

AI-Driven Fake News And Deepfake Detection In India

¹Sneha Sunil Nair, ²Prof.Jelin Mary Jose

¹Master Student, ²Assistant Professor,

¹Information Technology,

¹ Keraleeya Samajam's Model College, Khambalpada Road, Thakurli, Dombivali (East), Kanchangaon, Maharashtra Dombivali, India

Abstract: Artificial Intelligence (AI) has transformed how information is created, shared, and verified in the digital era. This study explores the role of AI in identifying and managing false or manipulated content online. Although AI enhances communication and problem-solving, it is also exploited to generate false information, including fake news and deepfakes. In India, this escalating issue affects electoral integrity, media trustworthiness, and public awareness. This paper examines how AI can support the detection and management of misinformation. It further explores verification strategies, public awareness initiatives, and regulatory frameworks for addressing misinformation. The discussion includes models such as Convolutional Neural Networks (CNNs), Bidirectional Encoder Representations from Transformers (BERT), and Generative Adversarial Network (GAN) discriminators, highlighting their roles in identifying fake news and deepfakes. The objective is to promote responsible AI usage and enhance the reliability of digital content in India.

Index Terms - Artificial Intelligence, Fake News, Deepfake, India, Misinformation, Detection Models, Cybersecurity

I. INTRODUCTION

The proliferation of digital platforms has accelerated the dissemination of information, but it has also facilitated the widespread distribution of false or misleading content. Deepfakes—synthetic videos or audio clips generated using AI—blur the line between genuine and fabricated content. In the Indian context, where social media is a dominant news source, misinformation can rapidly influence perceptions and opinions. The frequent sharing of unverified content exacerbates the spread of fake information. This research investigates AI-based tools and strategies to mitigate the impact of online misinformation.

STRUCTURE OF PAPER

This paper is structured to first introduce the issue of AI-generated misinformation and deepfakes in India. It then discusses related background, technical models, and research methodology. Further sections analyze the effects, possible solutions, user experiences, and legal challenges associated with deepfakes. The study also presents survey findings on public awareness and concludes with recommendations to promote responsible AI use and digital trust.

II. BACKGROUND

2.1 Why Are AI-Generated Fakes Growing So Fast in India?

India's extensive internet user base and widespread availability of AI-based tools have accelerated the dissemination of deepfakes and fake news. A substantial proportion of users lack the skills to verify information authenticity, increasing their susceptibility to manipulation. Freely accessible online applications enable individuals with minimal technical expertise to edit videos or generate fabricated audio. During electoral periods, such content is frequently deployed to mislead voters or damage the reputations of political candidates. Collectively, these factors have positioned India as a significant center for AI-generated misinformation.

2.2 Are machines capable of detecting fake and genuine facts? Can it do so?

AI systems can detect subtle inconsistencies in content that may escape human observation, thereby facilitating the identification of fabricated material. Convolutional Neural Networks (CNNs) analyze image-level features such as lighting and facial geometry. Bidirectional Encoder Representations from Transformers (BERT) and other Natural Language Processing (NLP) models assess textual structure and linguistic style. Generative Adversarial Networks (GANs) can be trained to recognize and expose synthetic media produced by other GANs. This approach, commonly described as 'AI combating AI,' underscores the potential of technology to protect digital environments from manipulation.

2.3 How do Deepfakes and Fake News impact the Indian community?

Deepfakes and fake news exert considerable influence on societal, political, and individual domains beyond the digital sphere. Fabricated narratives and manipulated videos have contributed to social unrest in India. The circulation of unrelated or misleading videos during national events frequently incites public panic. The prevalence of regional languages and their associated emotional resonance complicate fact-checking efforts, thereby accelerating the spread of misinformation. These challenges underscore the necessity for effective detection technologies and improved digital literacy.

2.4 What is the mechanism by which AI models can detect and interpret deceptive news?

AI models are trained using extensive datasets that include both authentic and fabricated examples. Convolutional Neural Networks (CNNs) detect inconsistencies at the image level, while Long Short-Term Memory (LSTM) models analyze temporal patterns in audio or video files. Transformer models such as BERT and RoBERTa examine written content for signs of bias or repetitive patterns. These models are integrated to enhance accuracy across various media formats. Researchers continue to refine these models to address emerging forms of counterfeit material.

2.5 Is India's legal system equipped to handle the era of Deepfakes?

Current Indian laws do not comprehensively address the risks associated with deepfakes. The Information Technology Act of 2000 covers certain aspects of cybercrime, but it does not specifically regulate AI-generated content. The proposed Digital India Act aims to update these regulations and assign responsibility to social networks for the dissemination of false information. The Press Information Bureau (PIB) has introduced fact-checking services, yet further measures are required to effectively control misinformation. Experts advocate for the introduction of a dedicated Deepfake Regulation Act to define penalties and responsibilities.

2.6 What Do People in India Know About This Threat?

Future surveys can assess public awareness of deepfakes and fake news. These surveys should include diverse groups such as students, professionals, and the general public to determine the frequency of exposure to fabricated content and the ability to recognize it. Surveys should also evaluate user confidence in online platforms. The results can inform the development of workshops and awareness campaigns that encourage safer online practices.

2.7 What Can Be Done Next?

India's fight against misinformation requires a joint effort between technology, education, and law. Social media sites should implement AI-based detection systems that can detect fake or manipulated content in real time. At the same time, training for users in public can teach them to think critically and check information before it is passed on. Creating datasets that are specific to each region will enhance the precision of AI in distinguishing between false and authentic information, given India's multilingual environment. A collaborative effort among researchers, policymakers and media organizations is needed to create a more credible digital world.

III. TECHNICAL ARCHITECTURE COMPARISON

This section presents a comparison of various AI models and algorithms used in identifying fake news and deepfake content. Instead of focusing on programming or structural details, it highlights how these models function and how effective they are in detecting misinformation. Convolutional Neural Networks (CNN) are mainly used to study patterns and features in images and videos, while Natural Language Processing (NLP) models such as BERT help recognize misleading information in written text. Generative Adversarial Networks (GAN) are examined for their unique ability to both generate and detect synthetic media. The discussion outlines the advantages, challenges, and practical applications of these AI-based systems in controlling misinformation on digital platforms across India.

IV. METHODOLOGY

A. RESEARCH DESIGN

This research investigates the use of Artificial Intelligence (AI) in detecting and controlling the circulation of fake news and deepfake material in India. It evaluates how models such as CNN, BERT, and GAN discriminators contribute to identifying false information and restoring trust in digital platforms. The study also explores people's confidence in these technologies and the challenges involved in maintaining data reliability through AI-based detection.

B. RESEARCH APPROACH

A mixed research approach is adopted, combining quantitative and qualitative methods. Quantitative data is gathered through surveys that measure user awareness, while qualitative insights are derived from reviewing existing studies, government reports, and academic papers related to misinformation and deepfakes. This approach provides a comprehensive understanding of the problem and its technological solutions.

C. DATA COLLECTION METHODS

Data is collected through online surveys, literature reviews, and case studies of AI detection tools used in India and globally. Information sources include news articles, verified reports from cybersecurity agencies, and journal publications on fake news detection. This ensures that both user perceptions and technical perspectives are covered.

D. SAMPLING STRATEGY

The survey includes participants from different age groups, educational backgrounds, and digital literacy levels. The selection of respondents is based on their familiarity with social media and online news consumption. This diversity helps to understand how users of varying experience levels perceive and interact with AI-based misinformation detection tools.

E. DATA ANALYSIS TECHNIQUES

Collected data is analyzed using descriptive statistics, frequency charts, and graphical visualizations. Quantitative data from surveys are summarized through bar graphs and histograms to display awareness levels and trust in AI tools. Qualitative data, such as open responses and literature findings, are analyzed thematically to identify common patterns, challenges, and public perceptions of AI detection technologies.

F. TOOLS USED

The study uses Google Forms for survey collection, Microsoft Excel for data organization, and statistical functions for basic data analysis. Additionally, visualization tools such as bar charts and histograms are generated to represent results clearly. Secondary tools include online research databases and AI model documentation for reference.

G. ETHICAL CONSIDERATIONS

All participants were clearly informed about the study's purpose before taking part. Participation was completely optional, and no personal information was disclosed. Responses were collected solely for academic analysis. The study ensured full data privacy, informed consent, and ethical handling of all participant inputs, in accordance with standard research ethics.

H. LIMITATIONS

This research faced certain constraints, including a limited number of participants and restricted access to region-specific datasets. Since AI and deepfake technologies evolve rapidly, it is challenging to make long-term generalizations from current findings. Differences in user awareness and digital experience might also have influenced some responses. Despite these challenges, the study offers valuable insight into how AI can support the fight against misinformation in India.

V. EVALUATION

5.1 Consequences of Deepfakes

Deepfakes, created using AI algorithms, have introduced serious ethical and social challenges. Though initially meant for creative and research purposes, they are now widely misused for spreading misinformation, defaming individuals, and manipulating public opinion. The increasing number of fabricated videos and audios has weakened trust in digital content, making it difficult for users and journalists to distinguish between real and fake media. This erosion of authenticity poses a major risk to democracy, personal safety, and the credibility of online platforms.

5.2 Positive Impact

Despite their risks, deepfakes also offer constructive possibilities:

- **Education:** Can make learning interactive by recreating historical or scientific scenarios.
- **Entertainment:** Used in films for visual effects or recreating unavailable actors.
- **Art & Culture:** Helps in creating virtual museums and preserving cultural heritage.
- **Medical Field:** Enables anonymized patient simulations for research and training.

When applied ethically, deepfake technology can enhance creativity, accessibility, and innovation across sectors.

5.3 Negative Impacts

The harmful use of deepfakes outweighs their benefits. They can spread fake news, manipulate elections, damage reputations, and endanger national security. Misleading content shared on social media erodes public trust and increases cyber threats. Incidents such as fake videos circulated during the **2019 India–Pakistan conflict** highlight the danger of misinformation. Over time, this may lead to a culture of disbelief where people begin to doubt even genuine information.

VI. POSSIBLE SOLUTIONS FOR DEEPFAKES

Research and recent studies highlight several strategies to control the misuse of deepfake technology. These can be broadly categorized into **legal frameworks**, **technological innovations**, **educational initiatives**, and **organizational responsibility**.

1. Legal and Regulatory Measures:

India's current laws, such as the *Information Technology Act (2000)*, do not specifically address deepfakes. Therefore, the introduction of a "**Deepfake Prevention Act**" could define punishments for malicious creators, distributors, and platforms that host such content. Legal reforms should also revise intermediary liability, making social media companies accountable for the fake content they allow to circulate.

2. Corporate and Platform Responsibility:

Social media companies should employ **AI-powered detection tools** to automatically identify and label manipulated content. Platforms must enforce stricter content moderation policies, remove verified fake media, and prioritize factual information over engagement-driven algorithms.

3. Public Awareness and Education:

Developing **digital literacy programs** can empower users to identify misleading information. Training citizens to critically analyze online content reduces the unintentional sharing of fake media and fosters responsible online behaviour.

4. Technological Countermeasures:

Advanced anti-deepfake tools—such as **facial motion inconsistency detection, audio-visual mismatch analysis, and watermarking of authentic videos**—are effective in identifying manipulations. Research in AI forensics is growing, and combining multiple detection algorithms significantly enhances accuracy.

5. Ethical Media Practices:

Media houses and influencers should follow transparency standards while publishing visual content. Cross-verification, source labelling, and AI verification certificates can build audience trust.

VII. USER EXPERIENCE AND THEIR ECOSYSTEM INTEGRATION

AI-based misinformation detection tools are increasingly integrated into social media platforms, news verification portals, and web browsers. These tools enhance accessibility by allowing users to identify fake news or manipulated media in real time. However, public awareness and trust remain limited, as many users still rely on traditional news sources or personal judgment rather than automated detection systems. Integration of AI detection models into everyday applications—such as social media feeds, messaging apps, and video platforms—can improve user engagement and awareness. Yet, challenges such as lack of digital literacy and insufficient transparency in AI operations reduce long-term adoption and confidence among users.

VIII. SECURITY AND PRIVACY

AI-based detection systems operate by analyzing user-generated content, social media activity, and shared multimedia files. This raises serious data privacy and ethical concerns, as personal data may be collected, processed, or stored during verification processes. Risks include misuse of user information, bias in algorithmic decisions, and unauthorized data access. To maintain user trust, it is essential to ensure strong encryption, anonymization, and transparency in data handling. Developers and policymakers must enforce strict digital privacy standards and ethical AI guidelines to make fake news and deepfake detection tools secure and reliable.

IX. REGULATORY & TECHNICAL BOTTLENECKS

Although AI has shown significant potential in identifying fake and manipulated content, India's legal and technical frameworks are still evolving. The Information Technology Act (2000) and other related cyber laws address online harm but do not specifically regulate AI-generated deepfakes or misinformation. The absence of standard global policies and the lack of clear guidelines for AI verification systems create obstacles for widespread adoption. Technical challenges such as biased training data, limited datasets in regional languages, and evolving deepfake techniques further hinder consistent detection accuracy. Strengthening national AI ethics policies and implementing standardized regulations are crucial to overcome these limitations.

X. TARGET AUDIENCE

- i. Social Media Users & Students – Regular consumers of online information who are vulnerable to fake news and manipulated content.
- ii. Journalists & Media Professionals – Responsible for verifying and disseminating accurate news through credible platforms.

- iii. Technology Developers & AI Researchers – Focused on designing and improving detection algorithms and AI verification tools.
- iv. Policy Makers & Cybersecurity Agencies – Involved in formulating laws, policies, and frameworks to regulate AI-driven misinformation.
- v. Educators & Awareness Organizations – Working to promote digital literacy and critical thinking skills among the public.

XI. QUESTIONNAIRE DESIGN FOR THE USER PERCEPTION ANALYSIS

To support the comparison between human-based and AI-based misinformation detection, a user perception survey was designed to evaluate public awareness, trust, and attitudes toward AI tools that identify fake news and deepfakes in India. The objective of this survey is to understand how users perceive the reliability, necessity, and effectiveness of AI-based systems in combating digital misinformation and manipulated media.

Survey Objectives

The survey aims to:

Measure awareness and understanding of deepfakes among Indian digital users.

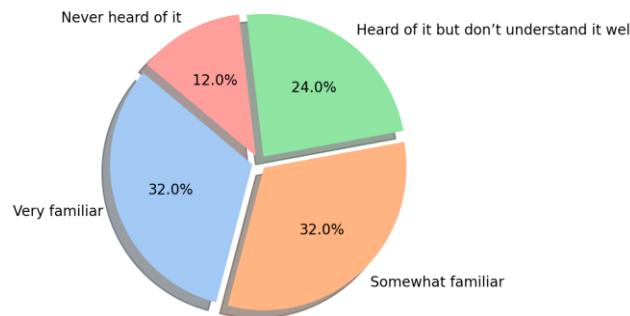
Analyze user exposure to fake or misleading content on social platforms.

Assess public trust in AI-driven detection systems and existing social media measures.

Identify privacy concerns and opinions on government regulation.

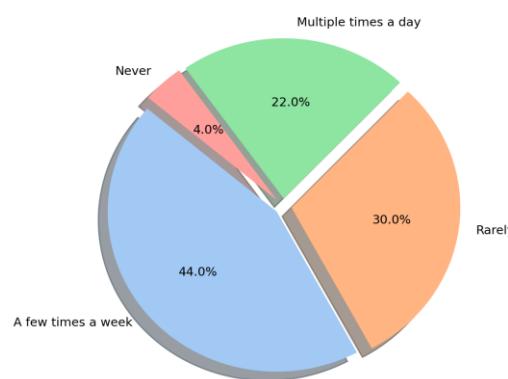
Evaluate user confidence in detecting manipulated media independently.

XII. SURVEY QUESTIONS

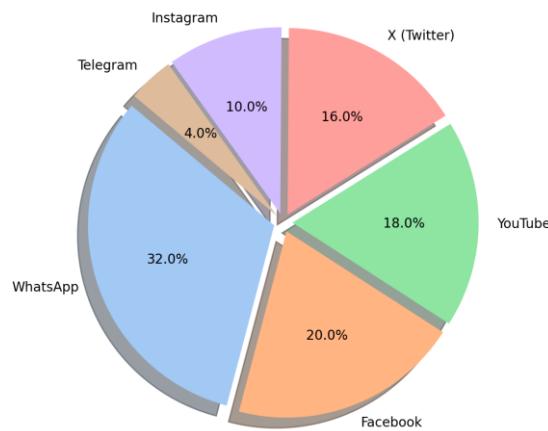

- i. Awareness of the concept of deepfakes and AI-generated misinformation.
- ii. Frequency of encountering fake or misleading content online.
- iii. Identification of platforms most responsible for misinformation spread.
- iv. Public opinion on the societal and political influence of deepfakes.
- v. User experiences in unknowingly or knowingly sharing fake content.
- vi. Major concerns regarding fake news and deepfakes (e.g., reputation harm, political misuse, privacy).
- vii. Trust levels in social media platforms to detect and remove fake or AI-manipulated content.
- viii. Responsibility perception — who should prevent the spread of misinformation.
- ix. Awareness and perception of India's current laws such as the IT Act 2000.
- x. Support for a new “Deepfake Prevention Act” with strict penalties.
- xi. Confidence in personal ability to recognize manipulated content.
- xii. Opinions on the most effective long-term solutions to combat AI-driven misinformation in India.

Question Format

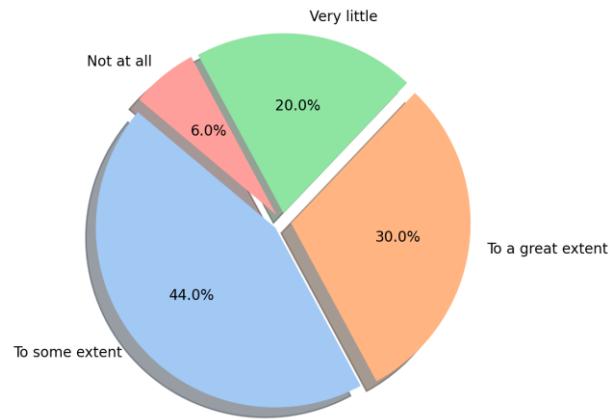
The survey primarily uses **multiple-choice questions** to ensure quantifiable analysis and includes one **short-answer question** to gather open-ended responses and personal suggestions. The results of this survey are analyzed using descriptive statistics and visualized through charts and histograms in the subsequent sections


XIII. RESULTS

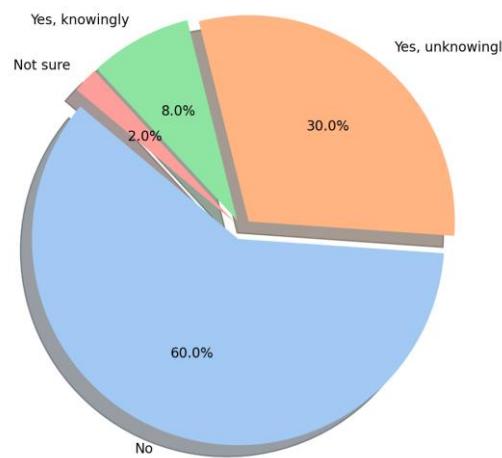
How familiar are you with the concept of 'deepfakes' — AI-generated videos or images that realistically imitate real people?


Figure 1– Pie chart for 'How familiar are you with the concept of 'deepfakes' — AI-generated videos or images that realistically imitate real people?'.

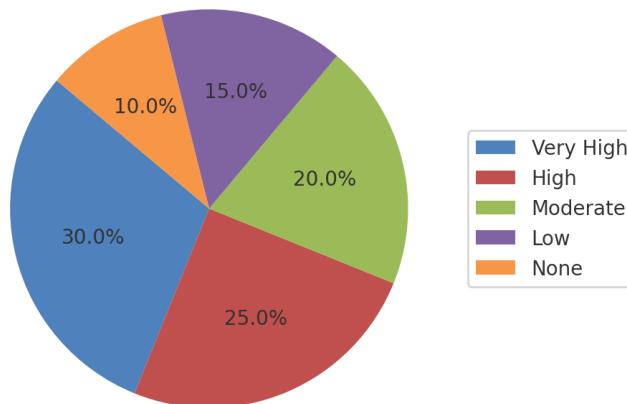
How frequently do you encounter fake or misleading information (news, videos, or posts) on social media or messaging apps?


Figure 2 – Pie chart for 'How frequently do you encounter fake or misleading information (news, videos, or posts) on social media or messaging apps?'.

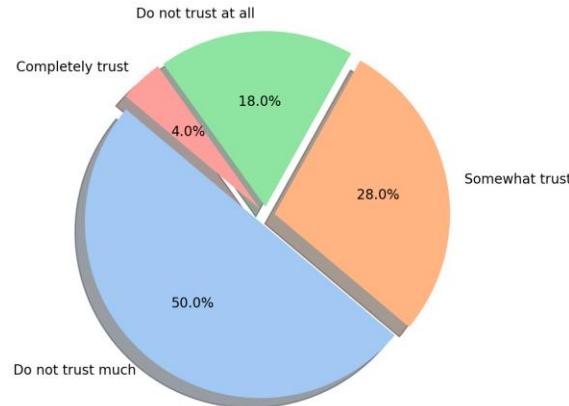
Which platforms do you believe are most responsible for spreading AI-generated misinformation in India?


Figure 3 – Pie chart for 'Which platforms do you believe are most responsible for spreading AI-generated misinformation in India?'.

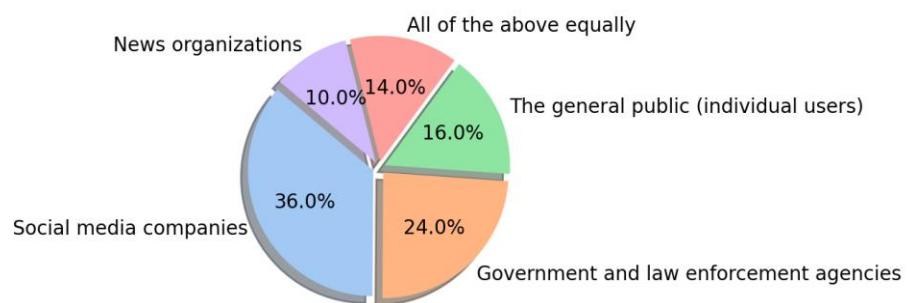
To what extent do you believe deepfakes can influence public opinion, elections, or social harmony in India?


Figure 4 – Pie chart for 'To what extent do you believe deepfakes can influence public opinion, elections, or social harmony in India?'.

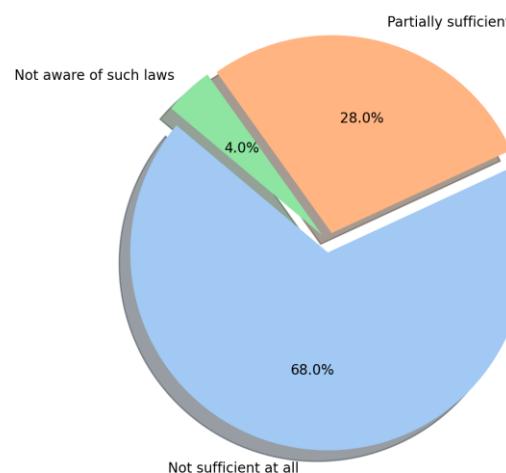
Have you ever shared or forwarded any news or video that was later found to be fake or manipulated?


Figure 5– Pie chart for 'Have you ever shared or forwarded any news or video that was later found to be fake or manipulated?'.

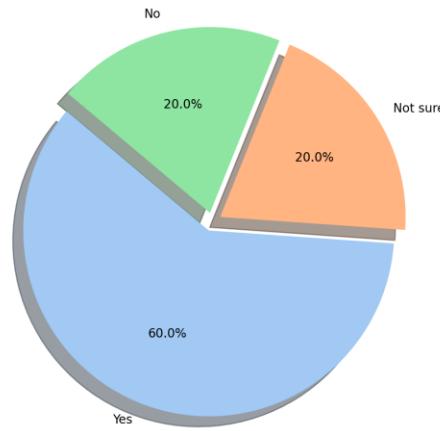
Which effects of deepfakes and fake news concern you the most?


Figure 6 – Pie chart for 'Which of the following effects of deepfakes and fake news concern you the most? (Choose up to two)'.

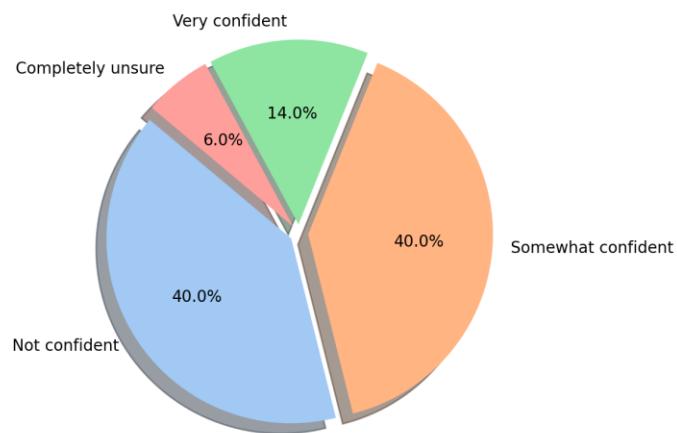
How much do you trust social media platforms to identify and remove deepfake or fake content effectively?


Figure 7 -Pie chart for 'How much do you trust social media platforms to identify and remove deepfake or fake content effectively?'.

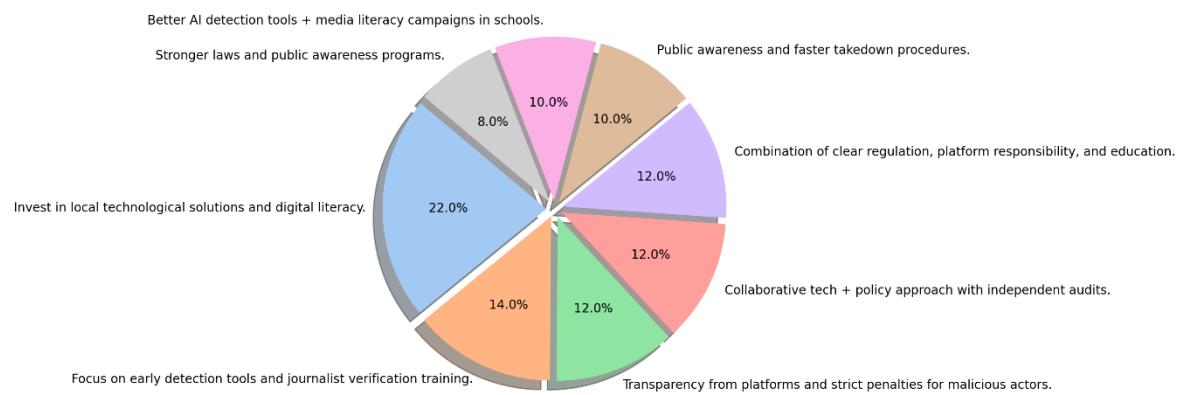
In your opinion, who should be held most responsible for preventing the spread of deepfakes and fake news?


Figure 8 – Pie chart for 'In your opinion, who should be held most responsible for preventing the spread of deepfakes and fake news?'.

Do you believe India's existing laws (like the IT Act 2000) are sufficient to handle deepfake-related crimes?


Figure 9 – Pie chart for 'Do you believe India's existing laws (like the IT Act 2000) are sufficient to handle deepfake-related crimes?'.

Would you support the creation of a dedicated 'Deepfake Prevention Act' with strict penalties for creators and distributors of such content?


Figure 10– Pie chart for 'Would you support the creation of a dedicated 'Deepfake Prevention Act' with strict penalties for creators and distributors of such content?'.

How confident are you in your own ability to detect AI-generated or manipulated content online?

Figure 11 – Pie chart for 'How confident are you in your own ability to detect AI-generated or manipulated content online?'.

What do you believe is the most effective long-term solution to combat AI-driven misinformation in India? (Example: stronger laws, better AI tools, awareness programs, etc.)

Figure 12– Pie chart for 'What do you believe is the most effective long-term solution to combat AI-driven misinformation in India? (Example: stronger laws, better AI tools, awareness programs, etc.)'.

XIV. SIGNIFICANT OUTCOMES

1. Awareness of Deepfakes

Most respondents were aware of the concept of deepfakes, though many only had a partial understanding. This indicates growing awareness but limited technical knowledge among the public.

2. Exposure to Misinformation

Participants reported encountering fake or misleading information on social media—especially WhatsApp, Facebook, and X (Twitter)—several times a week, highlighting the widespread nature of misinformation.

3. Platform Responsibility

Respondents largely held Facebook, X (Twitter), and YouTube responsible for spreading AI-generated misinformation, showing concern over the influence of major platforms.

4. Impact on Society

A majority believed that deepfakes can influence public opinion, elections, and social harmony, emphasizing the perceived social risks of such media.

5. User Behaviour

Most respondents claimed they had never knowingly shared fake content, though some admitted doing so unknowingly—reflecting a need for better awareness and media verification skills.

6. Key Concerns

The main concerns were privacy issues, reputational damage, and social unrest, with privacy emerging as the most cited risk.

7. Legal and Preventive Measures

Most participants felt that India's current laws are inadequate for tackling deepfake-related crimes and strongly supported the creation of a *Deepfake Prevention Act* with strict penalties.

8. Confidence and Solutions

Respondents showed moderate confidence in detecting manipulated content. They favoured public awareness campaigns, stronger laws, and improved AI detection tools as long-term solutions.

XV. FINDINGS

1. DESCRIPTIVE STATISTICS

Descriptive statistics is a means of describing features of a data set by generating summaries about data samples.

How familiar are you with the concept of 'deepfakes' — AI-generated videos or images that realistically imitate real people?

Mean	2.1600
Standard Error	0.1439
Median	2.0000
Mode	1
Standard Deviation	1.0174
Sample Variance	1.0351
Kurtosis	-0.9596
Skewness	0.3926
Range	3
Minimum	1
Maximum	4
Sum	108
Count	50
Confidence Level (95%)	1.8709 to 2.4491

How frequently do you encounter fake or misleading information (news, videos, or posts) on social media or messaging apps?

Mean	1.8600
Standard Error	0.1278
Median	2.0000
Mode	1
Standard Deviation	0.9037
Sample Variance	0.8167
Kurtosis	-0.6835
Skewness	0.6321
Range	3
Minimum	1
Maximum	4
Sum	93
Count	50
Confidence Level (95%)	1.6032 to 2.1168

Which platforms do you believe are most responsible for spreading AI-generated misinformation in India?

Mean	3.7600
Standard Error	0.2580
Median	4.5000
Mode	5
Standard Deviation	1.8245
Sample Variance	3.3290
Kurtosis	-1.4750
Skewness	-0.3215
Range	5
Minimum	1
Maximum	6
Sum	188
Count	50
Confidence Level (95%)	3.2415 to 4.2785

To what extent do you believe deepfakes can influence public opinion, elections, or social harmony in India?

Mean	1.9800
Standard Error	0.1414
Median	2.0000
Mode	1
Standard Deviation	0.9998
Sample Variance	0.9996
Kurtosis	-1.1963
Skewness	0.4241
Range	3
Minimum	1
Maximum	4
Sum	99
Count	50
Confidence Level (95%)	1.6959 to 2.2641

Have you ever shared or forwarded any news or video that was later found to be fake or manipulated?

Mean	1.5200
Standard Error	0.1040
Median	1.0000
Mode	1
Standard Deviation	0.7351
Sample Variance	0.5404
Kurtosis	1.5471
Skewness	1.3732
Range	3
Minimum	1
Maximum	4
Sum	76
Count	50
Confidence Level (95%)	1.3111 to 1.7289

Which of the following effects of deepfakes and fake news concern you the most? (Choose up to two)

Mean	12.7400
Standard Error	1.2818
Median	11.0000
Mode	2
Standard Deviation	9.0640
Sample Variance	82.1555
Kurtosis	-1.3123
Skewness	0.3493
Range	28
Minimum	1
Maximum	29
Sum	637
Count	50
Confidence Level (95%)	10.1640 to 15.3160

How much do you trust social media platforms to identify and remove deepfake or fake content effectively?

Mean	1.8600
Standard Error	0.1371
Median	1.5000
Mode	1
Standard Deviation	0.9691
Sample Variance	0.9392
Kurtosis	-1.1198
Skewness	0.5714
Range	3
Minimum	1
Maximum	4
Sum	93
Count	50
Confidence Level (95%)	1.5846 to 2.1354

In your opinion, who should be held most responsible for preventing the spread of deepfakes and fake news?

Mean	2.5000
Standard Error	0.2025
Median	2.0000
Mode	1
Standard Deviation	1.4321
Sample Variance	2.0510
Kurtosis	-1.0480
Skewness	0.4777
Range	4
Minimum	1
Maximum	5
Sum	125
Count	50
Confidence Level (95%)	2.0930 to 2.9070

Do you believe India's existing laws (like the IT Act 2000) are sufficient to handle deepfake-related crimes?

Mean	1.7600
Standard Error	0.0732
Median	2.0000
Mode	2
Standard Deviation	0.5175
Sample Variance	0.2678
Kurtosis	-0.1323
Skewness	-0.2858
Range	2
Minimum	1
Maximum	3
Sum	88
Count	50
Confidence Level (95%)	1.6129 to 1.9071

Would you support the creation of a dedicated 'Deepfake Prevention Act' with strict penalties for creators and distributors of such content?

Mean	1.6000
Standard Error	0.1143
Median	1.0000
Mode	1
Standard Deviation	0.8081
Sample Variance	0.6531
Kurtosis	-0.8909
Skewness	0.8701
Range	2
Minimum	1
Maximum	3
Sum	80
Count	50
Confidence Level (95%)	1.3703 to 1.8297

How confident are you in your own ability to detect AI-generated or manipulated content online?

Mean	2.5400
Standard Error	0.1942
Median	3.0000
Mode	1
Standard Deviation	1.3734
Sample Variance	1.8861
Kurtosis	-1.8705
Skewness	-0.0869
Range	3
Minimum	1
Maximum	4
Sum	127
Count	50
Confidence Level (95%)	2.1497 to 2.9303

What do you believe is the most effective long-term solution to combat AI-driven misinformation in India? (Example: stronger laws, better AI tools, awareness programs, etc.)

Mean	4.0800
Standard Error	0.3268
Median	4.0000
Mode	2
Standard Deviation	2.3109
Sample Variance	5.3404
Kurtosis	-1.1429
Skewness	0.3741
Range	7
Minimum	1
Maximum	8
Sum	204
Count	50
Confidence Level (95%)	3.4232 to 4.7368

XVI. CONCLUSION

AI plays a dual role in the fight against misinformation—it enables the creation of deepfakes yet also provides tools to detect and prevent them. In India, strong policies, public awareness, and digital literacy are essential to limit harmful content. Responsible use of AI can help protect truth, build trust, and maintain credibility in digital media.

XVII. ACKNOWLEDGEMENT

I express my heartfelt gratitude to Ms. Jelin Mary Jose, my research guide, for her valuable guidance and continuous support throughout this study. I also thank all the survey respondents for their participation and honest feedback, which greatly contributed to this research.

XVIII. REFERENCES

- [1] M. Westerlund, "The Emergence of Deepfake Technology: A Review," *Technology Innovation Management Review*, 2019.
- [2] R. Tolosana et al., "Deepfakes and Beyond: A Survey of Face Manipulation and Fake Detection," *IEEE Access*, 2020.
- [3] Y. Li and S. Lyu, "Exposing Deepfake Videos by Detecting Face Warping Artifacts," *arXiv*, 2019.
- [4] S. Agarwal and L. Varshney, "Limits of Deepfake Detection: A Robust Estimation Viewpoint," *arXiv*, 2020.
- [5] A. Bhattacharya et al., "AI and Deepfake Detection Challenges in Indian Media," *IJISRT*, 2024.
- [6] Government of India, "Information Technology Act, 2000."
- [7] Press Information Bureau, "Fact Check Unit Initiatives," 2024.

8. [8] NITI Aayog, "AI for All – Strategy for Responsible AI in India," 2023.
9. [9] K. Patel, "Deep Learning Models for Fake News Classification," IEEE Conference Proceedings, 2023.

