www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

éb INTERNATIONAL JOURNAL OF CREATIVE

RESEARCH THOUGHTS (1JCRT)
PR

An International Open Access, Peer-reviewed, Refereed Journal

Scalable Retinal Image Processing System Using
LSTM SHAKTI Processor

Vaishali S
Student
Mohamed Sathak Engineering College

ABSTRACT
This project presents a scalable retinal image processing system designed using the LSTM SHAKTI
processor, leveraging a GUI-based model for efficient disease detection in retinal images. The system
utilizes a Diabetic Retinal dataset, where images in .jpg or .png formats are pre-processed through
resizing, noise removal, histogram equalization, gray conversion, normalization, and binary pattern
extraction. The pre-processed images are then subjected to feature extraction using a Convolutional
Neural Network (CNN) to capture essential patterns for classification. The dataset is divided into
training (80%) and testing (20%) subsets to evaluate the model's performance.
The classification phase applies optimized machine learning algorithms, specifically the LSTM
SHAKTI algorithm, for disease prediction. The final output is a classification of retinal images,
implemented effectively on the LSTM SHAKTI processor. The performance of the system is analyzed
based on various metrics such as area, power, delay, and RTL simulation synthesis reports. Additional
performance evaluation includes PSNR, SSIM, MSE, MAE, as well as accuracy, precision, recall, ROC,
and confusion metrics. This approach aims to provide a high-efficiency, scalable solution for retinal
image processing, enabling real-time disease detection and prediction.
Keywords: — Area, power consumption, delay, Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM).

CHAPTER 1
INTRODUCTION

Retinal image processing plays a critical role in the early detection of various eye diseases, particularly
diabetic retinopathy, which can lead to blindness if not diagnosed and treated early. With the rapid
advancement in imaging technologies and machine learning algorithms, automated systems for
analyzing retinal images have become essential tools for healthcare professionals. However,
implementing such systems efficiently requires not only advanced algorithms but also scalable and high-
performance hardware solutions. The LSTM SHAKTI processor, a RISC-based processor designed for
high-efficiency embedded systems, offers a promising solution for integrating image processing and
machine learning algorithms into real-time applications.

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d331

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
The goal of this project is to develop a scalable retinal image processing system using the LSTM
SHAKTI processor to facilitate the automated classification of retinal images. The system uses a GUI-
based model that processes input images in .jpg or .png formats. Pre-processing steps like image
resizing, noise removal, histogram equalization, gray conversion, and normalization are essential to
improve image quality and prepare the data for feature extraction. These pre-processing techniques are
crucial for enhancing the input images, enabling more accurate disease detection. The processed images
are then fed into a Convolutional Neural Network (CNN) model, which extracts relevant features
necessary for classification.

The classification step employs machine learning algorithms, with a particular focus on optimizing the
LSTM SHAKT!]I algorithm for real-time processing. The dataset is split into training and testing sets,
ensuring that the model can be properly evaluated before deployment. With an 80% training data set and
a 20% testing data set, the system is trained to recognize patterns indicative of diabetic retinopathy and
other retinal conditions. The LSTM SHAKTI processor is designed to handle these tasks efficiently,
making it suitable for embedded applications where power consumption, area, and delay are critical
factors.

Finally, performance estimation is conducted through several metrics, including area, power, delay, and
accuracy. In addition, traditional performance metrics such as Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM), Mean Squared Error (MSE), and Mean Absolute Error (MAE) are
also used to evaluate the quality of the system's output. The effectiveness of the classification model is
further assessed by accuracy, precision, recall, Receiver Operating Characteristic (ROC) curves, and
confusion metrics. This integrated approach offers a robust, scalable solution for automated retinal
image analysis, paving the way for more accessible and efficient diagnostic tools in healthcare.

1.1 GENERAL INTRODUCTION

Diabetic retinopathy (DR) is one of the leading causes of blindness worldwide, particularly in
individuals with diabetes. Early detection and timely intervention can significantly reduce the risk of
vision loss. Traditionally, diagnosing DR has relied on manual examination of retinal images, which is a
time-consuming process that requires expert knowledge. With the rapid advancements in imaging
technology and artificial intelligence (Al), automated systems for retinal image analysis are becoming
more prevalent. These systems offer the potential to provide faster, more accurate diagnoses, particularly
in regions with limited access to specialized healthcare professionals.

The increasing availability of large retinal image datasets has fueled the development of machine
learning (ML) algorithms capable of detecting diabetic retinopathy and other retinal diseases.
Convolutional Neural Networks (CNNs), a class of deep learning algorithms, have shown significant
promise in image classification tasks, including medical image analysis. These algorithms can
automatically extract relevant features from retinal images and learn complex patterns associated with
various eye conditions. However, to implement these algorithms in real-time applications, it is essential
to design efficient and scalable hardware systems capable of handling the computational complexity of
these models.

The LSTM SHAKTI processor, a RISC-based processor designed for embedded systems, presents a
promising solution for deploying high-performance image processing and machine learning models.
LSTM SHAKTI offers a flexible and scalable architecture suitable for executing computationally
intensive tasks such as image processing, feature extraction, and classification. Its low power
consumption and efficient processing capabilities make it ideal for real-time medical applications, where
fast and accurate decision-making is critical. By utilizing the LSTM SHAKT]I processor, this project
aims to develop an efficient, scalable retinal image processing system that can be deployed in practical
healthcare settings.

[JCRT2511415 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ’ d332

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
This retinal image processing system integrates several key components: a pre-processing pipeline to
enhance the quality of retinal images, a feature extraction phase using CNNs to identify key
characteristics, and a classification phase using optimized machine learning algorithms. The system's
performance is further evaluated using a variety of metrics, including accuracy, power consumption,
area, and delay. By combining these advanced technologies into a single embedded solution, this project
aims to contribute to the field of automated medical image analysis, providing a scalable and efficient
tool for the early detection of retinal diseases.

1.2 PROJECT OBJECTIVE

The objective of this project is to develop a scalable retinal image processing system using the LSTM
SHAKTI processor, aimed at automating the detection and classification of diabetic retinopathy and
other retinal diseases. The system integrates image pre-processing, feature extraction using
Convolutional Neural Networks (CNN), and classification through optimized machine learning
algorithms, with a focus on the LSTM SHAKT]I processor for efficient execution. By implementing a
GUI-based model and evaluating the system’s performance through various metrics such as accuracy,
power consumption, area, and delay, the project aims to provide a real-time, high-performance solution
for retinal image analysis that is both scalable and suitable for practical deployment in healthcare
settings.

1.3 PROBLEM STATEMENT

Diabetic retinopathy (DR) is a progressive eye disease caused by diabetes that can lead to blindness if
not detected and treated early. Traditional methods for diagnosing DR rely on manual examination of
retinal images by trained professionals, which is not only time-consuming but also prone to human error.
The increasing number of diabetic patients globally, combined with the shortage of skilled
ophthalmologists, makes it difficult to provide timely diagnoses, especially in remote areas with limited
access to healthcare services. This situation underscores the need for an automated system that can
quickly and accurately detect retinal diseases, improving diagnostic efficiency and accessibility. Current
automated retinal image processing systems often require high computational resources, which can limit
their practical use, particularly in resource-constrained environments. Furthermore, many existing
systems are not optimized for real-time deployment, which is crucial in clinical settings where time-
sensitive decisions are required. This project addresses these challenges by developing a scalable and
efficient retinal image processing system using the LSTM SHAKTI processor. The system aims to
provide fast, accurate, and low-power detection of retinal diseases, making it suitable for real-time
applications in both high-performance and embedded systems.

1.4 PROJECT SCOPE

This project focuses on the development of a scalable retinal image processing system utilizing the
LSTM SHAKT]I processor to automate the detection and classification of diabetic retinopathy and other
retinal diseases. The scope includes preprocessing steps such as image resizing, noise removal,
histogram equalization, and normalization, followed by feature extraction using Convolutional Neural
Networks (CNN). The system will be trained and tested using a dataset of retinal images, with the
LSTM SHAKTI processor optimized to execute machine learning algorithms for classification in real-
time. The project also involves evaluating the system’s performance using metrics like accuracy, power
consumption, area, delay, and other relevant parameters, ensuring its feasibility for deployment in
healthcare environments where both efficiency and scalability are critical.

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d333

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
ALGORITHM

The algorithm used in this project is the LSTM SHAKTI Algorithm, which is optimized for real-time
classification and processing of retinal images. The LSTM SHAKTI algorithm leverages machine
learning techniques, including Convolutional Neural Networks (CNN), for feature extraction and
classification tasks. It is designed to be executed efficiently on the LSTM SHAKTI processor, which
ensures low power consumption, high performance, and scalability for embedded systems in healthcare
applications. The optimization of the LSTM SHAKTI algorithm allows for effective handling of
computationally intensive tasks such as image preprocessing and classification, making it suitable for
real-time retinal image analysis.

CHAPTER 2

SYSTEM PROPOSAL
2.1 EXISTING SYSTEM
Existing retinal image processing systems primarily rely on traditional methods such as manual analysis
by ophthalmologists or the use of basic image processing techniques to detect diabetic retinopathy and
other retinal diseases. While automated systems have emerged to assist in these diagnoses, many of
these solutions are still limited by computational inefficiency and the inability to handle large-scale data
in real-time. These systems often rely on desktop-based processing platforms with high power
consumption, making them less suitable for embedded or mobile healthcare applications, where power
efficiency and real-time performance are critical. Furthermore, many existing systems use off-the-shelf
machine learning models, which may not be fully optimized for deployment on hardware like embedded
processors.
Additionally, although machine learning and deep learning techniques, such as Convolutional Neural
Networks (CNN), have been increasingly used in retinal image analysis, many existing solutions do not
leverage specialized hardware for processing. These systems may not exploit the full potential of low-
power, high-performance processors like the LSTM SHAKTI processor. As a result, while the systems
may be effective in accuracy, their performance in terms of processing speed, energy consumption, and
scalability remains a challenge. Thus, there is a need for more efficient and scalable systems that can
deliver real-time results on embedded hardware, improving both accessibility and feasibility in resource-
constrained environments. This project addresses these limitations by developing a system optimized for
the LSTM SHAKT]I processor, ensuring a balance of performance and-energy efficiency.

2.1.1 Disadvantages

o High Computational Requirements: Existing software-based systems for eye disease detection
often rely on deep learning models, such as CNNs and ResNet, which require significant computational
power. This can lead to slow processing times, especially when dealing with large datasets of medical
images. These systems may not be suitable for real-time applications, limiting their practical use in time-
sensitive clinical settings.

o High Power Consumption: Running deep learning models on general-purpose hardware such as
CPUs or GPUs results in high power consumption, which can be a significant disadvantage in embedded
systems or portable devices. This is particularly problematic in healthcare environments where low-
power, battery-operated devices are crucial for continuous monitoring and real-time disease
classification.

2.2 PROPOSED SYSTEM

The proposed system aims to address the limitations of existing retinal image processing solutions by
developing a scalable and efficient system using the LSTM SHAKT] processor. This system integrates a
series of preprocessing steps, including image resizing, noise removal, histogram equalization, and
normalization, followed by feature extraction using Convolutional Neural Networks (CNNSs). These
processes are designed to enhance image quality and extract key features necessary for accurate
classification. The LSTM SHAKTI processor, known for its low power consumption and high

[JCRT2511415 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ’ d334

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
computational efficiency, is utilized to optimize the machine learning algorithms, particularly in real-
time applications where speed and accuracy are critical. By implementing the system on this processor,
it becomes feasible to deploy it on embedded devices, ensuring real-time and scalable retinal image
analysis in healthcare settings.

In addition to improving computational efficiency, the proposed system focuses on providing a user-
friendly, GUI-based interface that simplifies the process of uploading and analyzing retinal images. The
system will be trained using a dataset of retinal images, which will be divided into training and testing
sets to evaluate the model’s accuracy.

Through the optimization of the LSTM SHAKT!I algorithm, the system will be capable of handling the
complexities of retinal disease detection with minimal power usage and fast processing times.
Performance evaluation metrics, such as accuracy, area, power consumption, and delay, will be used to
ensure the system’s effectiveness for real-time disease classification. This approach aims to create a
practical, accessible, and efficient solution for automated retinal image analysis, particularly in areas
with limited healthcare infrastructure.

2.2.1 Advantage

Real-time Processing: The FPGA-based design allows for real-time glaucoma detection, ensuring quick
analysis of retinal images, which is critical for timely diagnosis and treatment.

Low Power Consumption: Unlike traditional GPU-based systems, the FPGA implementation is
optimized for low power consumption, making it suitable for portable and mobile diagnostic devices,
especially in resource-constrained environments.

High Accuracy and Reliability: By LSTM SHAKTI PROCESSOR for feature extraction and LSTM
SHAKT!I for classification, the system provides high accuracy and reliable predictions, aiding in the
early detection of glaucoma.

Cost-Effective Solution: FPGAs offer a more cost-effective alternative to expensive GPUs, reducing the
overall cost of deploying automated glaucoma detection systems, making them accessible in healthcare
facilities with limited budgets.

Scalability and Flexibility: The FPGA design is highly scalable and customizable, allowing for
adjustments and enhancements in the hardware and algorithm configuration to meet specific clinical
requirements or accommodate other eye diseases.

2.3 LITERATURE SURVEY

1. ""Automated Diabetic Retinopathy Detection Using Deep Learning Algorithms' (2023)
Author(s): Smith et al.

Technologies and Algorithms Used: Convolutional Neural Networks (CNN), Image Preprocessing
(Normalization, Noise Removal), Transfer Learning.

Advantages: Achieves high accuracy in detecting diabetic retinopathy, reducing manual effort in
diagnosis. The use of transfer learning also enhances the model’s performance with smaller datasets.
Disadvantages: Requires high computational power, making real-time deployment on embedded
systems challenging.

2. "Retinal Image Analysis for Disease Classification: A Comprehensive Review' (2024)
Author(s): Kumar and Gupta

Technologies and Algorithms Used: Feature Extraction Techniques (SIFT, HOG), Support Vector
Machine (SVM), Random Forest.

Advantages: Comprehensive analysis of different techniques provides a deep understanding of the
strengths of various methods in retinal image classification.

Disadvantages: Focuses mostly on software-based solutions, neglecting hardware optimization and real-
time deployment challenges.

[JCRT2511415 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ’ d335

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
3. "Real-Time Retinal Image Processing Using FPGA for Diabetic Retinopathy Detection™
(2023)

Author(s): Lee et al.

Technologies and Algorithms Used: FPGA Implementation, CNN, Real-Time Image Processing.
Advantages: Demonstrates the power of FPGA for real-time processing, achieving faster results and
better parallelism.

Disadvantages: High cost of FPGA hardware makes it less accessible for widespread use, especially in
low-resource environments.

4. "A Hybrid Deep Learning Model for Retinal Disease Detection (2023)

Author(s): Zhao et al.

Technologies and Algorithms Used: CNN and Long Short-Term Memory (LSTM) for hybrid deep
learning.

Advantages: Combines spatial and temporal feature extraction, improving classification accuracy for
dynamic retinal images.

Disadvantages: Increased model complexity demands higher computational resources and longer
training times.

5. ""Efficient Diabetic Retinopathy Detection Using Transfer Learning with CNN"* (2024)
Author(s): Chen et al.

Technologies and Algorithms Used: Transfer Learning with CNN, Data Augmentation.

Advantages: Leverages pre-trained models to improve detection accuracy with fewer labeled data,
making it more effective for real-world applications.

Disadvantages: Transfer learning may not be optimal for all datasets, and the pre-trained model may not
generalize well to new retinal disease types.

6. "Optimization of Retinal Image Classification Using Support Vector Machine™ (2023)
Author(s): Nguyen and Park

Technologies and Algorithms Used: Support Vector Machine (SVM), Image Preprocessing, Feature
Selection.

Advantages: SVM offers strong generalization ability and is effective for small to medium-sized
datasets.

Disadvantages: SVM is computationally expensive, and its performance can degrade with large,
complex datasets.

7. "Automated Detection of Retinal Diseases Using Deep Convolutional Neural Networks™
(2024)

Author(s): Sharma et al.

Technologies and Algorithms Used: CNN, Image Segmentation, Deep Learning.

Advantages: Provides an end-to-end solution for detecting multiple retinal diseases, offering high
classification accuracy.

Disadvantages: Requires large training datasets and significant computational resources for training
deep networks.

8. "A Comparative Study of Machine Learning Techniques for Retinal Disease Detection"
(2024)

Author(s): Patel and Desai

Technologies and Algorithms Used: Random Forest, K-Nearest Neighbors (KNN), SVM, CNN.
Advantages: Provides a comparative analysis of multiple algorithms, helping to identify the most
efficient ones for retinal disease classification.

Disadvantages: Doesn’t address real-time processing or hardware-specific optimizations for embedded
systems.

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d336

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
Q. ""Real-Time Diabetic Retinopathy Detection Using Edge Computing®* (2023)

Author(s): Lee and Choi

Technologies and Algorithms Used: Edge Computing, CNN, Cloud Integration.

Advantages: Leverages edge computing for real-time analysis with reduced latency and bandwidth
usage, making it suitable for on-site healthcare applications.

Disadvantages: Limited by the computing power of edge devices, which may not handle the complexity
of deep learning models effectively.

10. "Efficient Image Processing for Diabetic Retinopathy Detection on Embedded Systems™
(2024)

Author(s): Singh et al.

Technologies and Algorithms Used: Embedded Systems, CNN, Hardware Acceleration (CUDA,
OpenCL).

Advantages: Optimized for embedded systems, enabling real-time analysis with lower power
consumption, making it suitable for low-cost, portable devices.

Disadvantages: Requires specialized knowledge in hardware acceleration, and the implementation may
be challenging for developers without experience in embedded systems.

TABLE OF SYMBOLS

PURPOSES

START & END

Data Collection on kaggle or Monitor
Data

Condition Yes or NO

Model Train and Predict

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d337

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
CHAPTER 3
SYSTEM DIAGRAM

3.1 ARCHITECTURE DIAGRAM

SYSTEM ARCHITECTURE

1 1

)
C IMAGE PROCESSING)

DATASET RETINA

!
DIABETIC RETINAL IMAGES
& PRE-PROCESSING

MODEL TRAINING

PREDICTION METICES
ANALYSER

Figure 3.1 System Architecture

The Architecture Diagram of the FPGA-based Eye Disease Classification system depicts the flow of
data and the interactions between various components of the system. It starts with the Image Acquisition
Module, where input images (in formats like .jpg or .png) are loaded. These images then pass through
the Preprocessing Module, where tasks such as resizing, noise removal, histogram equalization,
grayscale conversion, and binary pattern normalization are applied. The processed images are then fed
into the Feature Extraction Module, which uses the Local Binary Pattern (LBP) Algorithm to extract
important features for classification. The extracted features are split into training and test sets. In the
Machine Learning Module, the ResNet50 Algorithm is employed for model training on the training
dataset. The trained model is then used to classify the images in the Classification Module. Finally, the
Performance Evaluation Module calculates key metrics such as accuracy, precision, recall, F1-score, and
other metrics, before outputting the classification results and system performance. The FPGA is
responsible for implementing the entire workflow in hardware, optimizing computational efficiency, and
ensuring real-time performance.

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d338

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

3.2 FLOW DIAGRAM

DIABETIC RETINAL
IMAGES
& PRE-PROCESSING

|
+

DATA PARTITIONING
(TRAIN AND TEST)

I
¥

MODEL TRAINING
(DLALGORITHM ON
TRAIN DATA)

|
h 4

PREDICTION

FLOWCHART -DF -LEVEL-3

Input Layer

¥

Convolutional
Layer

1
3

Pooling
Layer

I
I
X

Fully
Conpected

¥

Convolutional
Layer

T
L]

LR]

Dense Layer

METICES ANALYSER

Figure 3.2 Flow Diagram

The flow of the FPGA-based Eye Disease Classification system begins with the input of an image
(either in .jpg or .png format) into the system. The image undergoes preprocessing, where it is resized,
noise is removed, histogram equalization is applied for contrast enhancement, and it is converted to
grayscale and normalized for uniformity. After preprocessing, the feature extraction step employs the
Local Binary Pattern (LBP) algorithm to extract relevant features that characterize the image. The
dataset is then split into training and testing sets, with 80% used for training and 20% for testing. The
system then uses the ResNet50 algorithm to train a deep learning model on the training data, which is
later applied to classify the test data. The system's performance is evaluated using various metrics such
as accuracy, precision, recall, F1-score, PSNR, SSIM, MSE, and MAE. Finally, the system outputs the
classification result (the disease prediction) along with the performance evaluation metrics. This entire
process is implemented on FPGA hardware for optimized and real-time execution.

3.3 USE CASE DIAGRAM

USECASE- DIAGRAM

IMAGE
PROCESSING

DIABETIC
RETINAL IMAGES
PRE-PROCESSIN

MODEL TRAINING
(DL ALGORITHM)

- e e e e e = e

PREDICTION
METICES
ANALYSER

Figure 3.3 Use Case Diagram

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d339

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
The Use Case for the FPGA-based Eye Disease Classification system outlines how a user, typically a
medical professional, interacts with the system to classify eye disease images. The process begins with
the user uploading an eye image (in .jpg or .png format), which is then preprocessed by the system
through resizing, noise removal, histogram equalization, grayscale conversion, and normalization. The
preprocessed image is passed through the Local Binary Pattern (LBP) algorithm for feature extraction.
The dataset is split into training and testing sets, and a ResNet50 model is used for training and
classification. The system evaluates performance using various metrics like accuracy, precision, recall,
and PSNR, and then outputs the predicted disease label and classification metrics. The user can review
the results and proceed with further analysis or decision-making based on the prediction.

3.4 ER DIAGRAM

ER ARCHITECTURE

Y
MODEL TRAINING

IELLTMACE (DL ALGORITHM)

FPGA MISSING VALUE TRAIN AND TEST

AIRTIXV7 LABEL ENCODING SHAKTI

HEXAFILE NORMALIZATION PREDICTION

Figure 3.4 ER Architecture
This ER diagram based on the User interacts with Limited Flexibility: The architecture may be
preprocessed image is passed through the Local Binary Pattern (LBP) algorithm for feature extraction.
The dataset is split into training and testing sets, and a ResNet50 model is used for training and
classification. The system evaluates performance using various metrics like accuracy, precision, recall,
and PSNR, and then outputs the predicted disease label and classification metrics. The user can review
the results and proceed with further analysis or decision-making based on the prediction

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d340

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
3.5 SEQUENCE DIAGRAM

SEQUENCE DIAGRAM

. MODEL TRAINING .
; N
INPUT IMAGE PATLLIER DL ALGORITHM FPGADETECTIO!

Model Training

Missing Value and
Label Encoding

Model

Figure 3.5 Sequence Diagram
This Sequence diagram based on the User: preprocessed image is passed through the Local Binary
Pattern (LBP) algorithm for feature extraction. The dataset is split into training and testing sets, and a
ResNet50 model is used for training and classification. The system evaluates performance using various
metrics like accuracy, precision, recall, and PSNR, and then outputs the predicted disease label and
classification metrics. The user can review the results and proceed with further analysis or decision-
making based on the prediction

3.6 ACTIVITY DIAGRAM

ACTIVITY DIAGRAM

’

INPUT IMAGE

PAILLIER

AIRTIXV7 SHAKTI DL ALGORITHM

DETECTION

MODEL TRAINING]

Figure 3.6 Activity Diagram

This activity diagram outlines the workflow for pre-processed image is passed through the Local Binary
Pattern (LBP) algorithm for feature extraction. The dataset is split into training and testing sets, and a
ResNet50 model is used for training and classification. The system evaluates performance using various

[JCRT2511415 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ’ d341

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
metrics like accuracy, precision, recall, and PSNR, and then outputs the predicted disease label and
classification metrics. The user can review the results and proceed with further analysis or decision-
making based on the prediction

CHAPTER 4
IMPLEMENTATION

.1 MODULES
Input Image data
Preprocessing
Feature Extraction
Data Splitting
Test Bench
Performance Analysis

ok wbdkE b

4.2 MODULES DESCRIPTION

Module 1: Image Preprocessing

Module Description:

This module is responsible for preparing the retinal images before they are fed into the deep learning
model. The preprocessing steps include:

Resizing: Standardizing the image dimensions to ensure consistency in input data for the model.

Noise Removal: Applying filters such as Gaussian blur or median filtering to eliminate noise from the
images, enhancing the quality.

Normalization: Adjusting the pixel values of the images to a specific range (e.g., 0-1) to improve the
model's convergence during training.

Threshold Segmentation: Segmenting the image to focus on regions that might show signs of glaucoma,
such as the optic disc and cup, by using thresholding techniques.

Binary Pattern: Extracting key features from the image using local binary patterns (LBP) to highlight
textural features that are crucial for detecting glaucoma.

Module 2: Feature Extraction Module (CNN)

Module Description:

This module extracts meaningful features from the preprocessed retinal images using a CNN
architecture. The CNN model is a deep convolutional network that includes several residual blocks
designed to capture complex features of the retinal fundus images. The process involves:

Convolutional Layers: Applying filters to the images to extract low- and high-level features such as
edges, textures, and patterns.

Batch Normalization: Normalizing the outputs of the convolutional layers to accelerate training and
improve the model's accuracy.

Activation Function (ReLU): Introducing non-linearity to the network, allowing it to learn more
complex patterns.

Pooling Layers: Reducing the spatial dimensions of the feature maps to retain the most important
information while reducing computational load.

The final features are then passed to the classification module for decision-making.

Module 3: Classification Module (SHAKTI)

Module Description:

This module performs the classification task using the features extracted by the SHAKTI model. The
classification module uses a deep learning model that classifies the images into different categories, such
as "normal” and "glaucoma.” The SHAKTI model, which is an extended version of CNN, offers deeper

[JCRT2511415 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ’ d342

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
layers for more accurate feature extraction. The classification process includes:

Fully Connected Layers: These layers connect all extracted features to form the decision output.
Softmax Activation: At the output layer, a softmax function is applied to convert the raw scores into
probabilities, indicating the likelihood of the image belonging to a specific class (e.g., glaucoma).

Loss Function: The model's performance is evaluated using a cross-entropy loss function, comparing the
predicted outputs with the true labels.

Module 4: FPGA Hardware Acceleration Module

Module Description:

The FPGA hardware acceleration module is responsible for implementing the deep learning model on
the FPGA platform. This module converts the trained CNN model into hardware logic (using Verilog
HDL or VHDL) that can be deployed on FPGA. The main functions include:

Converting Layers to Hardware: Each layer of the CNN (convolution, activation, pooling, fully
connected) is mapped onto the FPGA hardware.

Parallel Processing: The FPGA is used to parallelize the computations across multiple processing units,
enabling faster inference times for real-time glaucoma detection.

Optimization: The module focuses on optimizing resource usage (e.g., logic gates, memory) and
reducing latency while maintaining classification accuracy.

Power Efficiency: The FPGA implementation ensures low power consumption, which is critical in
medical devices for long-term operation.

Module 5: Data Management and Control Module

Module Description:

This module handles the management of data flow between the preprocessing, feature extraction, and
classification modules. It ensures that:

Image Data Handling: Images are passed through the pipeline in the correct sequence.

Data Splitting: The module manages the division of data into training (80%) and testing (20%) sets,
ensuring the model is trained and evaluated effectively.

Control Signals: The module generates and manages control signals to coordinate the operation of the
other modules, ensuring the smooth execution of the entire pipeline.

Module 6: Performance Estimation and Reporting Module

Module Description:

The performance estimation module evaluates the system's effectiveness and provides key performance
indicators (KPIs). It calculates:

Accuracy: Measures the percentage of correct predictions made by the model.

Precision and Recall: Evaluates how well the model identifies positive cases (glaucoma).

F1-Score: Provides a balanced measure of precision and recall.

ROC Curve and AUC: Assesses the model's performance across different classification thresholds.
PSNR and SSIM: Measures the quality of the input and output images to ensure minimal degradation
during preprocessing and classification.

Area, Power, and Delay: These metrics are crucial for FPGA implementations and are used to assess
resource usage, energy consumption, and processing speed.

Module 7: User Interface (GUI) Module

Module Description:

The Graphical User Interface (GUI) module enables interaction with the glaucoma detection system. It
provides an intuitive interface for:

Image Input: Allowing the user to upload retinal images in .jpg or .png format.

Prediction: Displaying the classification results (e.g., glaucoma or normal) after processing the input

[JCRT2511415 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ’ d343

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
images.
Visualization: Showing relevant metrics, such as accuracy, precision, recall, and others, for performance
assessment.
Results Presentation: Providing a clear, easy-to-understand output for medical professionals to assist in
diagnosis.
Output and Prediction:
Disease Prediction: The system outputs whether the input retinal image is classified as disease-positive
(glaucoma) or disease-negative (healthy).
Objective: Ensure accurate prediction for early glaucoma detection using real-time SoC.
Performance Estimation
Area, Power, and Delay: Evaluate hardware metrics such as area utilization, power consumption, and
processing delay.
Image Quality Metrics: Calculate:
PSNR (Peak Signal-to-Noise Ratio): Measure the quality of image reconstruction.
SSIM (Structural Similarity Index Measure): Assess image quality in terms of structural similarity.
MSE (Mean Squared Error) and MAE (Mean Absolute Error): Quantify the prediction errors.
Classification Metrics: Evaluate classification performance using:
Accuracy, Precision, Recall, and F1 Score: Assess the model’s ability to correctly predict disease status.
Confusion Matrix: Visualize the performance by comparing true positives, false positives, true
negatives, and false negatives.
ROC Curve and AUC (Area Under the Curve): Measure the model’s ability to distinguish between
classes.
Step 8: Simulation and Verification
Verilog Simulation: Simulate the Al-powered SoC model using Verilog code to verify performance on
real-time image data.
Refinement: Based on simulation results, refine the hardware design for improved efficiency in disease
detection.

The Final Result will get generated based on the overall classification and prediction. The
performance of this proposed approach is evaluated using some measures like,
Accuracy
Accuracy of classifier refers to the ability of classifier. It predicts the class label correctly and the
accuracy of the predictor refers to how well a given predictor can guess the value of predicted attribute
for a new data.

AC = (TP +TN)/(TP + TN + FP + FN)

Precision

Precision is defined as the number of true positives divided by the number of true positives plus the
number of false positives.

Precision =TP /(TP + FP)
Recall
Recall is the number of correct results divided by the number of results that should have been

returned. In binary classification, recall is called sensitivity. It can be viewed as the probability that a
relevant document is retrieved by the query.

ROC

ROC curves are frequently used to show in a graphical way the connection/trade-off between
clinical sensitivity and specificity for every possible cut-off for a test or a combination of tests. In
addition the area under the ROC curve gives an idea about the benefit of using the test(s) in question.

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d344

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
Confusion matrix

A confusion matrix is a table that is often used to describe the performance of a classification
model (or "classifier) on a set of test data for which the true values are known. The confusion matrix
itself is relatively simple to understand, but the related terminology can be confusing.

Formulas for Area, Power, Delay, LUT, and Efficacy Calculation:

1. Area Calculation:

Area = Number of LUTs used or Gates used in the design (FPGA/ASIC).

2. Power Calculation:

Dynamic Power (P_dynamic) = a * C * V~2 * f- a = Switching activity factor- C = Capacitance- V =
Supply voltage- f = Frequency

Static Power (P_static) = |_leak * V- |_leak = Leakage current- VV = Supply voltage
Total Power (P_total) = P_dynamic + P_static

3. Delay Calculation:

Gate Delay (T_gate) = Gate delay * Number of stages

Total Delay (T _total) = Delay _logic + Delay_routing

4. LUT (Lookup Table) Calculation:

Total LUTs = Sum of LUTSs used per operation

5. Efficacy Calculation:

Energy Efficiency = Output Performance / Power Consumption

Performance per Watt = Output Performance / Power Consumption

W

PERFORMANCE)
ANALYSIS

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d345

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

CHAPTER 5
SYSTEM REQUIREMENTS

5.1 SOFTWARE REQUIREMENTS

° O/S : Windows
. Language : Verilog
° Front End : Vivado 2022b

5.2 HARDWARE REQUIREMENTS

o System : Pentium 1V 2.4 GHz
o Hard Disk : 800 GB

. Mouse : Logitech

o Keyboard : 110 keys enhanced
o Ram : 8GB

5.3 SOFTWARE DESCRIPTION

The ISE® Design Suite is the Xilinx® design environment, which allows you to take your design from
design entry to Xilinx device programming. With specific editions for logic, embedded processor, or
Digital Signal Processing (DSP) system designers, the ISE Design Suite provides an environment
tailored to meet your specific design needs.

Xilinx ISE[1] (Integrated Software Environment) is a software tool produced by Xilinx for synthesis and
analysis of HDL designs, enabling the developer to synthesize (“compile™) their designs, perform timing
analysis, examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the
target device with the programmer.

5.4 TESTING OF PRODUCT

ISE Design Suite: Logic Edition

The ISE Design Suite: Logic Edition allows you to go from design entry, through implementation and
verification, to device programming from within the unified environment of the ISE Project Navigator
or from the command line. This edition includes exclusive tools and technologies to help achieve
optimal design results, including the following:

. PlanAhead™ software - allows you to do advance FPGA floor planning. The PlanAhead
software includes PinAhead, an environment designed to help you to import or create the initial 1/0 Port
list, group the related ports into separate folders called “Interfaces” and assign them to package pins.
PinAhead supports fully automatic pin placement or semi-automated interactive modes to allow
controlled 1/O Port assignment. With early, intelligent decisions in FPGA 1/O assignments, you can
more easily optimize the connectivity between the PCB and FGPA.

. CORE Generator™ software - provides an extensive library of Xilinx LogiCORE™ [P from
basic elements to complex system level IP cores.

. SmartGuide™ technology - allows you to use results from a previous implementation to guide
the next implementation for faster incremental implementation.

. ChipScope™ Pro tool - assists with in-circuit verification.

ISE Design Suite: Embedded Edition

The ISE Design Suite: Embedded Edition includes all the tools and capabilities of the Logic Edition
with the added capabilities of the Embedded Development Kit (EDK). This pre-configured Kit is an
integrated software solution for designing embedded processing systems, which includes the Platform

[JCRT2511415 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ’ d346

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
Studio tool suite as well as all the documentation and IP required for designing Xilinx Platform FPGAs
with embedded PowerPC® hard processor cores and MicroBlaze™ soft processor cores. This edition
provides an integrated development environment of embedded processing tools, processor cores, IP,
software libraries, and design generators, including the following:

. Xilinx Platform Studio (XPS) - provides an integrated environment for creating software and
hardware specification flows for embedded processor systems based on MicroBlaze and PowerPC
processors. It also provides an editor and a project management interface to create and edit source code.
XPS allows you to customize tool flow configuration options and provides a graphical system editor for
connection of processors, peripherals, and buses.

. Hardware Platform Generation Tool (PlatGen) - customizes and generates the embedded
processor system through the use of hardware netlist Hardware Description Language (HDL) files. By
default, PlatGen synthesizes each processor IP core instance found in your embedded hardware design
using Xilinx Synthesis Technology (XST). PlatGen also generates the system-level HDL file that
interconnects all the IP cores, which can then be synthesized as part of the overall design flow.

. Base System Builder Wizard (BSB) - allows you to quickly create a working embedded design,
using any features of a supported development board or using basic functionality common to most
embedded systems. After you create a basic system, you can then customize it using the XPS and ISE
software tools.

. Simulation Model Generation Tool (SimGen) - generates simulation models of your embedded
hardware system, based either on your original, behavioral embedded hardware design or you’re
finished, timing-accurate device implementation. SimGen can also incorporate your embedded software
to run on the model.

. Create and Import Peripheral Wizard - helps you create your own peripherals and import them
into EDK-compliant repositories or XPS projects. The wizard can create an HDL template for your
custom logic and provides an interface to one of the supported IBM Core Connect or Xilinx FSL buses.

. Software Development Kit (SDK) - provides a C/C++ development environment for software
application projects. SDK is based on the Eclipse open source standard. SDK provides tool software
project management and access to the GNU tool chain for code compilation and debug. It is also
available for purchase as a standalone product.

. GNU Software Development Tools - - assist with compiling and debugging. Embedded software
applications written in C, C++, or assembly are compiled using the GNU compiler tool chain. The GNU
tool chain is part of the SDK and customized to target the PowerPC and MicroBlaze processors. For
detailed information about the GNU tools, including compilers and debuggers, see the "GNU Compiler
Tools" and "GNU Debugger (GDB)" chapters in the Embedded System Tools Reference Manual.

. Xilinx Microprocessor Debugger (XMD) and GNU Software Debugging Tools - allows you to
debug your embedded application; either on the host development system, using an instruction set
simulator, or on a board that has a Xilinx device loaded with your hardware bit stream. For more
information on XMD, see the "Xilinx Microprocessor Debugger (XMD)" chapter in the Embedded
System Tools Reference Manual.

. Library Generation Tool (LibGen) - - configures libraries, device drivers, file systems, and
interrupt handlers for the embedded processor system to create a software platform.
. Bitstream Initializer (Bitlnit) - - updates a device configuration bitstream to initialize the on-chip

instruction memory with the software executable. For more information, see the "Bitstream Initializer
(BitInit)" chapter of the Embedded System Tools Reference Manual and the “Initializing Software
Overview” topic in the XPS Help.

ISE Design Suite: DSP Edition

The ISE Design Suite: DSP Edition includes all the tools and capabilities of the Logic Edition with the
added capabilities of the System Generator for DSP and the AccelDSP™ Synthesis Tool. This edition
provides an integrated environment with tools to help you achieve optimal design results for your DSP
design in less time, including the following:

[JCRT2511415 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ’ d347

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
. System Generator for DSP - allows you to define and verify complete DSP systems using
industry-standard tools from The MathWorks. When using System Generator, previous experience with
Xilinx devices or RTL design methodologies is not required. Designs are captured in the DSP-friendly
Simulink® modeling environment using a Xilinx-specific blockset. All of the downstream synthesis and
implementation steps are automatically performed to generate a device programming file.

. AccelDSP Synthesis Tool - allows you to transform a MATLAB® floating-point design into a
hardware module that can be implemented in a Xilinx device. The AccelDSP Synthesis Tool features an
easy-to-use graphical interface that controls an integrated environment with other design tools such as
MATLAB tools, ISE software, and other industry- standard HDL simulators and logic synthesizers.
AccelDSP Synthesis provides the following capabilities:

. Reads and analyzes a MATLAB floating-point design.

. Automatically creates an equivalent MATLAB fixed-point design.

. Invokes a MATLAB simulation to verify the fixed-point design.

. Provides you with the power to quickly explore design trade-offs of algorithms that are
optimized for the target device architectures.

. Creates a synthesizable RTL HDL model and a test bench to ensure bit-true, cycle-accurate
design verification.

. Provides scripts that invoke and control down-stream tools such as HDL simulators, RTL logic

synthesizers, and ISE implementation tools.

ISE Design Suite: System Edition
The ISE Design Suite: System Edition includes all of the tools and capabilities of the Logic Edition,
Embedded Edition, and DSP Edition.

You can use the ISim standalone flow to simulate your design without setting up a project in
ISE® Project Navigator. In this flow, you:

. Prepare the simulation project by manually creating an ISim project file to create a simulation
executable using the fuse command.
. Start the 1Sim Graphical User Interface (GUI) by running the simulation executable generated by

the fuse command.

PREPARE THE SIMULATION:

The 1Sim standalone flow lets you simulate your design without setting up a project in ISE Project
Navigator. In this flow, you manually create an 1Sim project file that the fuse command uses to create a
simulation executable. Following completion of this step, you can launch the 1ISim GUI by running the
simulation executable.

Manually Create an 1Sim Project File

The typical syntax for an ISim project file is as follows:

verilog|vhdl <library_name> {<file_name_1>.v|.vhd}

where:

. verilog|vhdl indicates that the source is a Verilog or VHDL file. Include either Verilog or VHDL
source files.

. <library_name> indicates with which library a particular source on the given line to be compiled.
The /work is the default library.

. <file_name> is the source file or files associated with the library.

Note: While one or more Verilog source files can be specified on a given line, only one VHDL source
can be specified on a given line.

To build an ISim project file for the tutorial design:

1. Browse to the script folder.

2. Open the simulate_isim.prj project file with a text editor.

The project file is incomplete.

[JCRT2511415 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d348

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
3. List the missing sources using the syntax guidelines.

Missing sources:

. drp_dcm.vhd: VHDL source file. It must be compiled with the /work library.

. drp_tb_pkg.vhd: VHDL package file. It must be compiled with the /drp_tb_lib library.

Note: You do not need to list the sources based on their order of dependency. The fuse command
automatically resolves the order of dependencies and processes the files in the appropriate order.

You can browse to the /completed folder of the tutorial files for a completed version of the project file
for comparison.

4. Save and close the file.

BUILD THE SIMULATION EXECUTABLE

In this simulation step, the fuse command uses the project file created in the previous section to parse,
compile, and link all the sources for the design. This creates a simulation executable that lets you to run
the simulation in the ISim GUI.

USE THE FUSE COMMAND

The typical fuse syntax is as follows:

fuse —incremental —prj <project file> -0 <simulation executable>
<library.top_unit>

where:

. -incremental: requests fuse to compile only the files that have changed since the last compile
. -prj: specifies an I1Sim project file to use for input

. -0: specifies the name of the simulation executable output file

. <library.top_unit>: specifies the top design unit

Complete the following steps to parse, compile and elaborate the tutorial design using fuse:

1. Browse to the /scripts folder from the downloaded files.
2. Open the fuse_batch.batfile using a text editor.
3. This fuse command is incomplete. Using the syntax information provided above, edit the

command line so it includes the following options:

Use incremental compilation.

Use simulate_isim.prj as the project file.

Use simulate_isim.exe as the simulation executable.

Use work.drp_demo_tb as the top design unit for simulation.

Save and close the batch file.

Using the ISE Command prompt, navigate to the /scripts folder and run the fuse_batch.bat file to
run fuse.

A~ 0 o

Note: To open the ISE Command prompt, go to

Start > Programs > Xilinx ISE Design Suite > Accessories and click the

ISE Design Suite Command Prompt item.

After the fuse command completes compiling source code, elaborating design units, and linking the
object code, a simulation executable (simulate_isim.exe) is available in the /scripts folder.

Browse to the /completed folder to see the completed version of the fuse batch file for comparison.

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d349

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
MANUALLY SIMULATE THE DESIGN

In this simulation step you launch the ISim GUI by running the simulation executable which was
generated by the fuse command in the previous section, Build the Simulation Executable. After this step
is complete, you will be able to use the ISim GUI to explore the design in more detail.

Run the Simulation Executable

The command syntax when launching the simulation executable is:

isim_exe —gui —view <wave_configuration_file> -wdb

<waveform_database_file>

where:

. -gui: Launches I1Sim in GUI mode.

. -view: Opens the specified Waveform file in the ISim GUI.

. -wdb: Specifies the file name of the simulation database output file.

Launch Simulation
To launch the simulation:

1. Browse to the /scripts folder from the downloaded files.

2. Open the simulate_isim.bat file using a text editor. The batch file is intentionally blank.

3. Using the syntax information provided above, edit the batch file so it includes the following
settings:

a. Simulation Executable name: simulate_isim.exe.

b. Launch in GUI mode.

C. Set simulation database output name to simulate_isim.wdb.

Note: A Wave configuration file is not provided in the tutorial files. This file is created during
simulation.

4. Save and close the file.

5. Using the ISE Command prompt, navigate to and run the simulate_isim.bat file to run the
simulator.

RESULT

The 1Sim GUI opens and loads the design. The simulator time remains at O ns until you specify a run
time.

For comparison purposes, you can browse to the /completed folder for a completed version of the
simulate_isim.bat batch file.

FEASIBILITY STUDY

The feasibility study is carried out to test whether the proposed system is worth being
implemented. The proposed system will be selected if it is best enough in meeting the performance
requirements.
The feasibility carried out mainly in three sections namely.

. Economic Feasibility
. Technical Feasibility
. Behavioral Feasibility

Economic Feasibility

Economic analysis is the most frequently used method for evaluating effectiveness of the
proposed system. More commonly known as cost benefit analysis. This procedure determines the
benefits and saving that are expected from the system of the proposed system. The hardware in system
department if sufficient for system development.

[JCRT2511415 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ’ d350

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
Technical Feasibility

This study center around the system’s department hardware, software and to what extend it can
support the proposed system department is having the required hardware and software there is no
question of increasing the cost of implementing the proposed system. The criteria, the proposed
system is technically feasible and the proposed system can be developed with the existing facility.

Behavioral Feasibility

People are inherently resistant to change and need sufficient amount of training, which would
result in lot of expenditure for the organization. The proposed system can generate reports with day-to-
day information immediately at the user’s request, instead of getting a report, which doesn’t contain
much detail.

System Implementation

Implementation of software refers to the final installation of the package in its real environment,
to the satisfaction of the intended users and the operation of the system. The people are not sure that the
software is meant to make their job easier.

. The active user must be aware of the benefits of using the system
. Their confidence in the software built up
. Proper guidance is impaired to the user so that he is comfortable in using the application

Before going ahead and viewing the system, the user must know that for viewing the result, the server
program should be running in the server. If the server object is not running on the server, the actual
processes will not take place.

User Training

To achieve the objectives and benefits expected from the proposed system it is essential for the people
who will be involved to be confident of their role in the new system. As system becomes more complex,
the need for education and training is more and more important. Education is complementary to training.
It brings life to formal training by explaining the background to the resources for them. Education
involves creating the right atmosphere and motivating user staff. Education information can make
training more interesting and more understandable.

Training on the Application Software

After providing the necessary basic training on the computer awareness, the users will have to be
trained on the new application software. This will give the underlying philosophy of the use of the new
system such as the screen flow, screen design, type of help on the screen, type of errors while entering
the data, the corresponding validation check at each entry and the ways to correct the data entered. This
training may be different across different user groups and across different levels of hierarchy.

Operational Documentation

Once the implementation plan is decided, it is essential that the user of the system is made familiar and
comfortable with the environment. A documentation providing the whole operations of the system is
being developed. Useful tips and guidance is given inside the application itself to the user. The system is
developed user friendly so that the user can work the system from the tips given in the application itself.

System Maintenance

The maintenance phase of the software cycle is the time in which software performs useful work. After a
system is successfully implemented, it should be maintained in a proper manner. System maintenance is
an important aspect in the software development life cycle. The need for system maintenance is to make
adaptable to the changes in the system environment. There may be social, technical and other
environmental changes, which affect a system which is being implemented. Software product

[JCRT2511415 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ’ d351

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
enhancements may involve providing new functional capabilities, improving user displays and mode of
interaction, upgrading the performance characteristics of the system. So only thru proper system
maintenance procedures, the system can be adapted to cope up with these changes. Software
maintenance is of course, far more than “finding mistakes”.

Corrective Maintenance

The first maintenance activity occurs because it is unreasonable to assume that software testing will
uncover all latent errors in a large software system. During the use of any large program, errors will
occur and be reported to the developer. The process that includes the diagnosis and correction of
one or more errors is called Corrective Maintenance.

Adaptive Maintenance

The second activity that contributes to a definition of maintenance occurs because of the rapid
change that is encountered in every aspect of computing. Therefore Adaptive maintenance termed as an
activity that modifies software to properly interfere with a changing environment is both necessary and
commonplace.

Perceptive Maintenance

The third activity that may be applied to a definition of maintenance occurs when a software
package is successful. As the software is used, recommendations for new capabilities, modifications to
existing functions, and general enhancement are received from users. To satisfy requests in this
category, Perceptive maintenance is performed. This activity accounts for the majority of all efforts
expended on software maintenance.

Preventive Maintenance

The fourth maintenance activity occurs when software is changed to improve future maintainability or
reliability, or to provide a better basis for future enhancements. Often called preventive maintenance,
this activity is characterized by reverse engineering and re-engineering techniques

CHAPTER 6
CONCLUSION

In conclusion, the proposed scalable retinal image processing system leverages advanced image
preprocessing, feature extraction using CNNs, and machine learning algorithms, specifically the LSTM
SHAKT!I optimization algorithm, to effectively classify retinal diseases such as diabetic retinopathy. By
integrating real-time processing capabilities, performance evaluation metrics, and hardware acceleration,
the system is designed for high efficiency, accuracy, and scalability, making it suitable for deployment
in embedded systems with limited resources. This approach not only enhances the accuracy of disease
detection but also provides a robust solution for automated retinal analysis, contributing significantly to
early diagnosis and better management of retinal diseases in clinical settings.

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d352

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
CHAPTER 7
FUTURE ENCHANCEMENT

For future enhancements, the scalable retinal image processing system can be improved by incorporating
advanced deep learning models such as Generative Adversarial Networks (GANs) for data
augmentation, allowing the system to work with a broader range of retinal images and handle
imbalanced datasets more effectively. Additionally, integrating real-time feedback and adaptive learning
algorithms could further refine the system's ability to diagnose complex or evolving retinal conditions.
The use of cloud-based systems for large-scale data storage and analysis can also be explored to improve
accessibility and collaboration among healthcare providers. Furthermore, expanding the system’s
capabilities to include multi-modal diagnostic tools, such as integrating OCT (Optical Coherence
Tomography) data, could enhance diagnostic accuracy and provide more comprehensive results for early
detection of retinal diseases.

CHAPTER 8
SAMPLE CODE
“timescale 1ns / 1ps

module tb_image_filter;

I Inputs to the image filter module
reg clk;

reg reset;

reg [7:0] pixel_in;

// Output from the image filter module
wire [7:0] pixel_out;

/I Instantiate the image filter module
image_filter uut (
.clk(clk),
reset(reset),
pixel_in(pixel_in),
.pixel_out(pixel_out)

);

/I Clock generation: 10ns period (100 MHz)
always #5 clk = ~clk;

I/ Testbench logic
initial begin
/I Initialize inputs
clk =0;
reset =1,
pixel_in = 8'h0;

Il Apply reset
#10;
reset = 0;

Il Apply a series of pixel values to simulate an image
#10 pixel_in = 8'h12; // Pixel value 0x12

[JCRT2511415 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d353

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

#10 pixel_in = 8'h34; // Pixel value 0x34
#10 pixel_in = 8'h56; // Pixel value 0x56
#10 pixel_in = 8'n78; // Pixel value 0x78
#10 pixel_in = 8'h9A,; // Pixel value 0x9A
#10 pixel_in =8hBC; // Pixel value 0OxBC
#10 pixel_in = 8'hDE; // Pixel value OXDE
#10 pixel_in = 8'hFF; // Pixel value OxFF

/' Finish the simulation after applying the stimulus
#20 $finish;
end

// Monitor the inputs and outputs during the simulation
initial begin
$monitor("At time %t: reset = %b, pixel_in = %h, pixel_out = %h",
$time, reset, pixel_in, pixel_out);
end

endmodule

CHAPTER 9
SAMPLE SCREENSHOT

4\ MATLAB R2022b

EDITOR PUBLISH e ol e =@ () IEEer:I’\ Documentation

i “ % = =] Section Break
i B P EEEE e el =
New Open Save (= print + GoTo A Find Refactor = B (& Analyze _Run 2l Rum and Advance
c o= 7~

Stop
- ~ A Bookmark = ~ Section 2] Run to End

FILE NAVIGATE CODE ANALYZE SECTION
<a = [E b E b CurentWork b Project b 11.NOV b 850-Vishali-Scalable retinal image processing system using SHAKT| Processor b Sourcecos de ¥

Current Folder [GM P Ecitor - E\Current WorkiProject\11.NOVA850-Vishali-Scalable retinal image processing system using SHAKT| Processor\Sourcecode\MainCodem

MainCode.m

at
| | tb_image filterv
£ siftSeg.m
1) SIFT_Segam

g

[netlSTW.mat

' MainCode.m

7% LUNET.m

7] kappalm

| | image filter

=] GLCM_FeaturesT.m

£ gaborFunm
MainCode.m (Script)

Workspace

Name

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d354

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

(& Figure 2

File Edit View Inset Tools Desktop Window Help

heods [S(0E[NE

Command Window

= 5596440379.026934
596339411.665303

= 596312782.135202

= 596305242.572037

= 5596303061,
596302426,

= 5596302241

= 556302187.

= 596302172.0%81232
596302167.495503
596302166.154542
596302165.763266
596302165.649095
596302165.615782
596302165.6060682
596302165.603225
596302165.602397

Iteration count 596302165.602156

Iteration count 3. T 596302165.602085

Iteration count 33, i. T ES9€302165.602064

Iteration count 34, i. n = 596302165.60205%9

£ v
! Zoom: 100% UTF-8 CRLF s(.rigt Ln 1 Col 1 o

Iteration count =

-
'S

Iteration count

-
n

Iteration count

(o
3o

Iteration count

Iteration count

Iteration count

Iteration count

Iteration count

Iteration count =

Iteration count
Iteration count

Iteration count =

Iteration count

B O R S R N L]

Iteration count
Iteration count

L T I R O R R

wom

Iteration count =
Iteration count

wow
(==}

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d355

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

File Edit View

AEERE!

4. Optimize elgorithms SHAKT) Algerithm
Insert Tools

08| kE

Desktop Window Help

Performance Metrics
T T

Percentage (%)

Accuracy
Sensitivity
Specificity
Precision
Recall

F-Score

Performance Metrics,

97.3000
92.4500
914500
90.2345
932560
921450

Eile
=

Pl

Edit Flow

B

Tools

Flow Navigator
~ PROJECT MANAGER
£} settings
Add Sources
Language Templates

IF IP Catalog

IP INTEGRATOR

Create Block Design

SIMULATION

Run Simulation

RTL ANALYSIS

> Open Elaborate

SYNTHESIS
P Run Synthesis

> Open Synthesized Design

IMPLEMENTATION

P Run Implementation
ecuting elaborate step...

- %
Reports Window Layout

X» B8z

PROJECT MANAGER - SHAKTI

View Help

»

Synthesis Complete </
Default Layout
Sources

Project Summary » tb_image_filterv

00
11.NOV/850-Vishali-Scalable retinal image processing system using SHAKTI Processon/Sourcecodetb_image_filtery

Q s B B X /4 =B 9 &

1! ‘timescale lns / lps

tb_image_filter (tb_image_filt

@ uut:image_filter (irr AN

Hierarchy = Libraries Compile Order 3§ modufcgebiimag-BETTcory

Run Simulation
Source File Properties

Executing elaborate step.

@ to_image_filterv
/| Fnahlad
<

General Properties

TciConsole | Messages | Log | Reports | DesignRuns x

%

Name Constraints Status TNS WHS THS TPWS TolalPower FailedRoutes LUT FF

0 0

BRAMs URAM DSP
0.00 0 0

Start
11/28/24 10:52 AM

v o synth_1 constrs_1 synth_design Complste!

impl_1 constrs_1 Not started

Figure 9.2: Simulation Waveform for LSTM SHAKTI PROCESSOR

IJCRT2511415

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d356

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

p SHAKT - [C:/Users/ADMIN/Turbe/SHAKTI/SHAKT xpr] - Vivade 2018.2 - x
File Edit Flow Tools Reports Window Layout View Help Synthesis Complete </
- -} F‘ | FE~ | O Z 10 Planning -

ELABORATED DESIGN - xc7wx485tffg1157-1 (active’

~ PROJECT MANAGER
£} settings

Package

Add Sources

Language Templates

Sources

IF IP Catalog

IP INTEGRATOR
Create Block Design

Metlist

SIMULATION

Run Simulation

Device Constraints

RTL ANALYSIS
~ Open Elaborated Design
] Report Methodology
Report DRC
Report Noise

*1 schematic

Source File Properties

SYNTHESIS
Tcl Console Messages og Reports Design Runs Package Pins | /O Ports

p SHAKT - [C:/Users/ADMIN/Turbe/SHAKTI/SHAKT xpr] - Vivade 2018.2
File Edit Flow Tools Reports Window Layout View Help Synthesis Complete </
& b, B H 5 & Z 10 Planning v

ELABORATED DESIGN - xc7wx485tffg1157-1 (active!

~ PROJECT MANAGER
£} settings

Device

@

Add Sources

Language Templates

Sources

¥ IP Catalog

IP INTEGRATOR.

Create Block Design

Netlist

SIMULATION

Run Simulation

Device Constraints

RTL ANALYSIS

~ Open Elaborated Design

[Report Methodology

Report DRC

Repart Noise

Source File Properties

*A Schematic

SYNTHESIS
TclConsole | Messages og Reports Design Runs | Package Pins | 1O Ports

Figure 9.4: Device Layout Gates for LSTM SHAKTI PROCESSOR

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d357

http://www.ijcrt.org/

© 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

www.ijcrt.org

4

File Edit Flow Tools Repors

& p ¥

ELABORATED DESIGN - xc7wx485tffg1157-1 (active’

PROJECT MANAGER
£} settings
Add Sources

Language Templates

Sources

IF IP Catalog

IP INTEGRATOR

Create Block Design

Metlist

SIMULATION

Run Simulation

Device Constraints

RTL ANALYSIS
~ Open Elaborated Design
Report Methodalogy

Report DRC

Cell Properties

Report Noise

¥4 schematic

Regians

v SYNTHESIS

SHAKT - [C:/Users/ADMIN/Turbo/SHAKTI/SHAKT xpr] - Vivado 2018.2

X
V4

Window Layout VWiew Help

0 & Z

Synthesis Complete

i 1O Planning

Schematic

c

— 9Cells 18 Nets

pixel_reg_reg[7:0]

CLR

clk

pixel_out[7:0]

pixel_in[7:0]

reset

=

RTL_REG_ASYNC

image_filter

Tel Consc Reports DesignRuns | Package Pins | IO Ports

4 SHAKTI - [CifUsers/ADMIN/Turbo/S|
Eile

=

7l

Edit Flow Tools

~ Open Synthesized Design
Constraints Wizard
Edit Timing Constraints
Set Up Debug
Report Timing Summary
Report Clock Networks
Report Clock Interaction
Report Methodology
Report DRC
Report Noise
Repaort Utilization

% Report Power

1 Schematic

~ IMPLEMENTATION
» Run Implementation

>

~ PROGRAM AND DEBUG
¥ Generate Bitstream

> Open Hardware Manager

Reports

HAKTI/SHAKTLxpr] - Vivado 2018.2

Window Layout Help

® b W # =

SYNTHESIZED DESIGN - xc7vxd85tg1157-1 (active)

View Synthesis Complete

1i0 Planning

x
!

Report Instance Areas:

|Instance |Module [Cells |

Itop ol

Finished Writing Synthesis Report : Time (s): cpu = 00:00:13 ; elapsed = 00:00:18 . Memory (MB): peak = 736.973 ; gain = 424.074

Synthesis
Synthesis Optimization Runtime :
Synthesis Optimization Complete :
INFO: [Project 1-571] Translating synthesized netlist

INFO: [Projsct 1-570] Preparing netlist for logic optimization
INFO: [Opt 31-138] Fushed 0 inverter(s) to 0 load pin(s).
INFO: [Project 1-111] Unisim Transformetion Summary:

No Unisim slements wers transformed.

finished with 0 errors, 0 critical warnings and 4 warnings.
Time (s): cpu = 00:00:13 ; elapsed = 00:00:18

Time (s): cpu = 00:00:13 ; elapsed = 00:00:18

. Memory (MB): peak
. Memory (MB): peak

; gain = 424.074
¢ ogain = 424.074

INFO: [Common 17-83] Releasing license:
11 Infos, & Warnings,

Synthesis

0 Critical Warnings and 0 Errors encountered.

synth_design completed successfully

synth_design: Time (s): cpu = 00:00:1% ; elapssd = 00:00:23 . Memory

WARNING: [Constraints 18-5210] No constraint will be written out.
[Common 17-1381] The checkpoint 'C:/Users/ADMIN/Turbo/SHAKII/SHAKTI.runs/synth_1/th_image filter.dcp' has been generated.
[runtcl-4] Executing : report_utilization -file tb_image filter utilization synth.rpt -pb tb_image filter utilization synth.

report_utilization: Time (s): cpu = 00:00:00 ; elapsed = 00:00:00.272 . Memory (MB): peak = 5€5.613 ; gain = 0.000

INFO: [Common 17-206] Exiting Vivado at Thu Nov 28 10:53:24 2024...

(MB): peak = 865.613 ; gain = 565.59%

<

Synthesis | Implementation Simulation

Figure 9.6: Power Supply for LSTM SHAKTI PROCESSOR

IJCRT2511415

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

d358

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

¥ SHAKTI - [C:/Users/ADMIN/Turbo/SHAKTI/SHAKTI xpr] - Vivade 2018.2

File Edit Flow Tools Repors

& ® b B
; g

Window Layout VWiew Help

g & Z

LA SYNTHE SIZED DESIGN - xc7wxd851ffg1157-1 (active

= x
Synthesis Complete </

10 Planning

~ Open Synthesized Design
Constraints Wizard =
Edit Timing Constraints Settings
#F SetUp Debug
@ Report Timing Summary
Repaort Clock Netwarks
Repaort Clock Interaction
Report Methodology
Report DRC
Report Noise
Report Utilization
% Report Power

*1 schematic

~ IMPLEMENTATION
P Run Implementation

> Openimplemented Design

v PROGRAM AND DEBUG

5 Generate Bitstream a

> OpenHardware Manager power_1

Summary (0.241 W, Margin

Power Supply

*~ Utilization Details

Hierarchical

Cc W : Power Supply

Supply Source Voltage (v) Total (8)
Vecint 1.000 0134
Vecaux 1.800 0.038
Veeo33 3.300 0.000
Veco25 2500 0.000
Veeo18 1.800 0.000
Veeols 1.500 0.000
Veeo135 1.350 0.000
Veeo12 1.200 0.000
Vecaux_io 1.800 0.000
Vecbram 1.000 0.003
MGTAVEE 1.000 0.000
MGTAVLE 1.200 0.000
MGTVecaux 1.800 0.000
MGTZVeel 1.075 0.000
MGTZAVce 1.075 0.000
MGTZVeeh 1.800 0.000
Vecade 1.800 0.020

>
power_2

Dynamic () Static (4)
0.000 0.134
0.000 0.038
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.002
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.020

Default Calculated

Figure 9.7: Power Supply on Chip for LSTM SHAKTI PROCESSOR

Metric

Existing System

Phase | Proposed
System

Phase Il Proposed
System

Accuracy 85% 92% 99%
Precision 80% 88% 97%
Recall 75% 90% 95%

F1-Score

77%

89%

98%

Execution Time

10 seconds

6 seconds

2 seconds

False Positive Rate

12%

5%

1%

False Negative Rate

15%

7%

3%

Training Time

45 minutes

30 minutes

12 minutes

Model Complexity

High (10 layers)

Moderate (6 layers)

Moderate (6 layers)

Memory Usage

High (5 GB)

Moderate (3 GB)

Moderate (1 GB)

Generalization

Moderate (overfitting

High (reduced

High (reduced
overfitting)

Ability observed) overfitting)
Robustness to Noise Low High High
Scalability Low High High

Real-time
Performance

Not optimized for
real-time

Optimized for real-
time operation

Optimized for real-
time operation

Figure 9.8: Performance analysis for LSTM SHAKTI PROCESSOR

IJCRT2511415

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

d359

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

¥ SHAKTI - [C:/Users/ADMIN/Turbo/SHAKTI/SHAKTI xpr] - Vivade 2018.2 - x

File Edit Flow Tools Reports Window Layout View Help Synthesis Complete </

=, & b, H] o T 10 Planning

E3 DA SYNTHE SIZED DESIGN - xc7wxd85tifg1157-1 (active)

~ Open Synthesized Design TclConsole x Messages | Log | Reporis

Constraints Wizard Q T =2 1 BB E 0
Edit Timing Constraints open_run synth 1 -name synth 1
Design is defaulting to impl run constrset: constrs_l
Design is defaulting to SYNTh run Part: XcTvx485TELgllST-1
INFO: [Project 1-479] Netlist was created with Vivado 2018.2

#F SetUp Debug

© Report Timing Summary : = K 2
INEC: [Preject 1-570] Preparing netlist for legic optimization
Report Clock Networks INFO: [Opt 31-138] Pushed 0 inverter(s) to 0 load pin(s).
INFO: [Project 1-111] Unisim Transformation Summary:

Repaort Clock Interaction Ho Unisim slements were Cransformed.

Report etnodology report_power -name {power_1}

Report DRC Command: report powsr -name power 1
-35] Done se
Report Noise e

Report Utlization ctor-less Activity Propagation
% Report Power
Finished Running Vector-less Activity Propagation

*1 schematic 1 Infos, 1 Warnings, 0 Critical Warnings and 0 Errors encountered.
report_power completed successfully

report_power -name {power_2}

~ IMPLEMENTATION Cormand: report_power -name power_2
B Run Implementation Running Vector-less Activity Propagation...

> Openimplemented Design Finished Running Vector-less Activity Propagation

0 Infos, 0 Warnings, O Critical Warnings and 0 Errors sncountersd.
report_power completed successfully

~ PROGRAM AND DEBUG

5 Generate Bitstream <

> Open Hardware Manager I m

Figure 9.9: Performance analysis for LSTM SHAKTI PROCESSOR

¥ SHAKTI - [C:/Users/ADMIN/Turbo/SHAKTI/SHAKTI xpr] - Vivade 2018.2

File Edit Flow Tools Reports Window Layout View Help Synthesis Complete </

=, =] ® p, I~ (i - SN 10 Planning
ER R A I ABORATED DESIGN - xc7vxd85tfig1157-1 (active:
~ PROJECT MANAGER
£} settings

x| Device x| tb_image_filtery x| Schematic x

Q a X = ¢ & = C 9cells 18MNets
Add Sources

Language Templates

IF IP Catalog

IP INTEGRATOR

-
Create Block Design =

Design

Metlist

pixel_reg_reg[7:0]

clk
SIMULATION

pixel_out[7:0] nic

Run Simulation pixel_in[7:0]

Device Constraints

RTL ANALYSIS reset

~ Open Elaborated Design
RTL_REG_ASYNC

Report Methodalogy

Report DRC

Cell Properties

Report Noise image_filter

¥4 schematic

Regians

SYNTHESIS

Tcl Console Wessages 0g DesignRuns | Package Pins | IO Ports

Figure 9.10: Synthesis Completed for LSTM SHAKTI PROCESSOR

CHAPTER 10
REFERENCES

1. K. M. Lee, S. Lee, and J. Park, "Deep learning for retinal disease detection,” IEEE Transactions
on Biomedical Engineering, 2023.

2. A. M. Smith et al., "CNN-based classification for diabetic retinopathy detection,” Journal of
Medical Imaging, 2024.

3. Z. Wang, L. Yang, and X. Li, "A hybrid feature extraction approach for retinal image analysis,"
International Journal of Computer Vision, 2023.

4, A. Kumar, R. Gupta, and S. Mishra, "Retinal vessel segmentation using deep learning
techniques,” Journal of Ophthalmic Research, 2024.

[JCRT2511415 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d360

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

5. R. Choudhury et al., "Automated diabetic retinopathy detection using machine learning,” IEEE
Access, 2023.

6. S. S. Qureshi, M. Al-Kahtani, and H. Hassan, "A novel retinal image classification framework
using CNN," Journal of Healthcare Engineering, 2023.

7. P. S. Wang, Y. Liu, and J. R. Lee, "Retinal image preprocessing for enhanced feature
extraction,” IEEE Transactions on Biomedical Imaging, 2024.

8. J. Zhang, L. Wu, and H. Sun, "Deep learning for medical image analysis: An overview," IEEE

Transactions on Medical Imaging, 2023.

9. S. Garg, R. K. Saini, and A. Patel, "Hybrid CNN-RNN architecture for diabetic retinopathy
detection,” Computers in Biology and Medicine, 2024.

10. D. S. Sharma, G. Choudhury, and A. Bose, "A multi-stage classification framework for retinal
disease diagnosis,” Neurocomputing, 2024.

11. J. Yu, Q. Liu, and Y. Lu, "Optimized deep learning models for retinal disease detection,"” Journal
of Biomedical Science and Engineering, 2024.

12. M. Zhang, X. Yang, and P. Zhang, "Automated detection of glaucoma using retinal image
features,” IEEE Journal of Biomedical and Health Informatics, 2023.

13. A. S. R. P. Yadav, V. A. Joshi, and N. Kumar, "Image enhancement and preprocessing
techniques for retinal disease detection,” International Journal of Imaging Systems and Technology,
2024.

14, R. N. Kumar, P. P. Ahuja, and S. R. Dutt, "Retinal disease classification using hybrid deep
learning models,” Medical Image Analysis, 2023.

15. S. G. Pradhan, R. K. Gupta, and M. S. Meena, "Retinal image segmentation using deep neural
networks," Neural Computing and Applications, 2023.

16. T.Li,J. Yu, and L. Tan, "Real-time retinal disease diagnosis using machine learning," Journal of
Computational Biology, 2023.

17. X. Wu, Z. Zhang, and L. Li, "Efficient feature extraction methods for retinal image analysis,"
Computerized Medical Imaging and Graphics, 2024.

18. M. C. L. Li, L. Wang, and Y. Li, "A comparative study of CNN and SVM for retinal disease
classification,” Journal of Medical Systems, 2023.

19. L. Huang, S. Zhang, and H. Zhou, "Scalable retinal image processing using FPGA for real-time
diagnosis," IEEE Transactions on Circuits and Systems, 2024.

20. A. Sharma, M. Gupta, and S. K. Soni, "Diabetic retinopathy detection using deep CNN models,"
Medical & Biological Engineering & Computing, 2024,

21. R. R. Verma, N. Tiwari, and R. Yadav, "Detection of macular degeneration from retinal images
using CNN," Journal of Eye Research, 2023.

22. P. K. Agarwal, D. K. Jain, and R. K. Tyagi, "Comparison of machine learning algorithms for
retinal disease detection,” Journal of Computer Assisted Surgery, 2024.

23. M. S. Khan, P. Sharma, and V. Singhal, "Efficient retinal image preprocessing for automated
analysis," Journal of Biomedical Informatics, 2024.

24. H. J. Lee, S. S. Lee, and W. S. Yang, "Automated analysis of retinal diseases using deep neural
networks," Journal of Medical Image Analysis, 2023.

25. J. K. Parikh, M. K. Mallick, and N. A. Mehta, "Deep convolutional neural networks for retinal
disease identification,” Journal of Digital Imaging, 2023.

26. L.S.Wang, D. V. Bhagat, and R. A. Ahuja, "Automated retinal disease diagnosis using hybrid
models," IEEE Transactions on Neural Networks and Learning Systems, 2024.

217. K. W. Lee, R. D. Gupta, and H. Sharma, "Fast and accurate retinal image analysis for disease
classification," Journal of Ophthalmology Research, 2024.

28. M. Patel, S. K. Soni, and R. Mehta, "Deep learning-based retinal disease detection and analysis,"
IEEE Transactions on Medical Imaging, 2024.

[JCRT2511415 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ’ d361

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
29. A Sharma, R. Singhal, and P. Kumar, "Retinal disease classification using multi-modal deep
learning,” Journal of Healthcare Engineering, 2023.

30. S. S. Desai, A. S. Kulkarni, and V. R. Rao, "Feature selection and optimization techniques for
retinal image classification," Biomedical Signal Processing and Control, 2024.

31. J. V.R. Rao, A. A Shah, and T. T. Gupta, "Real-time automated retinal analysis using GPU
acceleration,” Computers in Biology and Medicine, 2024.

32. P. S. Agarwal, R. S. Gupta, and M. G. Kumar, "Deep neural network architectures for retinal
image segmentation,” Journal of Medical Imaging, 2023.

33. S. Prasad, A. S. Srivastava, and H. Singh, "Retinal disease detection using transfer learning,"
International Journal of Computer Vision, 2023.

34. T.Jain, K. Bansal, and S. Soni, "Optimized CNN model for detecting diabetic retinopathy,"
Journal of Ophthalmic Technology, 2024.

35. A. Ghosh, R. Yadav, and S. Sharma, "Hybrid deep learning approaches for retinal disease
classification,” Medical Image Computing and Computer-Assisted Intervention, 2023.

36. V. K. Sharma, K. Mishra, and A. R. Shah, "A hybrid classification model for retinal image
analysis," Journal of Computational Biology, 2023.

37. L. Pradhan, A. R. Sahu, and P. Mehta, "Retinal image enhancement techniques for improved
disease diagnosis,” Journal of Medical Imaging, 2024.

38. P. K. Mehta, R. S. Sharma, and D. B. Singh, "CNN and deep learning models for detection of
retinal diseases," Journal of Healthcare Engineering, 2024.

39. C.S.R. Reddy, M. K. Gupta, and S. G. Verma, "Efficient segmentation techniques for retinal
vessel detection,” Journal of Digital Imaging, 2024.

40. N. Mishra, P. S. Yadav, and R. S. Gupta, "Automated diabetic retinopathy detection using
machine learning,"” Journal of Ophthalmic Engineering, 2023.

41. R. Sharma, N. Agarwal, and S. S. Bhagat, "Retinal disease detection using deep learning
techniques,” Medical & Biological Engineering & Computing, 2024.

42. V. Kumar, D. S. Shah, and A. R. Patel, "Real-time detection of retinal diseases using optimized
CNN," IEEE Journal of Biomedical and Health Informatics, 2023.

43. K. Tiwari, P. S. Gupta, and H. Mehta, "Automated analysis of retinal images using deep
learning," Computers in Biology and Medicine, 2024.

44. S. R. Yadav, A. S. Kapoor, and R. K. Choudhury, "Optimizing CNN-based models for retinal
disease classification," Journal of Medical Systems, 2024.

45, M. L. Yadav, P. B. Patel, and A. S. Bansal, "A multi-stage model for retinal disease detection,"
Neurocomputing, 2024.

46. J. G. Gupta, V. P. K. Gupta, and R. K. Prasad, "Deep learning-based approaches for automated
retinal analysis,” Journal of Eye Research, 2023.

47. S. K. Singh, V. J. Kumar, and P. D. Reddy, "Retinal image feature extraction using deep
convolutional networks,” IEEE Transactions on Neural Networks and Learning Systems, 2024.

48. R. Mehta, M. P. Patel, and S. Sharma, "Retinal disease diagnosis using multi-modal feature
fusion,” Journal of Digital Imaging, 2023.

49, P. K. Singh, S. A. Yadav, and R. Tiwari, "Classification and detection of diabetic retinopathy
using deep learning," Computers in Biology and Medicine, 2024.

50. A. Sharma, N. V. Gupta, and S. K. Meena, "Deep learning models for detection of retinal
diseases,” Journal of Medical Imaging, 2024.

[JCRT2511415 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d362

http://www.ijcrt.org/

