditional methods are being replaced by more advanced digital platforms. This digital change mirrors
the move from basic video editing to Al-generated synthetic media, which needs effective detection methods.
Miruna, S. Lyrics [6] showed how smartphone technology has transformed daily transactions through digital
wallet platforms. These create new ways for secure online interactions that share important security issues
with media verification systems. Cherukur, Mr. [7] researched user satisfaction with mobile wallets and found
key factors that shape user trust and acceptance of digital platforms. These trust factors also matter in deepfake
detection systems, where user confidence in verification results affects practical use. Dewi Sandy Islamiati
[8] set up and tested a payment system using mobile apps and REST API web services. She assessed system
performance through careful user testing. Similar evaluation methods are vital for confirming deepfake
detection systems in real-world situations.

Sometimes, detection systems struggle against advanced manipulation techniques. This makes strong
deepfake detection applications essential so users can verify media authenticity without needing expert help.
Anshari, Muhammad, et al. [10] showed that digital platforms can improve productivity for institutions while
offering convenience for users. The younger generation's comfort with digital applications that have simple
interfaces gives useful insights for creating user-friendly deepfake detection tools that can gain broad use
across different user groups.

I11. EXISTING SYSTEM

The deepfake detection field has seen major improvements in how it works and detects fake content over the
last few years. The rapid growth of artificial intelligence and digital media has led to the creation of very
realistic fake content, putting a strain on current detection systems. This has caused an increase in manipulated
videos, online misinformation, and difficulties in identifying real digital content. Countries around the world
are now using machine learning and deep learning techniques to regularly address this issue. These methods
search for different patterns and inconsistencies in multimedia databases and provide valuable insights for
organizations and security agencies. However, it is clear that most existing systems still rely on traditional
Convolutional Neural Network (CNN) architectures. These face challenges like high computational costs,
inflexibility, and inefficiency in managing large-scale data. Before 2024, experts predicted a significant rise
in deepfake content, with millions of manipulated samples appearing online every day. This has created an
urgent need for better, more reliable detection models.

[JCRT2511497 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | el197

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

Limitation of existing system:
1. Traditional CNN-based methods for detecting deepfakes are costly, imprecise, and time-consuming.
2. These systems focus mainly on individual frames and fail to capture temporal inconsistencies across
video sequences.
3. Existing models lack generalization to new and unseen manipulation techniques, reducing their
effectiveness in real-world applications.

IV. PROPOSED SYSTEM

In today's digital world, video content is everywhere, from social media to news platforms. However,
with new Al technology, it is easy to create fake videos that look completely real. These altered videos, called
deepfakes, can spread false information, harm reputations, and even pose a threat to national security. In this
context, our Vid Verify-Al system becomes crucial for journalists, social media companies, and regular users
who want to verify video content.

This project offers a simple interface and effective methods to detect video manipulation, but its real
strength lies in its technical features. You can upload any video to the system, which will automatically analyze
each frame, look for signs of manipulation, and provide a detailed report on whether the video is real or fake.
The system generates clear results, showing which parts of the video may have been altered and how confident
it is in its findings. This allows you to quickly determine if a video has been manipulated and to save the
analysis report for later use. The main benefit of this system is that it works automatically; users just need to
upload the video while the Al system handles the complex analysis.

For this deepfake detection project, we use Python as our main programming language. Python is
designed for Al and machine learning projects, providing a wide range of tools and libraries that help
developers create, test, and improve Al models efficiently. Using this system can significantly lower the risks
associated with fake videos by offering a reliable verification tool, which reduces the need for manual video
analysis by experts. The system allows users to quickly check suspicious videos on their own computers or
mobile devices. This convenience is especially helpful for news organizations and security agencies that need
to verify video content promptly. The system enables fast analysis, cutting down the time and effort needed
compared to traditional verification methods. This efficiency leads to quicker fact-checking and better
decision-making. The software has two main phases: the first is data preparation and model training, and the
second is actual use and testing. For the Al component, we use the TensorFlow and Keras libraries, and to
make it user-friendly, we can use Streamlit or Flask frameworks. Python is the most popular language for Al
development and is widely used by developers and researchers around the world. It continues to improve with
regular updates to support the latest Al technologies and tools.

4.1 How to Create the Deepfake Detection System?

We use powerful development environments like PyCharm or VS Code, specifically made for
writing, testing, and debugging Python code. All necessary components are available for download through
package managers like pip. These are collections of tools and libraries that are regularly updated and can be
installed separately. To create the deepfake detection system, you can follow these steps:

1. Set up Python Environment: Download and install the latest Python version from the official
website (https://www.python.org/downloads/). Ensure your computer meets the requirements for Al
projects, including a good graphics card for faster processing.

2. Install Required Libraries: Open command prompt and use pip to install essential components
including TensorFlow, Keras, OpenCV, Matplotlib, and MTCNN.

3. Create New Project: After setting up the environment, create a new project folder in your
development software. Organize the folder with separate sections for data, program code, and saved
Al models.

4. Choose Project Structure: The project is divided into key parts: data preparation, model creation,
training, and testing.

5. Design Data Processing: This involves writing code for frame extraction and preparation using
OpenCV. You'll create functions to read videos, take pictures from videos at specific intervals,
detect and focus on faces using MTCNN, and prepare the image data.

[JCRT2511497 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | e198

http://www.ijcrt.org/
https://www.python.org/downloads/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

6.

10.

11.

Write Model Code: Using TensorFlow/Keras, you'll write code to build the Convolutional Neural
Network (CNN) structure. This involves adding layers like Conv2D, MaxPooling2D, Dropout, and
Dense, and setting up the model with an optimizer (like Adam) and a measurement system.

Train Your Model: Use the prepared data to teach the CNN model. The system will learn through
multiple cycles, gradually learning to tell real frames from fake ones. You can watch the learning
progress using accuracy measurements.

Test Your Model: After training, the model is tested on new videos it hasn't seen before. Run the
model on these videos to make sure it works correctly and can handle new content.

Debug and Fix Issues: If you face problems like the model not learning properly or making too
many mistakes, use methods like adding more varied data, changing the model structure, or
adjusting settings to identify and solve these issues.

Build Final System: Once the model is ready, it can be saved and built into a simple web
application using frameworks like Streamlit, which creates an easy-to-use interface for end users.
Deploy Your System: You can make the system available for use on local computers, on servers, or
through online platforms, making it accessible for video verification purposes.

4.1.1 Advantage of Proposed System

1. The system shows the exact confidence level for each frame that is fake and provides a
final decision for the entire video.

2. It uses a special Convolutional Neural Network (CNN) algorithm to identify subtle signs
of video manipulation.

3. There are no hidden charges for using the system; users can analyze videos as many times
as they want.

4. 1t reduces the spread of false information and fake video content through constant and
automated checks.

5. The main technology can be used in cybersecurity, journalism, legal evidence checking,
and social media content monitoring.

4.1.2 Impact of Proposed System

V.

1. Bringing change to how digital media is verified requires shifting from human checking to
Al-powered analysis.

2. This creates opportunities to develop improved versions that can detect more complex
manipulation techniques.

3. We are building a new tool for digital investigation to strengthen protection against Al-
generated threats.

4. We are also establishing a new, secure, and detailed process for confirming visual
information in the digital world.

SYSTEM ARCHITECTURE
1. This deepfake detection system is designed for universal accessibility. It serves journalists,
social media platforms, law enforcement agencies, and general users who need to verify
video authenticity.

2. The user is the first input module. All subsequent detection processes are automatically
handled by the Al system, so no technical expertise is required.

3. Users start by uploading video files through a simple web interface. The system checks the
file format, size, and compatibility before proceeding with analysis.

4. The system dashboard offers multiple options, including Video Upload, Real-time
Analysis, Historical Reports, and Export Features for thorough video verification.

5. When users begin the upload process, they can select video files from various sources such
as local storage, cloud platforms, or direct URL links for online videos.

[JCRT2511497 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | e199

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

After a successful upload, the system automatically performs Frame Extraction. It breaks
the video into individual frames at optimized intervals to balance processing efficiency and
detection accuracy.

The extracted frames go through Face Detection using MTCNN algorithms, which
accurately identifies and isolates facial regions in each frame for focused analysis.

Feature Extraction is the main analytical phase. Here, the pre-trained CNN model examines
each facial region for subtle manipulation artifacts, unnatural patterns, and digital
inconsistencies.

During the Classification stage, the system processes extracted features through deep
learning algorithms. It classifies each frame as authentic or manipulated, along with
corresponding confidence scores.

The system automatically combines frame-level results to generate video-level
conclusions. It provides users with clear indicators of video authenticity and specific
tampering evidence.

Results are organized in the database and shown through an intuitive dashboard. This
dashboard highlights manipulated segments with visual evidence and statistical confidence
metrics.

The interface distinguishes between authentic and manipulated content with color-coded
indicators: green for verified authentic content and red for detected manipulations, along
with detailed explanations.

To improve user experience, the system offers an interactive timeline visualization,
showing exactly where and when manipulations occur within the video's duration.

Users can access frame-specific analysis with side-by-side comparisons. This highlights
detected anomalies and provides technical explanations of identified manipulation
techniques.

The system includes multiple automated quality checks. These checks involve duplicate
frame identification, compression artifact analysis, and consistency verification across
sequential frames.

Key computational functions include Real-time Probability Calculation and Multi-
dimensional Confidence Scoring. These are the basis of the system's detection reliability.

Once the analysis is complete, the system automatically compiles a Digital Forensic
Report. This report contains statistical summaries, visual evidence, technical analysis, and
expert interpretations.

All analytical results are processed by the report generation engine and securely stored in
the system database. This ensures data integrity and availability for future reference.

The system uses multi-layer verification protocols, including cross-frame consistency
checks, temporal pattern analysis, and algorithm validation to minimize false positives and
improve detection accuracy.

Users can choose between Detailed Forensic Reports and Executive Summary Reports
based on their needs. Detailed reports provide in-depth analysis, while concise summaries
serve quick verification purposes.

IJCRT2511497

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | €200

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
21. The final output capability allows users to export complete analysis reports in multiple
formats such as PDF, JSON, and XML. These reports include all analytical data, visual

evidence, confidence metrics, and expert conclusions for legal or archival purposes.

Deep fake
Input Hetaction Deployment
~ y - A . vy
g Y g™ N " 5l N
Frame Model
: SRR Result
extraction training
. vy , >y . vy
' R g "
Face Feature
detection extraction

Fig.1 Architecture of Deepfake video detection

[JCRT2511497 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | e201

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
VI. ALGORITHM

Algorithms play a crucial role in the deepfake detection system, contributing to several key
functionalities and features including frame processing, feature extraction, classification, and result
analysis. Here are some of the primary uses of algorithms in the Vid Verify-Al system:

6.1 Convolution neural network (CNN)

Convolutional Neural Networks are the main tools for analyzing visual features in video frames. The
CNN acts as a feature extractor that automatically learns patterns from input images. This makes it
perfect for spotting small manipulation artifacts in deepfake videos.

model = tf.keras.Sequential ([

Conv2D(32, (3,3), activation="relu’, input_shape=(224,224,3)),
MaxPooling2D(2,2),

Conv2D(64, (3,3), activation="relu"),

MaxPooling2D(2,2),

Conv2D(128, (3,3), activation="relu"),

MaxPooling2D(2,2),

Flatten(),

Dense(128, activation="relu’),

Dense(2, activation="softmax’) # Real vs Fake

D

6.1.1 Frame Processing CNN

In this deepfake detection project, we apply CNN architecture several times for various processing
stages. The main CNN model is used to extract features and classify video frames. CNNs serve as a link
between raw pixel data and useful feature representations. This enables the system to recognize
manipulation patterns in an organized way.

frame = cv2.resize(frame, (224,224))
frame = frame / 255.0 # Normalize

6.1.2 Feature Extraction Algorithm

CNNs effectively handle hierarchical feature learning to improve detection accuracy and processing
performance. In a deepfake detection pipeline, several convolutional layers are stacked at the beginning.
As the network gets deeper, the feature extractor learns more complex patterns, rather than looking at each
feature separately. This method helps increase detection accuracy and lower false positives.

features = [
Conv2D(32,3), # Edge detection
Conv2D(64,3), # Texture patterns
Conv2D(128,3) # Complex artifacts

]

6.1.3 Result Aggregation Algorithm

CNNs offer flexibility in handling various input sizes and aspect ratios with adaptive pooling layers. You
can create custom preprocessing that resizes input frames to the necessary dimensions. This allows you to
process videos of different resolutions based on your needs. It also lets you manage different video
qualities and formats within the same detection pipeline. CNNs can be combined with data augmentation
methods like random cropping or rotation to improve the model's ability to handle variations in input data.
This makes the training process easier and removes the need for manual video normalization.
final_prediction = np.mean(frame_predictions)

confidence = np.std(frame_predictions)

[JCRT2511497 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | €202

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
6.2 MTCNN Face Detection
MTCNN (Multi-task Cascaded Convolutional Networks) is a popular choice for face detection in deepfake
analysis because it offers precise facial region localization and landmark detection. Here are some reasons
why MTCNN is commonly used in deepfake detection systems.

detector = MTCNN()
faces = detector.detect_faces(frame)

6.2.1 Face Detection Pipeline

Create a multi-stage network that builds on the CNN architecture for specific face detection tasks. This
deepfake detection system uses MTCNN in several ways: mainly for face detection, identifying facial
landmarks, and aligning faces. MTCNN comes as pre-trained models in most deep learning frameworks,
so there is no need to train from scratch. It is easy to access and can be used directly in this detection
pipeline.

detector = MTCNN()
results = detector.detect_faces(frame)

6.2.2 Facial Landmark Detection

MTCNN provides support for facial landmark detection features such as eye corners, nose tip, and mouth
corners. It allows you to precisely localize key facial points and establish spatial relationships between
them, making it easier to analyze facial geometry and detect anomalies. MTCNN supports multi-task
learning, which allows it to simultaneously perform face detection

and landmark localization in a single forward pass.

frames =[]
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
ret, frame = cap.read()
if ret:
frame = cv2.resize(frame, (224,224))
frames.append(frame)

6.2.3 Face Alignment Algorithm

MTCNN has been thoroughly tested and shows strong accuracy and reliability in facial analysis tasks. It
is commonly used in computer vision and has a large community of researchers who offer support and
resources. Overall, MTCNN provides an easy and effective way to detect and align faces in video
frames, which makes it a favored option for developers creating deepfake detection systems. MTCNN is
fine-tuned for precise face detection and landmark localization. It performs well across different poses,
lighting conditions, and occlusions, allowing for dependable facial analysis in various situations.

detector = MTCNN()
results = detector.detect_faces(frame)

VIl. WORKING MODEL OF THE PROJECT

The working model of the VID-VERIFY project is designed as an end-to-end pipeline for automated
deepfake detection, ensuring the authenticity of digital content through a systematic process. The
operation can be broken down into sequential steps for clarity.

Step 1: Data Collection and Preprocessing: Diverse videos, both real and deepfake, are gathered from
public datasets and other sources. Each input video is decomposed into its constituent frames. These
frames are then preprocessed by resizing to a uniform dimension (e.g., 224x224 pixels), normalizing pixel
values, and applying enhancement techniques to highlight potential artifacts for more effective model
analysis.

[JCRT2511497 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ’ €203

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

Step 2: Model Training and Validation: The preprocessed frames are split into training (70%),
validation (15%), and testing (15%) sets. The core CNN model is trained on the training set, learning to
distinguish between authentic and manipulated frames by identifying pixel-level anomalies and spatial
artifacts like unnatural facial contours or texture inconsistencies. The validation set is used to fine-tune
hyperparameters and prevent overfitting, ensuring the model generalizes well to unseen data.

Step 3: Frame Classification and Aggregation: During inference, each frame from a test video is passed
through the trained CNN model for individual classification. The model outputs a probability score for
each frame. These frame-level predictions are then aggregated using a majority voting system to produce
a final, holistic video-level prediction—classifying the entire video as "Real" or "Fake."

Step 4: Output and Evaluation: The system generates a final detection report stating the classification
result. For deeper analysis, it can optionally provide visual feedback by highlighting frames where
manipulation artifacts were most detected. The model's performance is rigorously evaluated using
standard metrics including accuracy, precision, recall, and F1-score on the held-out test set.

PP o0 v SPPY P

Skipping already processed i : ©1_ kitchen_pan.mp4

Skipping already processed i : ©1_ kitchen_still.mp4

Skipping already processed i : ©1_ meeting_ serious.mp4

Skipping already processed i : 81 outside_ talking pan_laughing.mp4
Skipping already processed i : ©1_ outside_talking still laughing.mp4
Skipping already processed 3 : ©1_ podium_speech_ happy.mp4

Skipping already processed i : ©1__ secret_ conversation.mp4

Skipping already processed i : ©1_ talking against wall.mp4d

Skipping already processed i : ©1_ talking_ angry couch.mp4

Skipping already processed i : ©1_ walking and_ outside_surprised.mp4
Skipping already processed i : 91 walking down_indoor_hall disgust.mp4
Skipping already processed i : 81 walking down_street_outside_angry.mp4
Skipping already processed i : ©1_ walking outside_ cafe disgusted.mp4
Skipping already processed i : ©1_ walk down_hall angry.mp4

Skipping already processed i : ©2__ _exit_ phone_room.mp4

Skipping already processed i : ©2_ hugging happy.mp4

Skipping already processed i : 82 kitchen_pan.mp4

Skipping already processed i : 82 kitchen_still.mp4

Skipping already processed i : ©2_ meeting_ serious.mp4

Skipping already processed i : ©2_ outside_ talking pan_laughing.mp4
Skipping already processed i : 82 outside_talking still laughing.mp4

Estimated time left: 164 min © sec

¢

Done extracting frames from real videos.
Total real videos processed: 2448/3369

eo-. o
: 1/3e68 | ETA: 119m 28s

Processed: 81_©82 hugging happy YVGYSLOK._mp4 | Frames Saved: 20
Done: 2/3068 | ETA: 189m 3s

Processed: 81_©82 meeting serious_YVGYSLOK.mp4 | Frames Saved: 35
Done: 3/3068 | ETA: 219m 38s

Processed: 81 _©2 outside talking still laughing YVGYSLOK.mp4 | Frames Saved
Done: 4/3068 | ETA: 212m 13s

Processed: ©1_©2 secret_conversation_ YVGYSLOK.mp4 | Frames Saved: 31
Done: 5/3068 | ETA: 217m 49s

Processed: 981 _©82 talking against wall YVGYSLOK.mp4 | Frames Saved: 29
Done: 6/3068 | ETA: 218m 14s

Processed: 81 02 talking angry couch_YVGYSLOK.mp4 | Frames Saved: 49
J Done: 7/3©68 | ETA: 243m 22s

Processed: 81 _©2 walking and_outside surprised YVGYSLOK.mp4 | Frames Saved:
Done: 8/3668 | ETA: 243m 59s

Processed: 28 16 walk down_hall angry XSFNCYON.mp4 | Frames Saved: 18
Done: 3068/3868 | ETA: ©m ©s

All videos processed.

Fig3. Fake Frame Extraction

[JCRT2511497 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | e204

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

Found 74594 images belonging to 2 classes.
Found 15983 images belonging to 2 classes.
Found 15987 images belonging to 2 classes.

r is\f t : UserWarning: Do not pass an "1

super().__init_ (activity regularizer=activity_regularizer, **kwargs)

X i e\ \ \ 'k ker \ n \data F pter. : UserWarning: Your ~
self. warn_if super_ not_called()

Epoch 1/10

2332/2332 @s 1s/step - accuracy: ©.7132 - loss: ©.6058

Epoch 1: val_accuracy improved from -inf to ©.71451, saving model to best_model.hs

WARNING:absl:You are saving your model as an HDFS5 file via "model.save() or "keras.saving.save model(model) . This file format is con

2332/2332 3073s 1s/step accuracy: 0.7132 lo .6058 val_accuracy: 0.7145 val loss: 0.5967

Epoch 2/10

2332/2332 @s 4s/step - accuracy: 0.7149

Epoch 2: val accuracy did not improve from ©.71451

2332/2332 1e33@s 4s/step accuracy: 0.7149 loss: 0.5994 val_accuracy: 0.7145 val loss: 0.5961

Epoch 3/1@

2332/2332 @s 609ms/step - accuracy: ©.7152 - loss: ©.5980

Epoch 3: val accuracy did not improve from ©.71451

2332/2332 1624s 697ms/step accuracy: 0.7152 loss: ©.5980 val_accuracy: ©0.7145 val loss: 0.6010

Epoch 4/10

2332/2332 @s 604ms/step accuracy: 0.7115 loss: 0.6009

Epoch 4: val accuracy did not improve from ©.71451

2332/2332 1607s 689ms/step - accuracy: 0.7115 - loss: ©.6009 - val accuracy: ©.7145 - val_loss: ©.5964

500/500 380s 761ms/step - accuracy: ©.7170 - loss: ©.5953

8 Test Accuracy: 71.45%

Fig4. Training and validation

This approach is not only automated and scalable but also adaptable, making it a robust solution for
preserving digital trust and maintaining the integrity of visual information. The use of a frame-based CNN
allows for detailed pixel-level scrutiny, which is crucial for identifying the increasingly sophisticated
artifacts present in modern deepfakes. The integration of data augmentation and a separate validation
phase ensures that the model remains effective even when faced with new variations of manipulation
techniques, thereby providing a reliable line of defense against synthetic media forgery.

VIIl. RESULT & CONCLUSIONS

Epoch 2/1@

1961/1961 Os 899ms/step - accuracy: ©.6156 - loss: ©.6632

WARNING:absl:You are saving your model as an HDF5 file via “model.save(eras.saving.save_model(model)” . This file format is consider
1961/1961 21205 1s/step - accuracy: ©.6164 - loss: 8.6623 - val_accuracy: ©.6584 - val_loss: 8.6332 - learning_rate:
Epoch 3/1@

1961/1961 21155 1s/step - accuracy: ©.6178 - loss: 0.6625 - val accuracy: ©.5984 - val_loss: 0.6648 - learning_rate:
Epoch 4/1@

1961/1961 Os 980ms/step - accuracy: 0.6132 -

Epoch 4: ReducelLROnPlateau reducing learning rate to @.80850808002

1961/1961 26895 1s/step - accuracy: ©.6146 - loss: 0.6646 - val_accuracy: ©.6384 - val_loss: 0.6455 - learning_rate:
Epoch 5/1@

1961/1961 8s 2s/step - accuracy: ©.6240 - loss: ©.6548

WARNING:absl:You are saving your model as an HDF5 file via “model.save()” or “keras.saving.save model(model)”. This file format is consider
1961/1961 34855 2s/step - accuracy: ©.6254 - los .6533 - val_accuracy: ©.6599 - val loss: 8.6268 - learning rate: §
Epoch 6/1@

1961/1961 20555 1s/step - accuracy: ©.6281 - loss: 0.6586 - val_accuracy: ©.6328 - val_loss: 8.6424 - learning_rate: §
Epoch 7/18

1961/1961 Os 878ms/step - accuracy: ©.6277 - loss: 0.6516

WARNING:absl:You are saving your model as an HDF5 file wvia “model.save(or “keras.saving.save_model(model)”. This file format is consider
1961/1961 2073s 1s/step - accuracy: 8.6272 - loss: @.6513 - val_accuracy: 8.6617 - val_loss: ©.6287 - learning_rate: j
Epoch 8/1@

1961/1961 20735 1s/step - accuracy: ©.6252 - loss: 8.6515 - val_accuracy: ©.6568 - val_loss: 8.6274 - learning_rate: §
Epoch 9/1@

1961/1961 Os 874ms/step - accuracy: ©.6270 - loss: 6584

Epoch 9: ReducelROnPlateau reducing learning rate to ©.0002580080118

1961/1961 22245 1s/step - accuracy: ©.6281 - loss: 0.6580 - val_accuracy: ©.6501 - val_loss: 8.6328 - learning_rate: §
Epoch 18/1@

1961/1961 3343s 2s/step - accuracy: ©8.6357 - loss: 0.6450 - val_accuracy: 8.6473 - val_loss: 8.6343 - learning_rate:
421/421 904s 2s/step - accuracy: ©.6518 - loss: ©.6255

'ﬂ Test Accuracy: 65.18%

Fig5. Test Accuracy

The Vid-Verify system was tested on a varied dataset that included both real and altered videos. The model
achieved a test accuracy of 65.18%, showing it can effectively tell apart real and fake content. The evaluation
results indicated a precision of 0.64 and a recall of 0.66. This shows a balanced ability to identify altered content
and reduce incorrect classifications. The F1-score of 0.65 confirms steady performance for both real and
deepfake videos. The model showed it could generalize well by recognizing different deepfake types from new
data, but it struggled with highly advanced manipulations. Performance dropped when handling low-quality or
heavily compressed videos, as compression artifacts greatly impacted the detection of subtle manipulation
signs.

[JCRT2511497 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | e205

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

In conclusion, this project successfully created a basic frame-based deepfake detection system using a
Convolutional Neural Network, achieving 65.18% accuracy. The results support the potential of CNN-based
methods for identifying spatial artifacts in deepfakes while emphasizing the need for significant improvements
in detection ability. Future efforts will focus on improving the model's structure with deeper networks and
better convolutional layers, adding temporal analysis to utilize sequential frame inconsistencies, and
developing strong preprocessing techniques to enhance resilience against video compression. These
improvements are vital for making the system ready for real-world use and for more reliable deepfake
detection.

IX. REFERENCE
[1] R. Tolosana, R. Vera-Rodriguez, J. Fierrez, A. Morales, and J. Ortega-Garcia, "Deepfakes and

beyond: A survey of face manipulation and fake detection,” Information Fusion, vol. 64, pp. 131-
148, 2020.
[2] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, "MesoNet: a compact facial video forgery
detection network," in 2018 IEEE International Workshop on Information Forensics and Security
(WIFS), 2018.
[3] F. Mater, A. Rossler, and J. Fridrich, "Exposing deep fake videos by detecting eye blinking," in
Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops, 2019.
[4] P. Korshunov and S. Marcel, "DeepFakes: a new threat to face recognition? assessment and
detection," arXiv preprint arXiv:1812.08685, 2018.
[5] B. Bayar and M. C. Stamm, "A deep learning approach to universal image manipulation
detection using a new convolutional layer,” in Proceedings of the ACM Workshop on Information
Hiding and Multimedia Security, 2016.
[6] X. Zhou and L. Dong, "Deepfake Detection using Convolutional Neural Networks,” in
Proceedings of the International Conference on Computer Vision (ICCV) Workshops, 2020.
[7] D. Guera and E. J. Delp, "Deepfake video detection using recurrent neural networks," in 2018
15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS),
2018.
[8] H. Dang, F. Liu, J. Stehouwer, X. Liu, and A. K. Jain, "On the detection of digital face
manipulation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.
[9] A. Rossler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nie3ner, "FaceForensics++:
Learning to Detect Manipulated Facial Images," in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019.

[10] FaceForensics Dataset. [Online]. Available: https://github.com/ondyari/FaceForensics

[JCRT2511497 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | e206

http://www.ijcrt.org/

