

A Review Of Silica Nanoparticles: From Synthesis To Biomedical Applications

Yogasmita Dey

Associate professor

Kalinga Institute of Pharmaceutical sciences

Abstract

Silica nanoparticles (SiNPs) have emerged as a multipurpose solution with wide-ranging applications in various industries such as medicine, agriculture, construction, cosmetics, and food production. In 1961, Stöber introduced a ground-breaking sol-gel method for synthesizing SiNPs, which carried a new era of exploration both in academia and industry, uncovering numerous possibilities for these simple yet multifaceted particles. Inspite of numerous reported literature with wide applicability, the synthesis of these nanoparticles with the desired size and functionalities poses considerable challenges. Over time, researchers have strived to optimize the synthetic route, particularly by developing greener approaches that minimize environmental impact. By reducing hazardous chemicals, energy consumption, and waste generation, these greener synthesis methods have become an important focus in the field. This review aims to provide a comprehensive analysis of the various synthetic approaches available for different types of SiNPs. Starting from the Stöber' method, we analyze other methods as well to synthesis different types of SiNPs including mesoporous, core-shell and functionalized nanoparticles. With increasing concerns with the chemical methods associated for environmental issues, we aim to assist readers in identifying suitable greener synthesis methods tailored to their specific requirements.

Introduction

Nanotechnology in pharmacy involves the application of nanoscale materials and technologies to improve drug delivery, diagnosis, and treatment of diseases. This field has revolutionized the way pharmaceuticals are designed, delivered, and targeted, offering numerous benefits over traditional methods.

Key Applications:

1. Targeted Drug Delivery: Nanoparticles can be engineered to target specific cells or tissues, reducing side effects and improving efficacy.
2. Controlled Release: Nanoparticles can be designed to release drugs in a controlled manner, improving patient compliance and reducing dosing frequency.

3. Improved Bioavailability: Nanoparticles can enhance the solubility and bioavailability of poorly soluble drugs.

4. Cancer Therapy: Nanoparticles can be used to deliver chemotherapeutic agents directly to cancer cells, reducing toxicity and improving treatment outcomes.

Types of Nanoparticles:

1. Liposomes: Vesicles composed of lipid bilayers, used for drug delivery and imaging.

2. Polymeric Nanoparticles: Biodegradable and biocompatible nanoparticles made from polymers, used for drug delivery and tissue engineering.

3. Metal Nanoparticles: Gold, silver, and other metal nanoparticles, used for imaging, diagnostics, and therapy.

4. Silica Nanoparticle

Benefits:

1. Improved Efficacy: Targeted delivery and controlled release can improve treatment outcomes.

2. Reduced Side Effects: Targeted delivery can reduce side effects and toxicity.

3. Enhanced Patient Compliance: Controlled release formulations can improve patient compliance.

Challenges:

1. Scalability: Large-scale production and manufacturing of nanoparticles.

2. Regulatory Framework: Establishing regulatory frameworks for nanopharmaceuticals.

3. Toxicity and Safety: Ensuring the safety and toxicity of nanoparticles.

Nanotechnology has the potential to transform the field of pharmacy, offering new and innovative solutions for disease treatment and diagnosis. Ongoing research and development are focused on addressing the challenges and realizing the benefits of nanotechnology in pharmacy.

Among all here we are discussing about silica nanoparticles

Silica nanoparticles, also known as silicon dioxide nanoparticles, are tiny particles made of silicon and oxygen atoms. They have gained significant attention in recent years due to their unique properties and potential applications in various fields.

Properties:

1. Biocompatibility: Silica nanoparticles are generally considered biocompatible and non-toxic.

2. High Surface Area: Silica nanoparticles have a high surface area, making them suitable for loading and delivering molecules.

3. Tunable Size and Shape: Silica nanoparticles can be synthesized in various sizes and shapes, allowing for tailored properties and applications.

4. Surface Modification: Silica nanoparticles can be easily modified with various functional groups, enabling targeted delivery and interactions.

Applications:

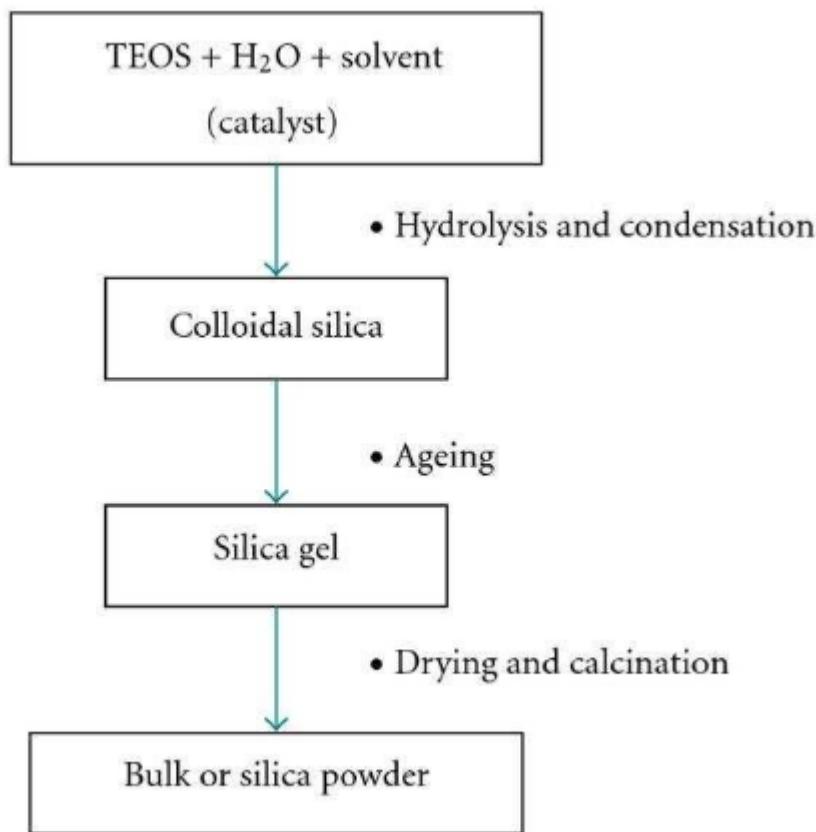
1. Drug Delivery: Silica nanoparticles can be used as carriers for drugs, improving solubility, bioavailability, and targeted delivery.
2. Imaging: Silica nanoparticles can be used as contrast agents for imaging applications, such as MRI and fluorescence imaging.
3. Biomedical Applications: Silica nanoparticles have potential applications in tissue engineering, wound healing, and biosensing.
4. Catalysis: Silica nanoparticles can be used as catalysts or catalyst supports in various chemical reactions.

Silica nanoparticles have shown great promise in various fields, and ongoing research is focused on exploring their potential applications and addressing the challenges associated with their development and use.

Synthesis of Silica Nanoparticles

Silica nanoparticles can be synthesized using various methods, including:

1. Sol-Gel Method: A widely used method involving hydrolysis and condensation of silica precursors.
2. Stöber Method: A variation of the sol-gel method, using ammonia as a catalyst.
3. Microemulsion Method: Involves the formation of microemulsions, which serve as templates for silica nanoparticle synthesis.
4. Template-Assisted Method: Uses templates, such as surfactants or polymers, to control the size and shape of silica nanoparticles.
5. Precipitation Method: Involves the precipitation of silica nanoparticles from a solution.


As we have reviewed above three methods during synthesis of Silica Nanoparticles.

1. Sol-Gel method

The sol-gel method is a widely used technique for synthesizing silica nanoparticles. It involves the hydrolysis and condensation of silica precursors, such as tetraethyl orthosilicate (TEOS) or tetramethyl orthosilicate (TMOS).

Step-by-Step Process:

1. Precursor Preparation: Silica precursor (TEOS or TMOS) is mixed with a solvent (e.g., ethanol or water).
2. Hydrolysis: Water is added to the precursor solution, initiating hydrolysis reactions.
3. Condensation: The hydrolyzed species undergo condensation reactions, forming a sol.
4. Gelation: The sol is left to gelate, resulting in a porous gel.
5. Aging: The gel is aged to strengthen the silica network.
6. Drying: The gel is dried to remove solvent and obtain silica nanoparticles

2. Stöber Method:

The Stöber method is a widely used technique for synthesizing monodisperse silica nanoparticles. Here's a step-by-step overview:

Step 1: Precursor Preparation

- Tetraethyl orthosilicate (TEOS) is used as the silica precursor.
- Ethanol and water are used as solvents.

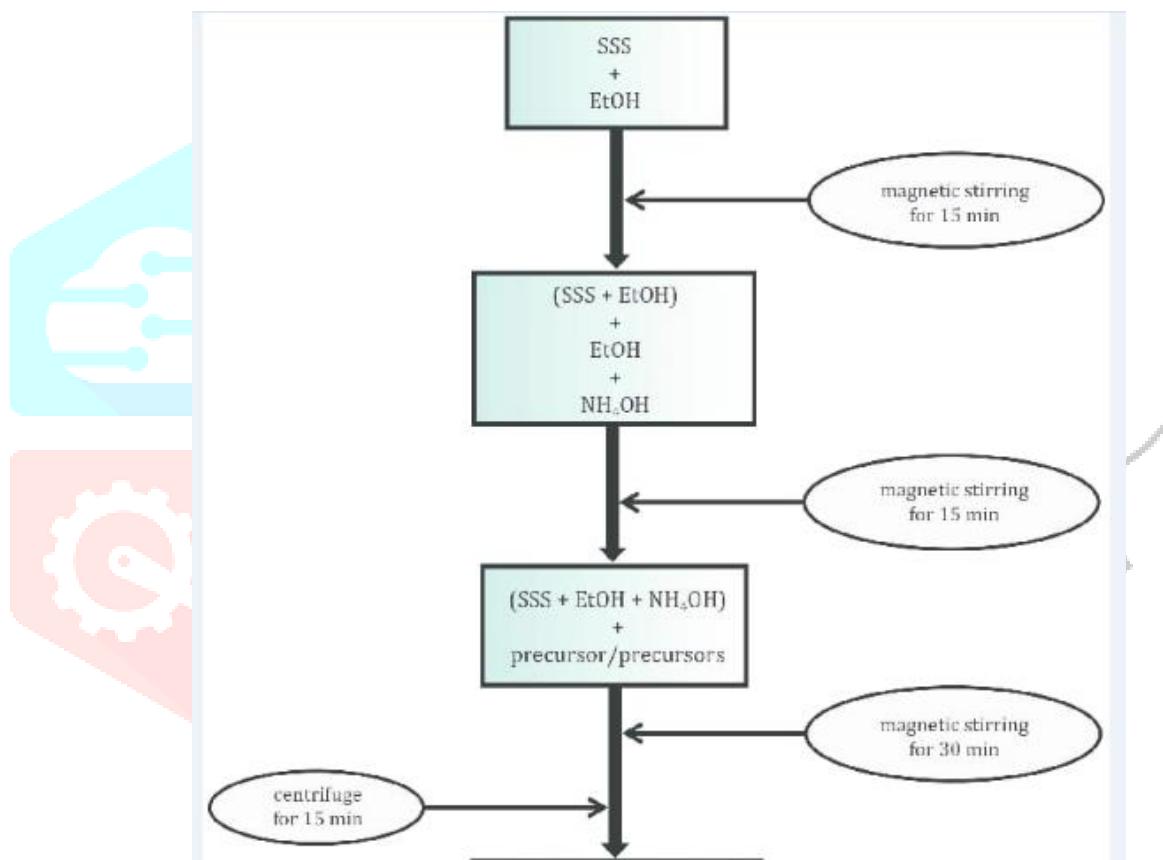
Step 2: Hydrolysis

- TEOS is added to a mixture of ethanol and water.
- Ammonia (NH₃) is added as a catalyst to initiate hydrolysis.

Step 3: Nucleation

- Hydrolysis reaction forms silanol groups.
- Silanol groups condense to form silica nuclei.

Step 4: Growth


- Silica nuclei grow into larger particles through further condensation reactions.
- Particle size can be controlled by adjusting reaction conditions.

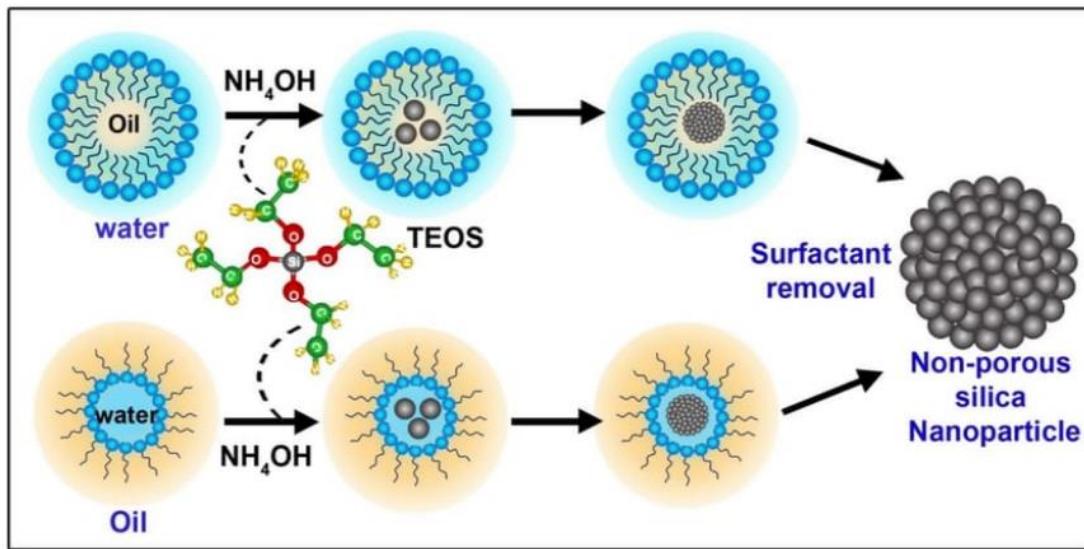
Step 5: Stabilization

- Silica particles are stabilized in the solution through electrostatic or steric stabilization.

Step 6: Collection

- Silica nanoparticles are collected through centrifugation or filtration.

3. Microemulsion Method for Silica Nanoparticles


The microemulsion method is a technique used to synthesize silica nanoparticles with controlled size and morphology. Here's an overview:

Step-by-Step Process:

1. Microemulsion Preparation: A mixture of water, oil, surfactant, and co-surfactant is prepared.
2. Precursor Addition: Silica precursor (e.g., TEOS) is added to the microemulsion.
3. Hydrolysis and Condensation: The mixture is stirred, allowing hydrolysis and condensation reactions to occur within the microemulsion droplets.

4. Particle Formation: Silica nanoparticles form within the microemulsion droplets.

5. Particle Collection: Particles are collected through centrifugation, filtration, or solvent extraction.

Biomedical Applications of Silica Nanoparticles

Silica nanoparticles have gained significant attention in biomedical research due to their unique properties, such as:

1. Biocompatibility: Silica is generally considered non-toxic and biocompatible.
2. High Surface Area: Silica nanoparticles have a high surface area, allowing for efficient loading and delivery of molecules.
3. Tunable Size and Shape: Silica nanoparticles can be synthesized with controlled size and shape.

Applications:

1. Drug Delivery: Silica nanoparticles can be used as carriers for targeted drug delivery, improving efficacy and reducing side effects.
2. Imaging: Silica nanoparticles can be used as contrast agents for imaging applications, such as MRI, fluorescence imaging, and CT scans.
3. Cancer Therapy: Silica nanoparticles can be used for targeted cancer therapy, delivering chemotherapeutic agents directly to cancer cells.
4. Gene Delivery: Silica nanoparticles can be used for gene delivery, allowing for efficient transfection of cells.
5. Wound Healing: Silica nanoparticles can be used to enhance wound healing by promoting tissue regeneration and reducing bacterial growth.
6. Biosensing: Silica nanoparticles can be used for biosensing applications, such as detecting biomarkers for diseases.

Benefits:

1. Improved Targeting: Silica nanoparticles can be engineered to target specific cells or tissues.
2. Enhanced Efficacy: Silica nanoparticles can improve the efficacy of therapeutic agents.
3. Reduced Side Effects: Silica nanoparticles can reduce side effects by delivering therapeutic agents directly to the target site.

Challenges:

1. Scalability: Large-scale production of silica nanoparticles with consistent properties.
2. Toxicity and Safety: Ensuring the safety and biocompatibility of silica nanoparticles.
3. Regulatory Framework: Establishing regulatory frameworks for silica nanoparticles in biomedical applications.

Silica nanoparticles have shown great promise in biomedical research, and ongoing studies are focused on exploring their potential applications and addressing the challenges associated with their development and use.

1. Greening the pathways: a comprehensive review of sustainable synthesis strategies for silica nanoparticles and their diverse applications Arighna Saha ab, Prashant Mishra ORCID logoc, Goutam Biswas *a and Snehasis Bhakta
2. W. J. Stark, P. R. Stoessel, W. Wohlleben and A. Hafner, Chem. Soc. Rev., 2015, 44, 5793–5805 RSC.
3. C. Binns, Introduction to Nanoscience and Nanotechnology, John Wiley & Sons., USA, 2nd edn, 2021 Search PubMed.
4. K. S. Rao, K. El-Hami, T. Kodaki, K. Matsushige and K. Makino, J. Colloid Interface Sci., 2005, 289, 125–131 CrossRef CAS PubMed.
5. I. A. Rahman and V. Padavettan, J. Nanomater., 2012, 2012, 1–15 CrossRef.
6. C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, Academic Press, Cambridge, USA, 2013 Search PubMed.
7. M. Keshavarz and N. Ahmad, J. Nanopart., 2013, 2013, 1–4 CrossRef.
8. V. Gubala, G. Giovannini, F. Kunc, M. P. Monopoli and C. J. Moore, Cancer Nanotechnol., 2020, 11, 1 CrossRef CAS.
9. F. Akhter, A. A. Rao, M. N. Abbasi, S. A. Wahocho, M. A. Mallah, H. Anees-ur-Rehman and Z. A. Chandio, Silicon, 2022, 14, 8295–8310 CrossRef CAS.
10. Nanoscale Materials in Chemistry, ed. K. J. Klabunde and R. Richards, Wiley, Hoboken, N.J, 2nd edn, 2009 Search PubMed.
11. E. Reverchon and R. Adami, J. Supercrit. Fluids, 2006, 37, 1–22 CrossRef CAS.
12. N. Abid, A. M. Khan, S. Shujait, K. Chaudhary, M. Ikram, M. Imran, J. Haider, M. Khan, Q. Khan and M. Maqbool, Adv. Colloid Interface Sci., 2022, 300, 102597 CrossRef CAS PubMed.
13. P. Yugandhar, R. Haribabu and N. Savithramma, 3 Biotech, 2015, 5, 1031–1039 CrossRef PubMed.
14. S. A. Jadhav, H. B. Garud, S. S. Thoravat, V. S. Patil, P. S. Shinde, S. H. Burungale and P. S. Patil, Biointerface Res. Appl. Chem., 2020, 11, 8599–8607 Search PubMed.
15. C. J. Choi, X. L. Dong and B. K. Kim, Scr. Mater., 2001, 44, 2225–2229 CrossRef CAS.

16. R. Yue, D. Meng, Y. Ni, Y. Jia, G. Liu, J. Yang, H. Liu, X. Wu and Y. Chen, *Powder Technol.*, 2013, 235, 909–913 CrossRef CAS.

17. N. O. San, C. Kurşungöz, Y. Tümtaş, Ö. Yaşa, B. Ortaç and T. Tekinay, *Particuology*, 2014, 17, 29–35 CrossRef CAS.

18. C.-H. Lin, J.-H. Chang, Y.-Q. Yeh, S.-H. Wu, Y.-H. Liu and C.-Y. Mou, *Nanoscale*, 2015, 7, 9614–9626 RSC.

19. S. D. Karande, S. A. Jadhav, H. B. Garud, V. A. Kalantre, S. H. Burungale and P. S. Patil, *Nanotechnol. Environ. Eng.*, 2021, 6, 29 CrossRef CAS.

20. R. J. P. Corriu and D. Leclercq, *Angew Chem. Int. Ed. Engl.*, 1996, 35, 1420–1436 CrossRef.

21. K. Nozawa, H. Gailhanou, L. Raison, P. Panizza, H. Ushiki, E. Sellier, J. P. Delville and M. H. Delville, *Langmuir*, 2005, 21, 1516–1523 CrossRef CAS PubMed.

22. Y. Huang and J. E. Pemberton, *Colloids Surf., A*, 2010, 360, 175–183 CrossRef CAS.

23. E. Effati and B. Pourabbas, *Powder Technol.*, 2012, 219, 276–283 CrossRef CAS.

24. T. Gholami, M. Salavati-Niasari, M. Bazarganipour and E. Noori, *Superlattices Microstruct.*, 2013, 61, 33–41 CrossRef CAS.

25. M. Shekarriz, R. Khadivi, S. Taghipoor and M. Eslamian, *Can. J. Chem. Eng.*, 2014, 92, 828–834 CrossRef CAS.

26. W. Huang, X. Li, H. Wang, X. Xu, H. Liu and G. Wang, *Anal. Lett.*, 2015, 48, 1524–1535 CrossRef CAS.

27. R. S. Dubey, Y. B. R. D. Rajesh and M. A. More, *Mater. Today: Proc.*, 2015, 2, 3575–3579 CAS.

28. E. G. Barrera, P. R. Livotto and J. H. Z. D. Santos, *Powder Technol.*, 2016, 301, 486–492 CrossRef CAS.

29. S. Chandra, G. Beaune, N. Shirahata and F. M. Winnik, *J. Mater. Chem. B*, 2017, 5, 1363–1370 RSC.

30. H. Gu, Q. Zhang, J. Gu, N. Li and J. Xiong, *J. Sol-Gel Sci. Technol.*, 2018, 87, 478–485 CrossRef CAS.

31. M. Meier, J. Ungerer, M. Klinge and H. Nirschl, *Colloids Surf., A*, 2018, 538, 559–564 CrossRef CAS.

32. X. Jiang, X. Tang, L. Tang, B. Zhang and H. Mao, *Ceram. Int.*, 2019, 45, 7673–7680 CrossRef CAS.

33. F. W. M. Ling, H. A. Abdulbari and S.-Y. Chin, *Mater. Today: Proc.*, 2021, 42, 1–7 CAS.

34. , metabolism and delivery systems of quercetin: A review. *Trends Food Sci Technol*