

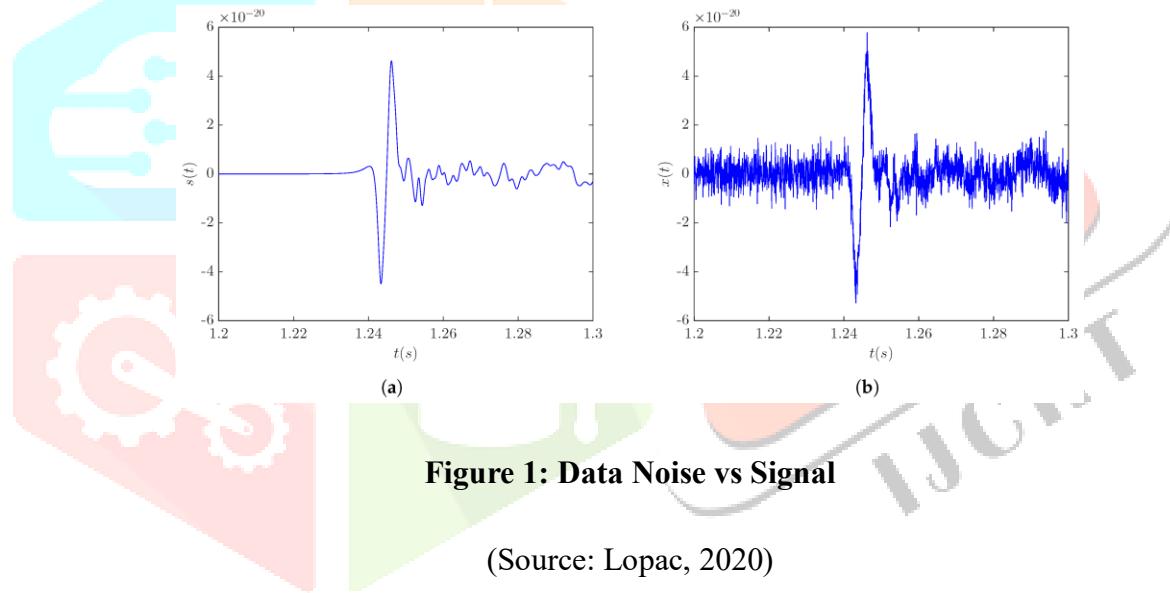
Gravitational Wave Detection: Data Noise Vs Signal

Aanya Gupta

Student Researcher

The Shri Ram School Mousari

ABSTRACT


One of the most recent discoveries in the history of astrophysics and the first signal of the General Theory of Relativity expectations to bear fruit has been the observation of the gravitational waves. The blind extraction of weak astrophysical signals beyond noise is a problem of great concern, which has adversely affected the field since Laser Interferometer Gravitational-Wave Observatory (LIGO) was initially observed in 2015. Noise, including seismic vibrations, thermal noise, and quantum uncertainty, are likely to erase the real gravitational wave signals and predicting detection is a fluid scientific and engineering challenge. This research essay explains the interaction between data noise and signal detection, in gravitational wave observatories as noise reduction algorithms, and signal extraction algorithms, are invented and implemented.

The research design is the secondary qualitative research that is informed by literature, technical reports and the synthesis of case studies in the LIGO, Virgo and KAGRA partnership. Themes in the analysis include the nature of noise, the technique of more sophisticated data-processing, and sensitivity of the detectors. The theory is developed based on the General Theory of Relativity and Signal Detection Theory (SDT) to construct the explanation of the capacity to isolate gravitational signals with statistical reliability. The findings suggest that the current detectors are equipped with improved noise-reduction technologies, although further advances in quantum sensing, machine learning, and accuracy of interferometers are required to enhance the detection quality. This paper notes that there is a need to advance the methods of noise-signal differentiation to validate not only the cosmic phenomena such as the merging of black holes and the collisions of neutron stars, but also to create a more general examination of astrophysics.

Keywords: *Gravitational Waves, Signal Detection, Data Noise, LIGO, Thematic Analysis, Astrophysics Data*

I. INTRODUCTION

One of the most unexpected discoveries of modern physics is the gravitational waves that offer alternative ways to observe and study the universe. Gravitational waves are the waves in the fabric of space between accelerating the mass of a very large celestial object and predicted in 1916 by Albert Einstein in his General Theory of Relativity, gravitational waves can also be observed when two black holes or more compact neutron stars collide or merge. The abstraction of such waves had been so hard to test, so unimportant fifty years ago. In 2015 Laser Interferometer Gravitational-Wave Observatory (LIGO) experimentally measured gravitational waves emitted by a merger of two black holes. This has since been accompanied by cooperative work with other detectors which now put the study of gravitational waves astronomy to a realistic and radical discipline, including Virgo in Italy and KAGRA in Japan.

The discovery of gravitational waves is important as it offers some clues to the astrophysical events that are not possible to study using the conventional electromagnetic radiation e.g. light or radio waves. Nevertheless, the detection of these signals is a great challenge with the overwhelming noise of data. Environmental factors, like seismic activity, thermal variations in the components of the detector, and quantum noise on the laser-interferometer scale, are all sources of noise. These noise sources can resemble or mask the weak traces of gravitational waves, making it ambiguous whether actual signals are detected or the noise.

Even with current technological improvements, there is a significant research gap in the ability to effectively divide true signals and noise with high statistical confidence (Antonelli et al., 2021). Although more sophisticated data-processing methods, including matched filtering, machine learning, and quantum-enhanced interferometry, have been promising, the tradeoff between noise cancellation and normal signals is

sensitive. The threat of a false positive or false negative results highlights the need to optimize methodologies that enhance sensitivity without reducing reliability. The interaction between noise and signal in gravitational wave detection thus becomes a crucial subject to be studied not only to enhance the existing observatories but also to set the stage to make further discoveries.

Aim: To investigate challenges of distinguishing noise from signals in gravitational wave detection using thematic analysis.

Objectives:

- To analyze primary sources of data noise affecting gravitational wave detectors in large-scale observatories.
- To evaluate effectiveness of signal extraction methods employed in current gravitational wave detection frameworks and experiments.
- To apply thematic analysis on secondary research to identify key themes in noise-signal differentiation techniques.
- To explore future advancements in machine learning and quantum sensing for improved gravitational wave signal detection.

II. LITERATURE REVIEW

a. Overview of Gravitational Wave Detection Methods

Antoniadis et al. (2024) maintain that the existence of gravitational waves has transformed the world of Astrophysics by offering it with an all-new platform of observation into the universe. The most well known and most successful method to detect gravitational waves is laser interferometry, or an approach of measuring tiny deformations of spacetime by passing gravitational waves. The interferometers apply to laser beams which have been split into two perpendicular beams which are then reassembled to form an interference pattern. A passing gravitational wave can cause the relative length of these arms to change to produce observable effects in the pattern of interference. The first astronomical instrument to use the technique was Laser Interferometer Gravitational-Wave Observatory (LIGO) in the United States, which had two large-scale sensors in Washington and Louisiana.

The LIGO installation is not the only installation to influence a larger area of the world but also other installations like the Antoniadis et al. (2023). Virgo in Italy is a detector that will complete LIGO since it provides synchronized observations that will simplify localizing the sources, and reduce false positives. The

Japanese KAGRA observatory, located underground to reduce seismic noise, further enhances this, having cryogenic mirrors intended to reduce thermal interference.

Ground-based interferometers, proposed space-based observatories, like the Laser Interferometer Space Antenna (LISA) aimed to observe lower-frequency gravitational waves. Space-based systems bypass most sources of noise in the terrestrial system, and can extend the length of their arms, making them more adaptable to the observation of supermassive black hole mergers and other large-scale events. Comprehensively, the methods of detecting gravitational waves are a combination of sophisticated engineering and basic physics. The integration of terrestrial and future space-based sensors should give a complete framework to investigate a multitude of astrophysical phenomena.

b. Types of Noise in Detection Systems

As Bacon et al. (2023) point out, the principle of detecting a gravitational wave is simple, but practically it is clouded by many kinds of noise that make it difficult to determine the direction accurately. Noise falls into broad categories of seismic, thermal, quantum, and environmental noise, each of which may occlude or distort any potential gravitational wave signal. Seismic noise is the vibration of the ground caused by natural and man-made causes like earthquakes, traffic, or even the slightest movements of the ground. As the gravitational wave detectors record the variations in the lengths of the arms within the range of tenths of protons in diameter, any minor movement of the ground can saturate signals. High level isolation is used, though the seismic residual noise is a continuing problem.

According to Baltus et al. (2021), thermal noise is caused by the natural vibrations of atoms in the materials used in the detector, especially the mirrors and suspensions. Even with cryogenic cooling and special materials, these vibrations are not entirely removed. Low-frequency noise in the form of thermal effects disrupts the detection of long-wavelength gravitational waves. Quantum noise also affects the laser-based measurement system. It has shot noise, statistical variation in photon detection, and radiation pressure noise, which is explained by the momentum of photons bouncing off detector mirrors. The sum of all these quantum effects are radical constraints on sensitivity.

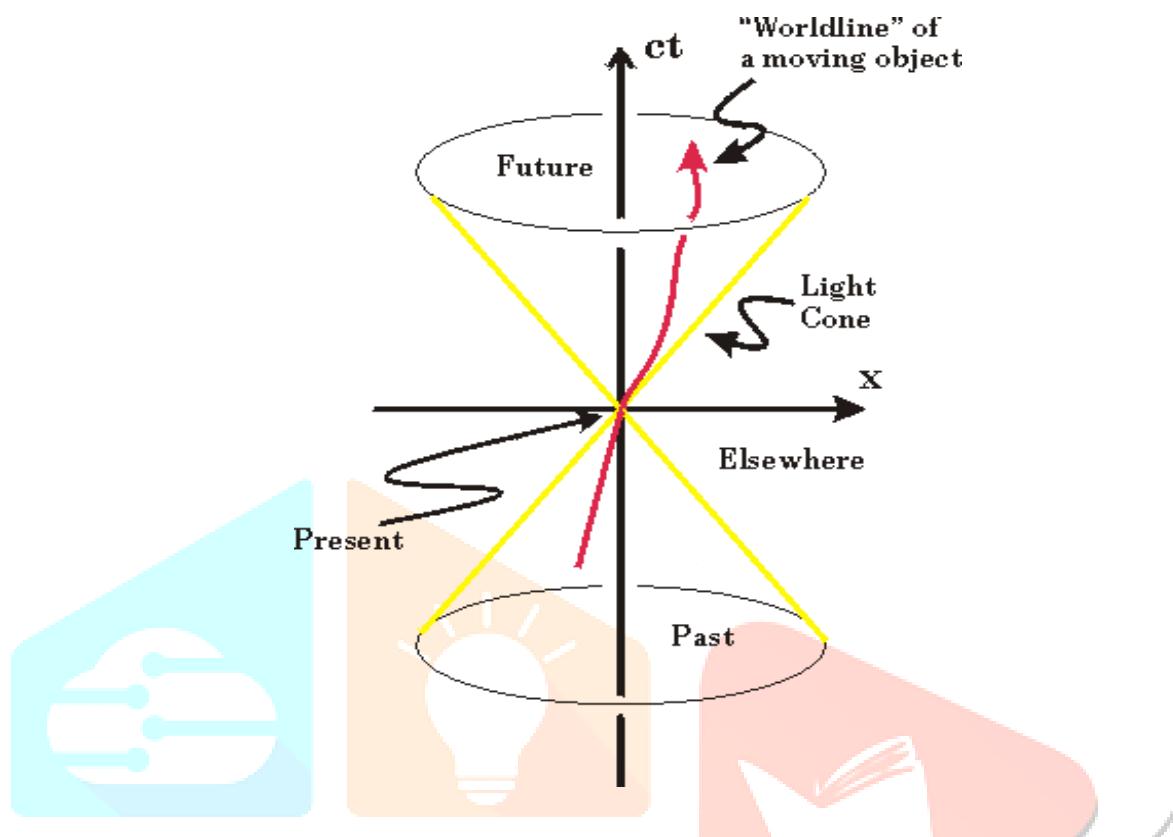
Barak Zackay et al. (2021) define the environmental noise as including weather effects, electromagnetic interference, and the local human activity. Detectors tend to use big shielding and control to minimize impacts to the environment and still external forces will be able to generate false signal due to unpredictability.

According to Bini et al. (2023), noise management is so complex that the observation of gravitational waves requires abnormal precision. The detector components are influenced by all noise sources, and engineering innovations, filtering techniques, and statistical analysis should be combined to minimize their impact. Noise interpretation and repression is not a technical concern but one of the main concerns of gravitational wave

astronomy since the detection validity depends on the possibility to distinguish what could be interpreted as a potentially significant astrophysical signal and these background perturbations.

c. Signal Processing Techniques

According to Branchesi et al. (2023), the complexity of the signal processing method is required to extract the gravitational wave signal following noisy data, which maximizes the sensitivity and reduces false positives. One of the simplest tools, which decomposes signals into frequency components, is the Fourier transform. As gravitational waves commonly exhibit certain frequency patterns, Fourier analysis enables researchers to extract possible signals in the data dominated by noises. Nevertheless, since neither noise nor signals are stationary, more sophisticated approaches are frequently necessary.


One of these approaches is called matching filtering, and it implies compare the data of a detector with a database of theoretical waveform templates. These templates are modeled after predicted astrophysical events, such as mergers of black holes or collisions of neutron stars. In case the information fits in a pattern, then the likelihood of true detection is high. All successful discovery of gravitational waves to date have involved matched filtering which is computationally expensive and requires proper waveform modeling.

Recently, Iess et al. (2022) mention that machine learning methods have become potent instruments in the analysis of gravitational waves. The application of neural networks and deep learning models is an example of algorithms that can be trained on simulated data to capture more complex trends that would otherwise have not been identified in the simpler statistical methods used. Machine learning will provide real-time detection and enhanced adaptivity to unforeseen waveforms, and overfitting and interpretability are still an issue. It also uses adaptive filtering as well as time-frequency analysis to address non-stationary noise as well as transient disturbances. These techniques enhance the likelihood of differentiating short spikes of signals against instantaneous environmental noise spikes.

According to Janssens et al. (2022), signal processing fills the gap between raw detector data and meaningful astrophysical understanding. In the absence of these sophisticated techniques, the detection of gravitational waves observatories would not be able to find useful information in the sea of background noise.

Theoretical Framework

Einstein's General Theory of Relativity

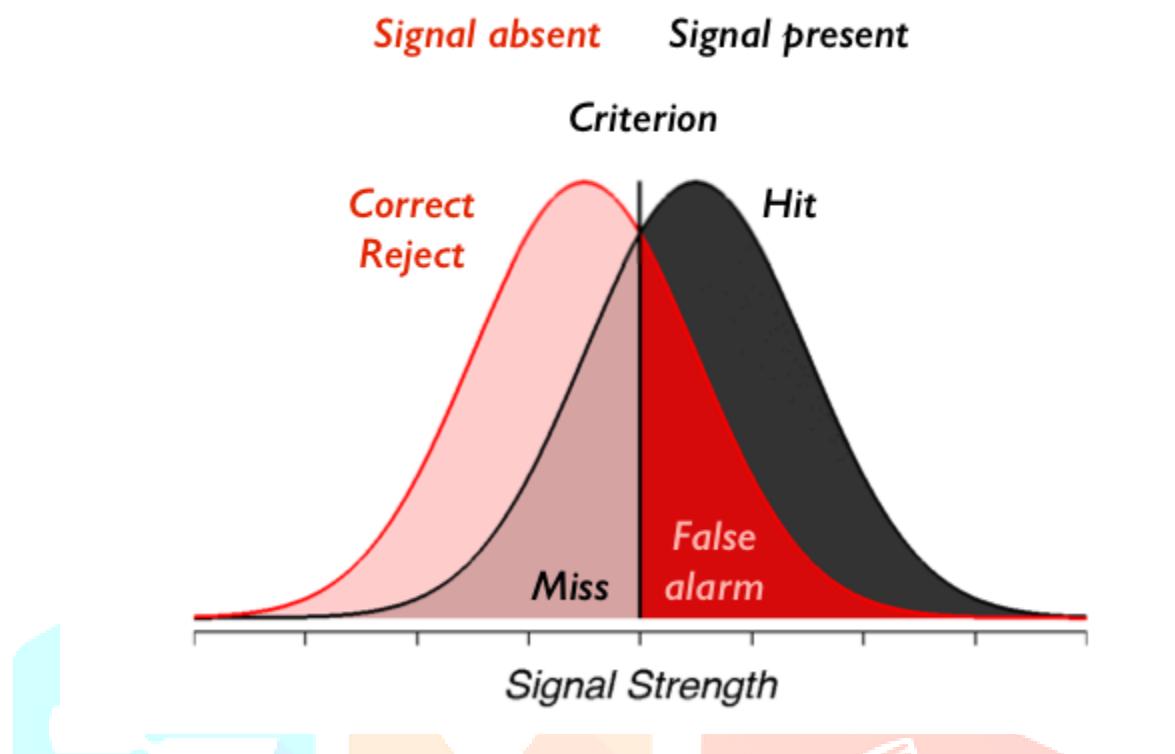


Figure 2: Einstein's General Theory

(Source: Libretexts, 2025)

Einstein General Theory of Relativity by Katerina Chatzioannou et al. (2021) offers the basic background to the idea of gravitational waves. The theory did not consider gravity as a force, but rather the bending of spacetime due to massive bodies. When two very thick celestial bodies, including black holes or neutron stars, speed up around one another, they produce waves in this spacetime, or surface. These are called gravitational waves propagating outward at the speed of light, and they provide information about the dynamics of the system that generated them.

Lawrence et al. (2023) explain that this theory is important because it forecasted the existence of gravitational waves, which would only be visible with very sensitive devices. In contrast to electromagnetic radiation, which is either absorbed or scattered by matter, gravitational waves do not change their nature in passing through virtually any medium, and as such are very special messengers of violent events occurring in the universe. Recent decades have seen the development of interferometric detectors, including LIGO, Virgo, and KAGRA, which operate on principles consistent with relativity since they are sensitive to small spacetime distortions produced by passing waves.

Signal Detection Theory (SDT)**Figure 3: Signal Detection Theory**

(Source: Niwlikar, 2024)

The Signal Detection Theory (SDT) by Ma et al. (2022) offers a conceptual model to identify a true gravitational wave signal and background noise under uncertain conditions. The theory was originally formulated in the field of psychology and communication, describing how observers drive their decisions in uncertain situations between finding true signals and false alarms. It can be directly used in gravitational wave detection, where detectors always record very large volumes of data that consist of a mixture of noise.

The SDT provided by Macas et al. (2022) is based on two important variables, i.e., sensitivity and decision criteria. Sensitivity Sensitivity of a detector to weak signals and noise, and decision criteria are the strength to which an event is a real gravitational wave. Based on these principles, the researcher obtains the likelihood of determining the actual signals, the likelihood of false positives, and false negatives. This theoretical framework can be reconciled with available techniques of gravitational wave analysis, such as matched filtering and machine learning, where statistical thresholds compare the patterns observed with astrophysical events. Signal Detection Theory is a mechanized method of dealing with uncertainty, and detecting is viewed as a tradeoff between error and accuracy.

III. MATERIALS AND METHODS

Research Design

The present paper relies on a secondary qualitative research design to establish the challenges of the distinction between noise and signals in gravitational wave detection. The choice of this design is due to the nature of the research problem, which is rooted in the intensive reliance of analysis on the use of the past-based information, experimental findings and reports of technical regimes that a big-scale collaboration, such as LIGO, Virgo, and KAGRA provides. Direct testing could not be done in the confines of this study because of the complexity, cost and scope of the gravitational wave observatories. Instead, it is about reviewing literature, technical reports, and case studies to derive valuable information (Miller et al., 2022). The qualitative method is suitable as it will be able to provide the interpretation of the results by many different perspectives, as patterns and themes are able to arise that are not merely limited to numerical data.

Data Sources

The research is based on numerous secondary sources. Theoretical basis, experimental findings, and methodology were discussed in peer-reviewed journals. The inclusion of a little background data on the astrophysical implications, which included NASA and European Space Agency, served to make the primers more relevant. Furthermore, the LIGO Open Science Center documentation and access information provided easy-to-follow examples of how the data could be processed and interpreted in practice, as well (Morawski et al., 2021). It happens to be of particular interest, as the number of both the gravitational wave being studied and the noisy objects being studied is convenient, enabling one to think more closely about how the scientists are isolating the signal they are measuring and some undesired variability.

Thematic Analysis

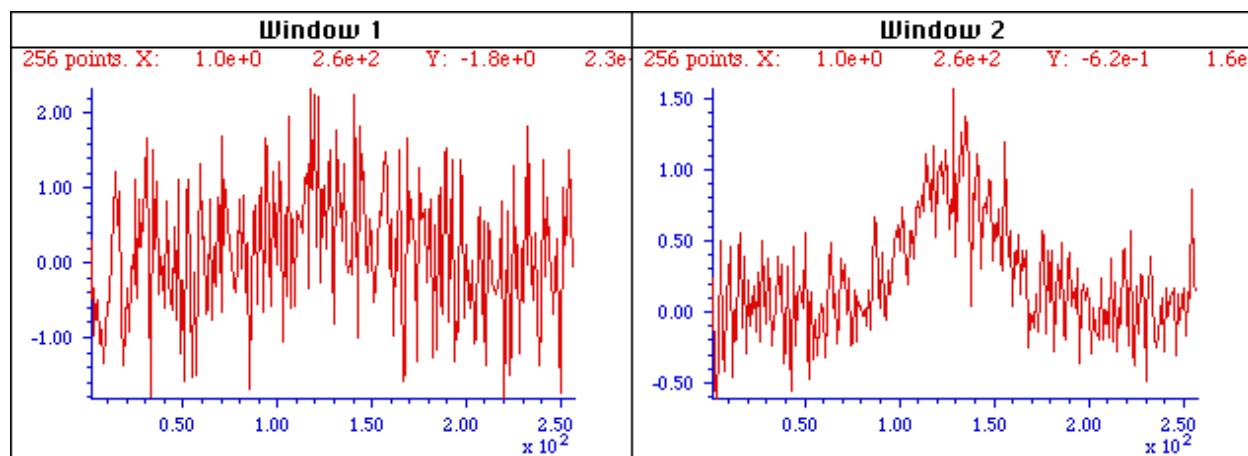
Thematic analysis is used as a qualitative tool on the definition of the common patterns and themes to get systematic reviews of the collected secondary data. Thematic analysis will be especially useful in the scenario of utilizing several forms of secondary data that will be grouped into homogeneous categories (Moreno et al., 2022). The literature and data sets have revealed three significant themes, which are noise-generating sources, signal processing, and detector improvement.

The initial theme, sources of noise, is a summary of facts about a range of disturbances that hinder the detection of gravitational waves. This theme defines noise as seismic, thermal, quantum and environmental noise to highlight the problem of how these real astrophysical signals are going to be detected. The observatories and conditions of detection, the thematic grouping, also compare well in terms of the relative significance of the various forms of noise.

The second theme is signal processing techniques, the techniques that have been invented to recover the signal of gravitational waves in the presence of excess background noise. They are the more classical approaches, like fourier analysis and matched filtering, and the more recent approaches, like machine learning or adaptive algorithms (Morrás et al., 2023). The dynamic interaction between the problems and solutions and the response of the problems to the limitations of particular type of noise also became apparent through the thematic analysis.

The third theme, detector improvements concern the design and engineering process of the gravitational wave observatories. These changes in the theme include cryogenic mirrors, underground and quantum-enhanced measurements. By synthesizing these advances, the discourse shows that technological growth is directly correlated with the noise problem because it increases the sensitivity and reliability of the detections, in a gradual manner.

Justification of Qualitative Secondary Analysis


The qualitative secondary analysis option is justifiable by the fact that gravitational wave research is very specialized and collaborative. This level of experimentation is expensive, complicated, and demands extensive infrastructure and measurement, and is therefore unavailable to a single researcher or small-scale experiments (Murali & Lumley, 2023). However, the existence of quality secondary data implies that useful research can still be conducted by systematically interpreting available findings.

The research should be interpreted qualitatively as the problem of noise and signal cannot be purely quantitative but contextual, methodological, and interpretive. Despite measurement of detector sensitivity and signal-to-noise ratios as numerical data, qualitative analysis can show how researchers conceptualize noise, design countermeasures, and interpret questionable results (Owen et al., 2023). Thematic analysis makes the gap between technical outcomes and more broad conceptualizations and offers a systematic means of unifying divergent perspectives into one coherent story. Moreover, secondary qualitative research allows analyzing trends that are being observed in diverse sets of data and cases. As an example, a comparison between LIGO, Virgo and KAGRA to approach similar noise problems reveals shared strategies and special solutions.

IV. RESULTS AND DISCUSSION

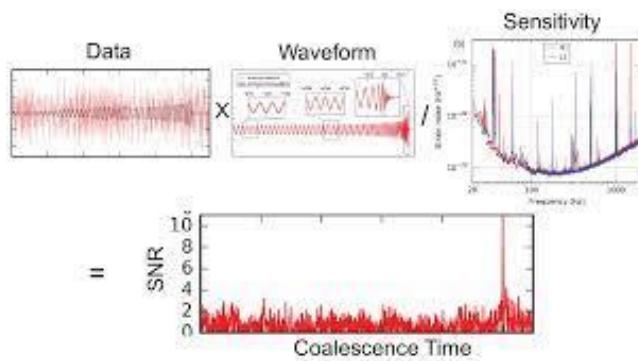
Results

Identifying and Understanding the Nature of Noise in Detection Systems

Figure 4: Signal Processing

(Source: Terpconnect, 2025)

The thematic analysis identified that one of the biggest barriers in gravitational wave detection is the nature of noise. The detectors are sensitive to spacetime distortion smaller than the width of a proton, which means that they are extremely sensitive not only to gravitational waves but also to many environmental and instrumental sources of disturbance (Powell et al., 2023). The results indicate that noise may be classified into four broad groups, namely, seismic, thermal, quantum, and environmental, with varying degrees of impact on the accuracy of detection.


Seismic noise is the vibration produced by the ground because of certain natural events, such as earthquakes, and also due to human activity like traffic and construction (Paraskevi Nousi et al., 2023). Even with sophisticated isolation systems, residual seismic interference still deforms low-frequency bands, reducing sensitivity of longer-wavelength gravitational waves. The natural vibrations of detector parts, especially mirror and suspension, give rise to thermal noise. Even at low temperatures when atoms are frozen and atomic motion is minimal, the signals to measurements are distorted by thermal noise. This noise is more likely to dominate in the mid-frequency range and makes the process of detections more complex. Quantum noise is a physical limitation to the quantum behavior of light. At high frequencies, the noise predominates as shot noise (arrival of photons is not determined), whereas at lower frequencies, the noise predominates as radiation pressure noise (transfer of photon momentum) (Qiu et al., 2023). The quantum noise of these two manifestations must be struck out rather cautiously. Lastly there is the electromagnetic but not noise, the weather variation and anthropogenic noise.

This theme underscores the hypothesis that no single type of noise dominates across all scenarios. Instead, the interaction of multiple noise sources increases system complexity, with signal plausibility depending on the detector's ability to withstand several disturbances simultaneously. To maintain sensitivity, noise suppression processes must be optimized to prevent the loss of strong non-astrophysical signals. Signal extraction, aimed at further reducing noise, is equally critical.

Evaluating Signal Extraction Methodologies and Their Effectiveness in Noise Reduction

The findings confirm that signal processing methods are essential for gravitational wave detection, as they enable the identification of faint astrophysical traces. One of the most fundamental approaches is the Fourier transform, which decomposes collected data into frequency components (Schaefer et al., 2022). While effective, Fourier analysis alone is insufficient because noise patterns often overlap with signal frequencies. Matched filtering offers a more powerful solution by comparing incoming data against theoretical waveforms generated from astrophysical models (Steltner et al., 2022). A potential detection is indicated when strong correlation exists between observed data and a template. This method has proven especially effective in detecting black hole and neutron star mergers, though its success relies heavily on the quality of the template library.

The recent progress highlights the increasing importance of machine learning methodologies. Neural networks and deep learning algorithms that have been trained can recognize more intricate patterns in noisy data at higher rates and can also sometimes be more adaptable than classic algorithms (Schaefer et al., 2023). Unlike matched filtering, machine learning can adapt to new or unexpected waveforms but suffers disadvantages in transparency and interpretability. Adaptive filtering and time-frequency analysis are in line with these main methods. Adaptive filtering operates dynamically to eliminate the temporary noise height, and the time-frequency analysis may be applied to the short periodical signal, and therefore there will be no sudden events to obscure the real event. The outcomes of this theme indicate that a combination of various methods is needed in order to be able to pull out the signals. By use of traditional statistical review and sophisticated computation, investigators infuse legitimacy and early-identification.

Case Examples from LIGO Detection and Ongoing Improvements Worldwide**Figure 5: LIGO Detection and Ongoing Improvements**

(Source: Weinstein, 2017)

The third theme is case studies, and the most entertaining one was the case of in 2015 an ancient discovery of gravitational waves made by LIGO. Its finding in two black holes, at least 1.3 billion light years, was itself the initial direct confirmation of the 100-year-old prediction of Einstein. Such a small effect was noticeable in the noise of data flood, which is an indication that even such a small effect was visible in noisy cancellation with signal recovery algorithm. Signals detected by the LIGO detectors were a few seconds long and matched filtering verified that these signals were standard and conformed to theoretical waveforms.

The 2015 discovery not only demonstrates the efficiency of current techniques, but it also showed that detectors remain susceptible to noise. Later case studies demonstrate how collaborative detection effort has become pivotal to reliability (Wang et al., 2024). To illustrate, when Virgo became a member of LIGO in coordinated operations, source localization capability increased dramatically, because simultaneous measurements of multiple locations would reduce site-dependent noise. Likewise, the construction of the Japanese KAGRA observatory, with its cryogenic mirrors and underground site, illustrates the use of innovative designs to overcome thermal and seismic issues.

Continuous advances have also been directed towards quantum enhanced technologies. Using squeezed light, detectors minimize the shot noise, enhancing sensitivity at higher frequencies. A promising development here demonstrates a direct implementation of quantum principles to counter quantum noise, which is among the most systematic challenges in gravitational wave astronomy. Also, machine learning applications are currently under trial within real-time detection pipelines, with potential to lessen the volume of computation and speed up analysis.

Arguably by these cases, the progress achieved in the detection of gravitational waves is a gradual process, with each discovery dictating new technological strategies. They further emphasize that the astronomy of gravitational waves ceases to be an abstract concept, but rather a functional field of study, due to discoveries

that can be repeated and tested (Yu and Adhikari, 2022). Improvements in both the sensitivity of the detectors and the analysis of the data have enabled the investigation of the neutron star collisions, the rotation of the black holes and even the potential signals of the exotic systems. This theme concludes that history of gravitational wave detection is extremely defined by the previous successes and the modern innovation. Both case studies reinforce the very simple notion that the fight in overcoming the issue of noise is the most essential part of the field development, as it is necessary to hear the tiniest outcries of the universe.

Discussion

The findings of this paper indicate that the signal to noise dynamics of gravitational wave detection is multifaceted and that advanced techniques are created to guarantee the performance of the prediction of the theory. These results become more productive when they are considered in terms of the Einstein General Theory of Relativity and Signal Detection Theory (SDT). The fact of relativity tells us about the fact of gravitational waves and what the observation of gravitational waves promises us about the universe, SDT is the reason why scientists tend to believe a signal when they are not sure. The combination of these theoretical insights should help explain the scientific significance of gravitational wave research, and why, unlike other forms of signals, detecting these waves is difficult in equal measures.

Interpretation of Results in Light of Theories

The results showed that design and functionality of the detection systems are still based on the postulations of the general relativity. This theory is confirmed by the fact that the space timeline is slightly warped by the gravitational wave as it was predicted by the equations of Einstein and any observation that was confirmed. Meanwhile, SDT is a complementary model used to explain signal extraction results. Each choice taken by detection teams is a trade-off between the likelihood of an observed pattern to be a genuine astrophysical process and the likelihood of noise contamination (Zhang et al., 2022). This paradigm puts sensitivity gains and decision threshold in detection strategies into focus. The topical results contained in the sources on the causes of noise, signal processing and the samples of the case reveal the workability of these theories, one of which is that of the cosmic basis, and the other is the confirmation procedure.

How Noise Challenges Detection Reliability

The most frequent and complex challenge was noise, which endangered the stability of the detections at every level. In contrast to signals, which are known to respond in a predictable way according to astrophysical models, noise is indefinable, heterogeneous, and often overwhelming. A noisy background is formed by the combination of these thermal variations, seismic noise and quantum variations, and real signals are at risk of being lost. The effects of this dilemma are explainable in SDT as detection is a tradeoff between the sensitivity and decision criteria. The sensitivity enhances the chances of detecting weak signals and enhances the chances of false alarms (Zhao Tian-yu et al., 2023). On the other hand, large decision thresholds minimize

false positives, but there is the possibility of false missing of true events. It is a trade-off that identifies the problem underlying the reliability of gravitational wave astronomy and open to weak-but-meaning signals.

This is demonstrated by examples of cases. The recent LIGO discovery of 2015 was not only celebrated by people, according to their scientific worth, but it also has been confirmed despite all the noise. This co-operation with Virgo, and later KAGRA, also suggested that world networks become reliable because they can cross-check detections. Essentially, noise drives the research on gravitational waves to operate in the framework of safe framework, redundancy and statistical confidence that the industry is not taken seriously in the lack of the industry.

Comparison of Classical vs. Modern Signal Processing Methods

Thematic outcomes suggest high polarization between classical and modern signal extraction methods, as well. Matched filtering and fourier analysis are pure signal-finding algorithms, designed signal-finding algorithms, designed on physics. They possess a high degree of mathematical rigor and predictability when the waveforms of interest are known. But methods also break at the end when they encounter unmodeled or unexpected signals, and methods are very sensitive to already known templates and assumptions.

Modern techniques, i.e., machine learning, provide the new direction, but it does not imply the usage of models and may allow extracting patterns using algorithms. Neural networks can be trained to adapt to complexity of noise environment in simulated and real data; they can learn to approximate signals, which cannot be easily modeled using theoretical templates. It is a particularly handy trait when it comes to a profession where any kind of surprise is possible. The findings, nevertheless, indicate that machine learning does not correlate with the emergent problems alone, including interpretability and noise-fitting.

The meaning of the comparison is that the future of detection of gravitational waves is not an alternative to the classical and modern approach but the combination of the approaches. The nearest substitutes to achieve the ideal degree of reliability and discovery potential are those hybrid methods that integrate the accuracy of matched filtering, and the flexibility of machine learning.

Implications for Astrophysics and Future Research Directions

Such findings cannot be detected because of their implications. Otherwise, gravitational waves can inform other processes, including merger behavior of black holes, or extreme neutron-star behavior. This disruption between signal and noise implies once more that astrophysics can scan the universe on a more basic plane, trying to accept theories of matter, energy and even space itself.

Future research can focus on three directions. To begin with, detector designs will be optimized further, and the noise will be a far smaller one since cryogenic and underground facilities and quantum innovation will

have to be the first. Second, new strategies in computing will push signal processing past the current bottlenecks, and machine learning will likely become more of a participant. Third, new space detectors such as LISA will push the boundaries of detection into new frequencies that are complementary to terrestrial detectors and increase the likelihood of astrophysical studies. Finally, the results indicate that gravitational wave astronomy is in the transitional stage. As technology emerged and new methods arose, mastering the skill of finding the needle in the haystack would be the new frontier to a new understanding of the universe that may appear unattainable.

V. CONCLUSION

This study was initiated in the hope of addressing the issue of noise and signal separation in gravitational wave detection. The aims were to determine noise sources, compare signal extraction methods, interpret the findings using thematic analysis, and investigate technological solutions to improve detection. The results highlight the importance of enhancing signal-noise differentiation to develop gravitational wave astronomy. The possibility of false positives or missed detections is high without strong means of noise suppression, and it prevents the exploration of the astrophysical phenomena. Nevertheless, the research had limitations as it has utilized secondary data and thus limits the capacity to independently confirm its results. Moving forward, the next round of research will probably focus on combining AI-based noise filtering, quantum-enhanced detectors, and next-generation detectors to push the limits of sensitivity. These developments will widen the horizons of gravitational wave astronomy and insights on the universe.

VI. ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my professors for their guidance, and to my institution for providing the resources that made this research possible. I am also thankful for the publicly available data from international gravitational wave collaborations, which enriched the scope of this study.

VII. REFERENCE LIST

1. Antonelli, A., Burke, O., & Gair, J. R. (2021). Noisy neighbours: inference biases from overlapping gravitational-wave signals. *Monthly Notices of the Royal Astronomical Society*, 507(4), 5069–5086. <https://doi.org/10.1093/mnras/stab2358>
2. Antoniadis, J., Arumugam, P., Arumugam, S., Babak, S., Bagchi, M., Nielsen, A.-S. B., Bassa, C. G., A. Bathula, A. Berthureau, Bonetti, M., E. Bortolas, Brook, P. R., M. Burgay, Caballero, R. N., A. Chalumeau, Champion, D. J., S. Chanlaridis, Chen, S., I. Cognard, & S. Dandapat. (2024). The second data release from the European Pulsar Timing Array V. Search for continuous gravitational wave signals. *Astronomy and Astrophysics*, 690, A118–A118. <https://doi.org/10.1051/0004-6361/202348568>
3. Antoniadis, J., Babak, S., A.-S. Bak Nielsen, & al. (2023). The second data release from the European Pulsar Timing Array. *Astronomy and Astrophysics*, 678, A50–A50. <https://doi.org/10.1051/0004-6361/202346844>
4. Ashton, G., Thiele, S., Lecoeuche, Y. K., McIver, J., & Nuttall, L. K. (2022). Parameterised population models of transient non-Gaussian noise in the LIGO gravitational-wave detectors. *Classical and Quantum Gravity*, 39(17), 175004–175004. <https://doi.org/10.1088/1361-6382/ac8094>
5. Bacon, P., Trovato, A., & Bejger, M. (2023). Denoising gravitational-wave signals from binary black holes with a dilated convolutional autoencoder. *Machine Learning: Science and Technology*, 4(3), 035024. <https://doi.org/10.1088/2632-2153/acd90f>
6. Baltus, G., Janquart, J., Lopez, M., Reza, A., Caudill, S., & Jean-René Cudell. (2021). Convolutional neural networks for the detection of the early inspiral of a gravitational-wave signal. *Physical Review D/Physical Review D.*, 103(10). <https://doi.org/10.1103/physrevd.103.102003>
7. Barak Zackay, Tejaswi Venumadhav, Roulet, J., Dai, L., & Matias Zaldarriaga. (2021). *Detecting gravitational waves in data with non-stationary and non-Gaussian noise*. 104(6). <https://doi.org/10.1103/physrevd.104.063034>
8. Bini, S., Vedovato, G., Drago, M., Salemi, F., & Prodi, G. A. (2023). An autoencoder neural network integrated into gravitational-wave burst searches to improve the rejection of noise transients. *Classical and Quantum Gravity*, 40(13), 135008–135008. <https://doi.org/10.1088/1361-6382/acd981>
9. Branchesi, M., Falanga, M., Harms, J., Jani, K., Katsanevas, S., Lognonné, P., Badaracco, F., Cacciapuoti, L., Cappellaro, E., Dell’Agnello, S., de Raucourt, S., Frigeri, A., Giardini, D., Jennrich, O., Kawamura, T., Korol, V., Landrø, M., Majstorović, J., Marmat, P., & Mazzali, P. (2023). Lunar Gravitational-Wave Detection. *Space Science Reviews*, 219, 67. <https://doi.org/10.1007/s11214-023-01015-4>
10. Cornish, N., Littenberg, T. B., B. Bécsy, Katerina Chatzioannou, Clark, J. A., S. Ghonge, & Millhouse, M. (2021). BayesWave analysis pipeline in the era of gravitational wave observations.

Physical Review, 103(4). <https://doi.org/10.1103/physrevd.103.044006>

11. Iess, A., Cuoco, E., Morawski, F., Nicolaou, C., & Ofer Lahav. (2022). LSTM and CNN application for core-collapse supernova search in gravitational wave real data. *Astronomy and Astrophysics, 669*, A42–A42. <https://doi.org/10.1051/0004-6361/202142525>
12. Janssens, K., Callister, T. A., Christensen, N., Coughlin, M. W., Michaloliakos, I., Suresh, J., & van Remortel, N. (2022). Gravitational-wave geodesy: Defining false alarm probabilities with respect to correlated noise. *Physical Review D, 105(8)*. <https://doi.org/10.1103/physrevd.105.082001>
13. Katerina Chatzioannou, Cornish, N., Wijngaarden, M., & Littenberg, T. B. (2021). Modeling compact binary signals and instrumental glitches in gravitational wave data. *Physical Review D/Physical Review D., 103(4)*. <https://doi.org/10.1103/physrevd.103.044013>
14. Lawrence, J., Turbang, K., Matas, A., Renzini, A. I., van Remortel, N., & Romano, J. (2023). A stochastic search for intermittent gravitational-wave backgrounds. *Physical Review D, 107(10)*. <https://doi.org/10.1103/physrevd.107.103026>
15. Libretexts, (2025). *Special Theory of Relativity*. Retrieved from: https://phys.libretexts.org/Bookshelves/Relativity/Supplemental_Modules_%28Relativity%29/Miscellaneous_Relativity_Topics/Special_Theory_of_Relativity [Retrieved on: 26.09.2025]
16. Lopac, N., (2020). *Gravitational-Wave Burst Signals Denoising Based on the Adaptive Modification of the Intersection of Confidence Intervals Rule*. Retrieved from: <https://www.mdpi.com/1424-8220/20/23/6920> [Retrieved on: 26.09.2025]
17. Ma, C., Wang, W., Wang, H., & Cao, Z. (2022). Ensemble of deep convolutional neural networks for real-time gravitational wave signal recognition. *Physical Review. D., 105(8)*. <https://doi.org/10.1103/physrevd.105.083013>
18. Macas, R., Pooley, J., Nuttall, L. K., Davis, D., Dyer, M., Lecoeuche, Y. K., Lyman, J. D., McIver, J., & Rink, K. (2022). Impact of noise transients on low latency gravitational-wave event localization. *Physical Review, 105(10)*. <https://doi.org/10.1103/physrevd.105.103021>
19. Miller, A. L., Badaracco, F., & Palomba, C. (2022). Distinguishing between dark-matter interactions with gravitational-wave detectors. *Physical Review. D/Physical Review. D., 105(10)*. <https://doi.org/10.1103/physrevd.105.103035>
20. Morawski, F., Michał Bejger, Cuoco, E., & Petre, L. (2021). Anomaly detection in gravitational waves data using convolutional autoencoders. *Machine Learning Science and Technology, 2(4)*, 045014–045014. <https://doi.org/10.1088/2632-2153/abf3d0>
21. Moreno, E. A., Bartłomiej Borzyszkowski, Pierini, M., Jean-Roch Vlimant, & Spiropulu, M. (2022). Source-agnostic gravitational-wave detection with recurrent autoencoders. *Machine Learning Science and Technology, 3(2)*, 025001–025001. <https://doi.org/10.1088/2632-2153/ac5435>
22. Morrás, G., Francisco, J., García-Bellido, J., & Morales, E. R. (2023). False alarms induced by Gaussian noise in gravitational wave detectors. *Physical Review. D/Physical Review. D., 107(2)*.

https://doi.org/10.1103/physrevd.107.023027

23. Murali, C., & Lumley, D. (2023). Detecting and denoising gravitational wave signals from binary black holes using deep learning. *Physical Review. D/Physical Review. D.*, 108(4). <https://doi.org/10.1103/physrevd.108.043024>

24. Niwlkar, B., (2024). *Signal Detection Theory- Discover the 2 Insightful Factors that Influence Decision Making*. Retrieved from: <https://www.careershodh.com/signal-detection-theory/> [Retrieved on: 26.09.2025]

25. Owen, C. B., Carl-Johan Haster, Perkins, S., Cornish, N. J., & Yunes, N. (2023). Waveform accuracy and systematic uncertainties in current gravitational wave observations. *Physical Review. D/Physical Review. D.*, 108(4). <https://doi.org/10.1103/physrevd.108.044018>

26. Paraskevi Nousi, Koloniari, A. E., Nikolaos Passalis, Panagiotis Iosif, Nikolaos Stergioulas, & Anastasios Tefas. (2023). Deep residual networks for gravitational wave detection. *Physical Review. D/Physical Review. D.*, 108(2). <https://doi.org/10.1103/physrevd.108.024022>

27. Powell, J., Sun, L., Katinka Gereb, Lasky, P. D., & Dollmann, M. (2023). Generating transient noise artefacts in gravitational-wave detector data with generative adversarial networks. *Classical and Quantum Gravity*, 40(3), 035006–035006. <https://doi.org/10.1088/1361-6382/acb038>

28. Qiu, R., Plamen Krastev, Gill, K., & Berger, E. (2023). Deep learning detection and classification of gravitational waves from neutron star-black hole mergers. *Physics Letters B*, 840, 137850–137850. <https://doi.org/10.1016/j.physletb.2023.137850>

29. Schäfer, M. B., Zelenka, O., Nitz, A. H., Ohme, F., & Brügmann, B. (2022). Training strategies for deep learning gravitational-wave searches. *Physical Review D*, 105(4). <https://doi.org/10.1103/physrevd.105.043002>

30. Schäfer, M. B., Zelenka, O., Nitz, A. H., Wang, H., Wu, S., Guo, Z.-K., Cao, Z., Ren, Z., Nousi, P., Stergioulas, N., Iosif, P., Koloniari, A. E., Tefas, A., Passalis, N., Salemi, F., Vedovato, G., Klimenko, S., Mishra, T., Brügmann, B., & Cuoco, E. (2023). First machine learning gravitational-wave search mock data challenge. *Physical Review D*, 107(2). <https://doi.org/10.1103/physrevd.107.023021>

31. Steltner, B., Papa, M. A., & Eggenstein, H.-B. (2022). Identification and removal of non-Gaussian noise transients for gravitational-wave searches. *Physical Review D*, 105(2). <https://doi.org/10.1103/physrevd.105.022005>

32. Terpconnect, (2025). *Signals and noise*. Retrieved from: <https://terpconnect.umd.edu/~toh/spectrum/SignalsAndNoise.htmlv> [Retrieved on: 26.09.2025]

33. Wang, H., Zhou, Y., Cao, Z., Guo, Z., & Ren, Z. (2024). WaveFormer: transformer-based denoising method for gravitational-wave data. *Machine Learning: Science and Technology*, 5(1), 015046. <https://doi.org/10.1088/2632-2153/ad2f54>

34. Weinstein, J. A., (2017). *Searching for Gravitational Waves with LIGO: the role of blind injections and blind analyses*. Retrieved from:

https://dcc.ligo.org/public/0141/G1700556/001/LIGO_Blind_20170313.pdf [Retrieved on: 26.09.2025]

35. Yu, H., & Adhikari, R. X. (2022). Nonlinear Noise Cleaning in Gravitational-Wave Detectors With Convolutional Neural Networks. *Frontiers in Artificial Intelligence*, 5. <https://doi.org/10.3389/frai.2022.811563>

36. Zhang, X.-T., Messenger, C., Korsakova, N., Chan, M. L., Hu, Y.-M., & Zhang, J. (2022). Detecting gravitational waves from extreme mass ratio inspirals using convolutional neural networks. *Physical Review D/Physical Review D.*, 105(12). <https://doi.org/10.1103/physrevd.105.123027>

37. Zhao Tian-yu, Lyu, R., Wang, H., Cao, Z., & Ren, Z. (2023). Space-based gravitational wave signal detection and extraction with deep neural network. *Communications Physics*, 6(1). <https://doi.org/10.1038/s42005-023-01334-6>

