www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

éb INTERNATIONAL JOURNAL OF CREATIVE
? RESEARCH THOUGHTS (1JCRT)
G

@a An International Open Access, Peer-reviewed, Refereed Journal

SECURE FILE TRANSFER SYSTEM

0. Arun Kumar Reddy, ?B. Sudeepthi, 3M. Bipin Chandra, *N. Charan Raju

1B. Tech Student, 2B. Tech student, 3B. Tech student,*B. Tech Student
Computer Science and Engineering (Cyber Security),
Hyderabad Institute of Technology and Management, Hyderabad, India

Abstract: The rapid expansion of digital communication has increased the need for secure data exchange
across networks. Traditional file-sharing systems are vulnerable to unauthorized access, data leakage, and
cyber-attacks, particularly when files are transmitted without encryption or stored without proper access
control. This research presents a Secure File Transfer System utilizing a hybrid encryption approach
combining AES-256 and RSA-2048 to ensure confidentiality and integrity during file transmission. AES is
used for encrypting data due to its computational efficiency, while RSA encrypts the AES key to enhance
security. Additionally, a PIN-based decryption mechanism and role-based access control (RBAC) are
implemented to restrict unauthorized file access and ensure operational privacy. The system is built using
Python Flask, SQLite, and cryptographic libraries with session validation to prevent backdoor access after
logout. Experimental results demonstrate that the proposed system effectively protects sensitive files during
upload, storage, and retrieval, while maintaining fast processing and strong authentication. This hybrid
security model offers a scalable and reliable solution suitable for academic, enterprise, and cloud file-sharing
environments.

Keywords: AES-256, RSA-2048, Hybrid Encryption, Secure File Transfer, RBAC, Python Flask, PIN
Authentication, Cyber Security.

|. INTRODUCTION:

In the digital era, data transmission across networks has become an integral part of communication, business
processes, and cloud-based services. While data sharing has become increasingly convenient, it has also
exposed users to cyber-threats such as data breaches, man-in-the-middle attacks, ransomware, and
unauthorized access. Sensitive files transferred without security mechanisms can be intercepted, modified, or
stolen, leading to privacy violations and financial losses. As a result, secure file transfer mechanisms have
become a critical requirement in modern information systems.

Traditional file sharing systems often rely solely on secure transport protocols but lack end-to-end
encryption and strong user authentication. This creates vulnerabilities, particularly when files are stored on
central servers or transmitted across unsecured networks. To overcome these challenges, encryption plays a
crucial role by converting readable information into a format that can only be accessed with the correct
decryption key. However, single-layer encryption approaches may still be susceptible to attacks if the
encryption key is compromised.

This research work proposes a Secure File Transfer System utilizing hybrid encryption techniques,
combining the efficiency of Advanced Encryption Standard (AES-256) with the asymmetric security of RSA-
2048. AES is used to encrypt file data due to its high performance and strong security properties, while RSA
encrypts the AES key, ensuring secure key exchange and preventing unauthorized decryption. Additionally,
the system implements role-based access control (RBAC) and PIN-based verification to strengthen
authentication and restrict unauthorized file access. Session management and logout-based page protection
mechanisms further enhance confidentiality and prevent backdoor access.

[JCRT2511394 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ d151

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

The proposed system is developed using Python Flask, SQL.ite, and cryptographic libraries, enabling secure
file upload, encrypted storage, and authorized file retrieval. The objective is to provide a lightweight, scalable,
and practical file security solution suitable for academic and enterprise applications. The results demonstrate
that the hybrid approach improves data confidentiality, integrity, and access control, making the system robust
against modern cyber-threats

Il. LITERATURE REVIEW: The growing dependency on digital infrastructure for storing and exchanging
confidential data has increased the demand for strong security mechanisms in file transfer systems. Traditional
file sharing platforms often rely on secure network protocols such as SSL/TLS, but they do not guarantee end-
to-end protection for files stored at rest or shared across untrusted environments. Therefore, encryption and
access control mechanisms play a crucial role in maintaining the security of sensitive information.

Several cryptographic models have been proposed in research. William Stallings (2017) emphasized that
symmetric encryption algorithms such as AES are efficient for large-scale data encryption due to their high
performance and strong resistance to brute-force attacks. However, symmetric systems alone suffer from secure
key distribution issues. On the other hand, RSA public-key cryptography provides secure key exchange and
digital authentication, but its computational cost makes it less efficient for encrypting large data files.
Researchers therefore recommend hybrid encryption, where AES provides fast data encryption and RSA
ensures secure key transmission and access control.

Studies published in IEEE and ACM highlight that data security is significantly enhanced when hybrid
cryptography is used along with strong authentication and session-based access control. NIST (National
Institute of Standards and Technology) confirms AES-256 as a reliable and industry-approved encryption
standard, offering high resistance to cryptographic attacks. Similarly, RSA-2048 is widely accepted as a secure
asymmetric encryption method for key exchange and identity verification.

While numerous secure cloud storage and communication systems exist, research identifies critical
limitations such as lack of user-controlled encryption keys, weak password-based access, and vulnerability to
unauthorized access once server credentials are compromised. Role-Based Access Control (RBAC) and PIN-
based verification systems have been proven effective in restricting internal and external data misuse by
enforcing strict access privileges.

Based on the literature, this project adopts hybrid encryption (AES-256 + RSA-2048), strong session handling,
berypt password hashing, role-based access control, and PIN-based decryption. These techniques address the
limitations of existing models by ensuring secure file upload, encrypted storage, and authorized retrieval with
multi-layer authentication

111. METHODOLOGY/PROPOSED SYSTEM: The proposed Secure File Transfer System utilizes a hybrid
encryption model to ensure robust data security during file upload, storage, and download. The system
integrates both symmetric and asymmetric cryptographic techniques to protect user data from unauthorized
access and cyber-attacks. Advanced Encryption Standard (AES-256) is used for encrypting user files due to its
high performance and strong security, while RSA-2048 is employed to encrypt the AES key, enabling secure
key distribution and preventing interception or misuse.

The system architecture is built using Python Flask as the backend framework with SQLite as the
lightweight database. Passwords are securely stored using bcrypt hashing to eliminate vulnerabilities associated
with plaintext or weakly-encrypted authentication credentials. When a user uploads a file, the system generates
a random AES key and encrypts the file. The AES key is then encrypted using RSA before being stored
alongside the encrypted file. For file retrieval, the authenticated user must provide login credentials and a secure
PIN. The system decrypts the AES key using the RSA private key, followed by decrypting the file content.
This layered security ensures that even if stored data is accessed by an attacker, it remains unusable without
the correct credentials and PIN.

[JCRT2511394 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d152

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

Role-Based Access Control (RBAC) is implemented to differentiate user privileges, ensuring only
authorized users or administrators can upload or download files. Session management safeguards prevent
unauthorized access to secure pages after logout, effectively mitigating session hijacking and back-navigation
attacks. Additionally, the system validates file integrity during uploading and downloading to ensure that data
has not been altered during transfer.

By combining hybrid encryption, PIN validation, RBAC, and secure session handling, the proposed system
provides a reliable, scalable, and efficient solution for secure data transfer suitable for academic, enterprise,
and cloud-based environments.

IV. SYSTEM ARCHITECTURE/MODEL.: The proposed Secure File Transfer System is designed with a
multi-layered security architecture to ensure confidentiality, integrity, and controlled access to sensitive files.
The architecture combines cryptographic algorithms, authentication mechanisms, and secure session handling
to deliver a robust and scalable security framework.

4.1. System Overview

The system architecture consists of four major components:

4.1.1. Client /User Interface: A web-based interface built using HTML, CSS, and Flask templates, allowing
users to register, login, upload and download encrypted files.

4.1.2. Application Server (Flask Backend): Handles user authentication, encryption and decryption logic,
session control, and access validation. The server acts as the processing layer for cryptographic functions.
4.1.3. Cryptographic Engine: AES-256 used to encrypt files before storing or transferring, RSA-2048 used to
encrypt the AES session key , berypt hashing used for securing user passwords , PIN-based key derivation for
secure decryption

4.1.4. Database & File Storage : SQLite database stores user credentials and metadata only in hashed or
encrypted form. Encrypted files and keys are stored separately to prevent unauthorized access.

4.2. Workflow of the System

4.2.1. User Authentication : User registers and logs into the system with bcrypt-hashed credentials. RBAC
(Role-Based Access Control) identifies user privilege as Admin or Normal User.

4.2.2 File Encryption & Upload: User uploads a file, System generates a unique AES key, File is encrypted
using AES-256, AES key is encrypted with RSA-2048, Encrypted file + encrypted key is stored securely

4.2.3: Secured File Storage: Encrypted files are stored in the server repository. Only encrypted data is kept; no
raw file exists at any point.

4.2.4 File Download & Decryption: Authorized user requests a file, User must authenticate and enter a secret
PIN, System decrypts AES key using RSA private key, AES key decrypts the file, User receives the file
securely.

IJCRT2511394 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d153

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

4.3. System Architecture Diagram:

User Ul
(Web Browser / Client)

HTTP Request

Flask Web Server
Authentication + Routing

AES -256 RSA-2048
File Key
Encryption Encryption

Encrypted Files Storage

SQLite DB
(User + Keys)

[JCRT2511394 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d154

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
4.4.Data Flow Diagram:

Login
User I—) server

Credentials

* Upload File ‘ Verify

+ Encrypt

Upload Module I AES + RSA Engine

‘ Store Encrypted File Store
Key

File Storage SQL.ite Database
‘ Retrieve File t Retrieve
File
Download Module —— Decrypt + Deliver

V. RESULTS AND DISCUSSION: The proposed Secure File Transfer System was implemented and tested
to evaluate its performance, security, and usability. The system allows users to securely upload and download
files through a web interface, ensuring that data remains protected throughout transmission and storage.

During testing, all uploaded files were successfully encrypted using the AES-256 algorithm, and the encryption
key was secured using RSA-2048. When unauthorized users attempted to access encrypted files directly from
server storage, the files remained unreadable, demonstrating strong data confidentiality. Only authenticated
users with the correct login credentials and the secure PIN were able to decrypt and retrieve files, confirming
effective multi-level security.

The system also performed efficiently, providing fast encryption and decryption for files of different sizes,
making it practical for academic and enterprise use. Role-Based Access Control (RBAC) ensured that admin
users could upload and manage files, while regular users were restricted to authorized downloads only. Session
handling successfully prevented access to secure pages after logout, even when users attempted to use browser
back-navigation, providing an additional layer of protection.

The obtained results show that the hybrid encryption approach significantly improves data confidentiality and
secure access control compared to conventional file-sharing methods. The system effectively combines AES
and RSA encryption, PIN-based validation, and RBAC, making it suitable for secure data exchange in sensitive
environments.

[JCRT2511394 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d155

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
V1. CONCLUSION: The Secure File Transfer System presented in this work successfully demonstrates an
effective and robust approach for protecting sensitive data during transmission and storage. By integrating
AES-256 symmetric encryption with RSA-2048 asymmetric key protection, the proposed system ensures
strong confidentiality and secure key management. The additional implementation of bcrypt password hashing,
PIN-based decryption, and role-based access control (RBAC) further enhances authentication and access
security, preventing unauthorized file access and system misuse.

The system efficiently encrypts files before upload and decrypts them only for authenticated and authorized
users, thereby eliminating risks associated with direct file access or session hijacking. Session handling
mechanisms effectively restrict access after logout, offering enhanced reliability for secure communication
environments. Experimental results confirm that the system performs securely and efficiently for academic and
organizational use, supporting safe file transfer across users with varied privileges.

Overall, the system achieves its objective of providing a secure, scalable, and user-friendly platform for file
transfer. With its hybrid encryption architecture and multi-layer authentication, it serves as a dependable
solution for data-sensitive applications.

VIIl. FUTURE SCOPE: The proposed system successfully ensures secure file transfer using hybrid encryption
and multi-level authentication. However, there are several potential enhancements that can further strengthen
security, scalability, and usability in future implementations.

Future work can include the integration of multi-factor authentication (MFA) such as biometric verification or
one-time passwords (OTP) to increase identity assurance. The system can also be extended to support
distributed cloud storage with client-side encryption, enabling secure file sharing across multiple geographic
locations. Additionally, implementing blockchain-based audit trails can help maintain tamper-proof logs for
user activities and file access history.

Performance can be optimized further by incorporating modern cryptographic algorithms such as Elliptic Curve
Cryptography (ECC) for faster key generation and lower computational overhead. Mobile application
development and API-based integration can expand system accessibility to smartphones and enterprise
platforms. Future upgrades may also include automatic malware scanning for uploaded files and Al-based
intrusion detection to protect against evolving cyber threats.

Overall, these enhancements will help transform the current system into a more scalable, intelligent, and
enterprise-grade secure file transfer platform capable of supporting large-scale and real-time data security
requirements.

VIII. ACKNOWLEDGMENT: We would like to express our sincere gratitude to our project guide, Mr. Nava
Kishore, Assistant Professor, Department of Computer Science and Engineering, Hyderabad Institute of
Technology and Management (HITAM), for his valuable guidance, constant support, and encouragement
throughout the development of this project.

We also extend our thanks to the faculty members and laboratory staff of the CSE Department for providing
the necessary resources and technical assistance. Their insights and feedback were instrumental in successfully
completing this research work.

Finally, we would like to thank our parents, friends, and peers for their continuous motivation and assistance
during this journey. Their support has played a significant role in achieving the objectives of our project and
research.

[JCRT2511394 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d156

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882
IX. REFERENCES:

[1] William Stallings, Cryptography and Network Security: Principles and Practice, Pearson Education, 2017.
[2] National Institute of Standards and Technology (NIST), Specification for the Advanced Encryption
Standard (AES), FIPS PUB 197, 2001.

[3] RSA Laboratories, PKCS #1: RSA Cryptography Standard, RFC 8017, Internet Engineering Task Force
(IETF), 2016.

[4] Menezes, A. J., van Oorschot, P. C., & Vanstone, S. A., Handbook of Applied Cryptography, CRC Press,
1996.

[5] Flask Framework Documentation — https://flask.palletsprojects.com/

[6] Python Cryptography Library — https://cryptography.io/

[7] berypt Password Hashing Documentation — https://pypi.org/project/bcrypt/

[8] Sandhu, R., Coyne, E. J., Feinstein, H. L., & Youman, C. E., “Role-Based Access Control Models”, IEEE
Computer, vol. 29, no. 2, pp. 38-47, 1996.

[9] D. Boneh and M. Franklin, “Identity-Based Encryption from the Weil Pairing”, SIAM Journal of
Computing, 2003.

[10] OWASP Foundation, Authentication and Session Management Guidelines, https://owasp.org/

[JCRT2511394 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d157

http://www.ijcrt.org/

