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Abstract:
This paper focused on a study to find integer design of solutions Diophantine Equation
a(X* + YH(yU? + V%) = T*(C? — D*)(Z?> — W?)PF With a >0, >0and X <Y <W<Z
with Mathematical induction method for f = 1,2,3,4, ...and so on. Diophantine equations of higher
degrees, play a meaningful role in generating special elliptic curves that are crucial for cryptography and
secure communications.
In this paper, I was focused given Diophantine equation with more than 8 unknowns with two cases
Lemma 1: At y = 2, the Diophantine equation
a(X* +YH(2U? +V?) = T*(C?* — D*)(Z?> —W?)PE With a >0, >0and X <Y<W<Z
Having integer design of solutions for # > 2 is parameterized by integers k and n, with variables defined
as:
x=k"y = k"1 z = k"3 w = k™2 p = kU = 201, V= 2" T = 3(2)",
a=(1+k*kS —kH)kE-2np2

C = <(1+2k4)2 + 1) n,D = ((1?4)2 — 1) n, if 1+ k* is even

4)2 4)2_
C = (M))n,p =((1+kz#>n if 1+ k*isodd

2

, and

for f = 1isx=k"y = k™1, z = k"3, w = k™2,p = k2" Uy = 2", v =2",T =3(2)",

C = ((1Zk4)2 + 1) n,D = ((1+k4)2 — 1) n, if 1+ k*iseven

2

2 2
C = (W))n,p _ (%)n if 1+k*is odd

a=(1+k*)(k®—k*)n? and
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forf=2isx=k™y=k"'z=k"3,w=k"2p=k"U=2"" V=2"T=302)",

C = ((1+2k4)2 + 1) n,D = ((1+k4)2 — 1) n, if 1+ k* is even

2

2 2
C = (%))n,p = (%)n if 1+ k*isodd

a=1+k*k® - k*)n? and

Lemma 2: At y = 3, the Diophantine equation

a(X* +YH(3U? +V?) = T?*(C?* — D*)(Z?> —W?)PE With a > 0,>0andX<Y<W<Z
Having integer design of solutions for B > 2 is parameterized by integers k and n, with variables defined
as:

x=kMy=k"lz=k"3,w=k""2p=k"U=3", V=3",T=203)",

a=(1+k*)(k® — k)kF-Dnn2

C = ((12’(4)2 + 1) n,D = ((1+k4)2 — 1) n, if 1+k*iseven

2

2 2
- (W’;ﬁ)%,p _ <(1+k2¢>n if 1+ k*is odd

, and

fOl’B — 1isx=k”,y — kn+1,Z = kn+3,W — kn+2,p — an’U — 311’ V=3" ,T — 2(3)11’

C = ((1J;k4)2 + 1) n,D = ((1+k4)2 — 1) n, if 1+ k*iseven

2

2 2,
Y _ (%))n,p _ (%)n if 1+ k*is odd

a=(1+k*)(k® - k*)n? and

for=2isx=k"y=k™",z=k"3,w=k"2,p=k"U=3" V=3"T=203)",
2 2
C=<(1+2k4) +1)n,D=<(1+2k4) —1)n, if 1+ k*iseven
4)\2 A
C=(%))n,D=<(1+kz#)n, if 1+%*is odd

Keywords: Diophantine Equation, exponential, Pythagorean triplet, Integer design.

a=(1+k*)(*k®—k*)n? and

I. Introduction:

Diophantine equations—polynomial equations with integer solutions—are a central topic in number
theory. Among their many variants, exponential Diophantine equations involve terms where variables
appear as exponents. Finding integer solutions to such equations is notably complex and has implications
in mathematics, cryptography, and several scientific fields. Historical Context and Theoretical

Background

Classical Diophantine Equations: Traditionally, research started with linear and polynomial forms, such
as the well-known cases of Pythagorean triples .
Exponential Generalization: The study of exponential forms expanded from these roots, posing

questions that often lack general solution methods and in some cases are proven to be undecidable.

II. Results & Discussions:
In this paper, focused to find the general exponential integer solution of the general exponential integer

solution of (X* + Y*)(yU? + V?) = T?(€? — D*)(Z> —W?)PP aty =2 andy =3
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Lemma 1: at y = 2,the diophantine equaiton a(X* +Y*)(2U? +V?) = T?(C* — D*)(Z? -
W?)PP With a > 0,8 > 0 is derived from fixed value of =1, = 2 and 8 > 2.

Proportion 1: A Study on exponential integer solution of above Diophantine Equation at

B=1is aX*+YHQU?+V?) =T?*(C*-D*)(Z*>-w?)P

Explanation: Let x = k™, y = k™1, z = k"3, w = k"2, p = k2" U = 2", v =2, T = 3(2)"
Consider a(X* + YY) (2QU? + V?) = ak*™(1 + k*)(3(2)")?.

Again consider T?(C? — D?)(Z? — W?)P = (C? — D®)k*™(k® — k*)(3(2)")?

It follows that a(X* + Y*)(2U? + V?) = T?(C? — D?)(Z? — W?)P implies that

ak™(1 + k*)(3(2)™)? = (C* — DH)k*™(k® — k*)(3(2)™)? implies a(l+ k*) = (C? —D?)(k® —
k).

Solve for a, whenever (1 + k*, D, C) is a Pythagorean Triplet.

From the References [1],[2],[3],[4].[5],[61,[7],[8],[9],[10],[11],[12] there is so many methods to generate

Pythagorean triplet, now I chosen one of the technique of

r 2 T 2
if r is an even number, then ( r, (E) v (E) + 1) is a Pythagorean triplet.

r2

2+1) is a Pythagorean triplet.

2_
If r is an odd number, then ( r, r2_1,
It implies that (1 + k*, D, C) becomes a Pythagorean Triplet depending on whether 1 + k* is odd or

cven.

1+k*
2

4. 1+k4) 2 2 : .
Case 1: If 1 + k* is even, then ( 1 + k*, (T) -1, ( ) + 1) is a Pythagorean triplet.

It follows that a(1 + k*) = (C? — D?)(k® — k*) and solve for a,

wr?
whenever (1 + k*, D, C) becomes a Pythagorean Triplet with C = ((sz ) + 1> n,

1+k+) 2 2 2 4Y2..2 4\(1,6 4v,.2
D= ( > ) —1|nand C*—D* = (1+ k*)*n* and hence @« = (1 + k*)(k® — k*)n*.

Hence, we obtain (X* + Y*)(2U? +V?) = T?(C? — D?)(Z?> — W?)P having integer design of

solution is

22
X = kn’y — kn+1,Z — kn+3,W — kn+2‘ U= 2n+1’ V=2"T= 3(2)n’p — kZ", C = ((1+k ) n

2
1) n,

D= ((”2"4)2 - 1> na=(1+kH)kS — k*)n?.

Verification:

Consider LHS a(X* + Y*)(2U? + V%) = (1 + k*)(k® — k) n?(k*™ + k) (3(2)")?
= k*(k® — k*)(1 + k*)?n?(3(2)")?

Consider RHS T?(C? — D?)(Z? —W?)P = (3(2)")?(1 + k*)?n?(k?n+6 — f2n+4)2n

= (32Q)M2k*™(k® — kM)(1 + k*)*n2.
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Hence LHS = RHS.

(1+k*)*+1

4\2_
Case 2: If 1+ K* is odd, then ( 1+ k4, K1 (4

) is a Pythagorean triplet. It follows that

a(l+k*) =(C?—-D?)(k® — k*) and solves for a, whenever (1 + k*,D, ) becomes a Pythagorean

2 2
Triplet with C = ((1”‘2&) )n D= ((1+k4) —1) o

2
Hence C? —D? = (1 + k*)?n? and hence @ = (1 + k*)(k® — k*)n?.
Hence, (X* + Y*)(2U? + V%) = T?(C? — D*)(Z? — W?)P having integer design of solution is
X = kn’y — k"+1,Z — kn+3,W — k"+2, U= 2n+1’ vV =2" ,T — 3(2)n,p — an,

c= (—(”"4)2“) )n, D= <—(”"4)2‘1> n, a=(1+k¥)(kS — k).

2 2

Verification:

Consider LHS a(X* + Y*)(2U?% + V?) = (1 + k) (k® — k) n?(k*" + k*)(3(2)™)?
= k* (kS — kY)(1 + kY2n2(3(2)M)?

Consider RHS T?(C? — D*)(Z? —W?*)P = (3(2)M?(1 + k*)?n?(k?"+6 — k2n+4)2n

= (B3(2)™M2k*™(k° — k*)(1 + k*)%n?.

Hence LHS = RHS.

E.g. 1: Suppose k =2 then 1 + k* = 17, is odd; Having an integer design of solution is
x=2M,y = 2"t 7 = 2043y =22 p =220 = 2"t Yy =2" T =3(2)",

C?>?—-D?=(1+2Y9n% a=1+2%)(2°-2Yn2
Supposen=1;thenx=2,y=4,z=16,w=8,p=4U=4,V=2,T=6

C=((“2;i))=145,0=(%)=144

C?>—D?=(1+2%)?=1289, a=(1+2%)(2°%- 2% =816.

Consider LHS= a(X* + Y*)(2U? + V?) =816(2* + 4*)(36) = 221952 = 7990272.
RHS = T?(C? — D?)(Z?> — W?)P = 36 * 289 % (162 — 82) x4 = 7990272.

E.g. 2: Suppose k =3 then 1 + k* = 82, is even; Having an integer design of solution is

X = 3n’y — 3n+1’Z — 3n+3'W — 3n+2’p — 3211’ U= 2n+1' V=2"T= 3(2)11’

C= ((“34)2 + 1) n=1681n, D = ((“234)2 _ 1) n =1600n

2

C?—D? =(1+3%*)?n? =6724n, a = (1 + 3*)(3° — 3*)n? = 53136n2.

Suppose n=1;thenx =3,y =9,z=81,w=27,p=9,U=4,V=2,T=6,C%—D?=6724, a =
53136

Consider LHS= a(X* +Y*)(2U? + V?) =53136+ (3* + 9*) * 36 = 352929312 * 36 =
12705455232,

RHS = T? (C?> — D?*)(Z* — W?)P =36 x 6724 + (812 — 27%) *9 = 12705455232.
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Proportion 2: A Study on exponential integer solution of above Diophantine Equation at

B=2is aX*+Y"(Q2U?+V?) =T?(C? - D?)(Z? — w?)Pp?

Explanation: Let x = k", y = k"1, z = "3 w = k"2 p = k™, U = 2", vV =27, T = 3(2)"
Consider a(X* + Y*)(2U? + V%) = ak**(1 + k*)(3(2)")?

Again consider T?(Z? — W?)P? = k*"(k® — k*)(3(2)™)2.

It follows that a(X* + Y*)(2U? + V?) = T?(C? — D?)(Z% — W?)P? implies that

ak*(1+ k*)(3(2)M?% = (€2 — DHKk*™(k® — k*)(3(2)™)? implies a(1+k*) = (C? —D?)(k® -
k*).

Solve for a, whenever (1 + k*, D, C) becomes a Pythagorean Triplet.

It implies that (1 + k*, D, C) becomes a Pythagorean Triplet depending on whether 1 + k* is odd or

cven.

4N 2 4N 2
Case 1: If 1 + k* is even, then (1 + k*, (%) -1, (1+2k ) + 1) is a Pythagorean triplet.

It follows that a(1 + k*) = (C? — D?)(k® — k*) and solve for a,

4 2
whenever (1 + k*, D, C) becomes a Pythagorean Triplet with C = ((sz ) + 1) n,

2
D= ((1+2k4) — 1)n and C? — D? = (1 + k*)?n? and hence @ = (1 + k*)(k® — kH)n2.

Hence, we obtain (X* + Y*)(2U? + V?) = T?(€? — D?)(Z*> — W?)P? having integer design of

solution is

4 2
x=ky = k"1 z = k"3, w = k™2, U = 2™ ¥ = 27 T = 3(2)%,p = k", C = ((”2" ) + 1> n,

D= <(1+2 "4)2 - 1) na=(1+k)kS — kY)n?.

Verification:

Consider LHS a(X* +Y*)(2U? +V?) = (1 + k*)(k® — kY)n?(k*" + k) (3(2)M)?
— k4n(k6 _ k4)(1 + k4)2n2(3(2)n)2

Consider RHS T2(C? — D?)(Z% — W2)P2 = (3(2)™M)2(1 + k*)2n?(k2"+6 — f2n+4)|2n

= (3(2)M2Kk*™(k® — k*)(1 + k*)*n2.

Hence LHS = RHS.

(1+k*) 241
2

a2 _
Case 2: If 1 + k* is odd, then ( 1 + k*, (1+k2) 1, ) is a Pythagorean triplet. It follows that

a(l+k*) = (C?—-D?)(k® — k*) and solves for a, whenever (1 + k*,D,C) becomes a Pythagorean

4)? 2
Triplet with C = ((1+k2¢) )n, D= (_(1“‘ ) 1) n

2
Hence C? — D? = (1 + k*)?n? and hence a = (1 + k*)(k® — k*)n>.

Hence, (X* + Y*)(2U? + V%) = T?(C? — D?)(Z? — W?)P? having integer design of solution is
X = kn’y — kn+1,Z — kn+3,W — kn+2’ U= 2n+1’ V =2" T = 3(2)n’p — kn'

C= (W) )n,D - (w)n a=(1+ k(K — kb,

2
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Verification:
Consider LHS a(X* + Y*)(2U?% + V2) = (1 + k*)(k® — k*)n2(k*" + k*"*4)(3(2)™)?2
= k" (k® — k*)(1 + k*)?n?%(3(2)")?
Consider RHS T?(C? — D?)(Z? — W?)P? = (3(2)™")?(1 + k*)?n?(k?"*6 — k2nt4)2n
= (B)M2k*™(k° — k*)(1 + k*)*n?.
Hence LHS = RHS.
Proportion 3: for § > 2 is
(X*+YHQU? +V?) =T?(C* — D>)(Z* — WP witha > 0, >0andx <y <z<w
Having integer design of solutions is

X=kn,y — kn+1,Z — kn+3,W — kn+2,p — kn,U — 2n+1’ V =2n ,T — 3(2)n

2 2
If1+ k*iseventhen C = ((HZH) + 1) n, D = ((1+2k4) — 1> na=(1+k*)(k®—kH)kF-Dnn2,

(1+k*)* -1

2
and if 1 + k* is odd then C = ((”kzﬁ))n,u =( -

)n, a=(1+k*)(k®— k*)kB-2npn2,

Lemma 2: y = 3, the Diophantine equation a(X* + Y*)(3U? + V?) = T?(C? — D?*)(Z* — W?)P#
With a > 0,8 > 0 is derived from fixed valueof f =1, =2and f > 2.

Proportion 1: A Study on exponential integer solution of above Diophantine Equation at

B=1is aX*+YHBU?+V?) =T?*(C*-D*(Z*>-w?)P

Explanation: Let x = k™, y = k"1, z = k"3, w = k"2 p=k* U =3" V =3",T=2(3)"
Consider a(X* + Y*)(BU? + V?) = ak*™(1 + k*)(2(3)™)%.

Again consider T?(C? — D?)(Z* — W?)P = (C? — D>)k*™(k® — k*)(2(3)™)?

It follows that a(X* + Y*)(3U? + V?) = T?(C? — D?)(Z? — W%)P implies that

ak*(1+ k*)(2(3)M?% = (€2 — DH)Kk*™(k® — k*)(2(3)™)? implies a(1l+k*) = (C? —D?)(k® -
k*).

Solve for a, whenever (1 + k*, D, C) is a Pythagorean Triplet.

From the References [1],[2],[3],[4].[5],[6].[7].[8],[9],[10],[11],[12] there is so many methods to generate

Pythagorean triplet, now I chosen one of the technique of

2 2
if r is an even number, then ( r, (5) -1, (E) + 1) is a Pythagorean triplet.

21 r241, . .
Z - Z 2+ ) is a Pythagorean triplet.

If r is an odd number, then ( r,
It implies that (1 + k*, D, C) becomes a Pythagorean Triplet depending on whether 1 + k* is odd or

cven.

a2 a2
Case 1: If 1 + k*is even, then (1 + k*, (1+2k ) -1, (1+2k ) + 1) is a Pythagorean triplet.

It follows that a(1 + k*) = (C? — D?)(k® — k*) and solve for a,

42
whenever (1 + k*, D, C) becomes a Pythagorean Triplet with C = ((sz ) + 1) n,
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1+k*) 2 2 2 4\2..2 4\(1,6 4v,,2
D= ( - ) —1|nand C*—D*= (14 k*)*n* and hence a = (1 + k*)(k® — k*)n*.

Hence, we obtain (X* + Y*)(3U? + V?) = T?(C? — D*)(Z?> — W?)P having integer design of

solution is

4_ 2
x=k"y = k"1 z= k"3 w=k"2 =3 V=3"T=23)"p=k"C= ((“2" ) + 1>n,

D= <(1+2"4)2 - 1) na=(1+k")kS — k*)n?.

Verification:

Consider LHS a(X* +Y*)(3U?% +V?) = (1 + k*)(k® — kY)n?(k*" + k) (2(3)™)?
= k*(k® — kM (1 + k) n?(2(3)™)?

Consider RHS T?(C? — D?)(Z? — WP = (2(3)™)?(1 + k*)?n?(k?n+6 — 2n+4)g2n

= (2(3)™M2k*™(k® — k") (1 + k*)*n?.

Hence LHS = RHS.

4 2_ 4 2
Case 2: If 1 + k* is odd, then ( 1 + k*, (1+k2) 1’ (1+k2) +1

) is a Pythagorean triplet. It follows that

a(l+k*) = (C? - D?)(k® — k*) and solves for a, whenever (1 + k*, D, C) becomes a Pythagorean

4)2 2
Triplet with € = ((1+k2¢) )n o ((1+k ) 1) -

2
Hence C? —D? = (1 + k*)?n? and hence @ = (1 + k*)(k® — k*)n2.

Hence, (X* + Y*)(3U? + V?) = T?(C? — D?)(Z%* — W?)P having integer design of solution is
x=k"y=k"1,z=k"3w=k"2U=3"V=3"T=2(3)"p=k*",

C= (%) )n, D= <%>n a = (1+k*) (kS — k*).

2 2

Verification:
Consider LHS a(X* +Y*)(3U% + V?) = (1 + k*)(k® — k*)n*(k*" + k*"**)(2(3)")?
= K™ (kS — k(1 + k*)2n2(2(3)")?
Consider RHS T?(C? — D*)(Z? —W?*)P = (2(3)™?(1 + k*)?n?(k?"+6 — k2n+4)2n
= (2(3)™")2k*™(k® — k*)(1 + k*)?n?.
Hence LHS = RHS.
Proportion 2: A Study on exponential integer solution of above Diophantine Equation at
B=2is aX*+Y"(3BU?+V?) =T?*(C*- D?)(Z% - Ww?)P?
Explanation: Let x = k", y = k"1, z = k"3, w = k"2, p = k", U =3", V =3",T = 2(3)"
Consider a(X* + YH)(BU? + V?) = ak*™(1 + k*)(2(3)™)?
Again consider T?(Z? — W?)P% = k*"(k® — k*)(2(3)")2.
It follows that a(X* + Y*)(3U? + V?) = T?(C? — D?)(Z% — W?)P? implies that
ak*™(1+ k*)(2(3)")? = (C? — D)k*"(k® — k*)(2(3)")? implies a(1+k*) = (C?—D?)(k® —
k*).
Solve for a, whenever (1 + k*, D, C) becomes a Pythagorean Triplet.
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It implies that (1 + k* D, C) becomes a Pythagorean Triplet depending on whether 1 + k* is odd or

cven.

1+k*
2

a2 2
Case 1: If 1 + k* is even, then ( 1 + k*, (%) -1, ( ) + 1) is a Pythagorean triplet.

It follows that a(1 + k*) = (C? — D?)(k® — k*) and solve for «a,

a2
whenever (1 + k*, D, C) becomes a Pythagorean Triplet with C = ((sz ) + 1) n,

1+k*) 2 2 2 4\2..2 4\(1,6 4Y,,2
D= ( - ) —1|nand C*—D*= (14 k*)*n* and hence a = (1 + k*)(k® — k*)n*.

Hence, we obtain (X* + Y*)(3U? + V?) = T?(C? — D?)(Z?> — W?)P? having integer design of

solution is

4_ 2
x=k"y = k"l z=k"3,w=k"LU=3" V=3"T=23),p=Kk"C= ((“2" ) + 1)11,

D= <(1+2 "4)2 - 1> na=(1+k) kS — k*)n?.

Verification:

Consider LHS a(X* +Y*)(3U? +V?) = (1 + k*)(k® — kY)n?(k*" + k*4)(2(3)™)?
= k(K6 — k*)(1 + kY2n2(2(3)")?

Consider RHS T2(C2% — D?)(Z% — W?)P?% = (2(3)™")2(1 + k*)2n?(k2™+6 — j2n+4)|2n

= (2(3)™)2k*™(k® — kM) (1 + k*)*n2.

Hence LHS = RHS.

4 2_ 4 2
Case 2: If 1 + k* is odd, then ( 1 + k*, (1+k2) 1’ (1+k2) +1

) is a Pythagorean triplet. It follows that

a(l+k*) = (C? - D?)(k® — k*) and solves for a, whenever (1 + k*, D, C) becomes a Pythagorean

4)2 2
Triplet with € = ((1+k2¢) >n o ((1+k ) 1) -

2
Hence C? —D? = (1 + k*)?n? and hence a = (1 + k*)(k® — k*)n2.

Hence, (X* + Y*)(3U? + V?) = T?(C? — D?)(Z* — W?)P? having integer design of solution is
x=k"y=k"1z=k"3w=k"2%U=3"V=3"T=203)"p=k"

C = (85 Y p = (40, = o ey k)

2 2

Verification:
Consider LHS a(X* + Y*)(3U?% +V2) = (1 + k*)(k® — k*)n2(k*" + k*"**)(2(3)™)?2
= k" (k® — k") (1 + k*)?n?%(2(3)")?
Consider RHS T?(C? — D?)(Z? — W?)P? = (2(3)™)?(1 + k*)?n? (k"6 — [2n+4) 2"
= (2(3)™2k*™(k® — k*)(1 + k*)?n2.
Hence LHS = RHS.
Proportion 3: for f > 2 is
(X*+YH(3BU? + V%) =T?(C* — D*)(Z? —W?)PP witha > 0, >0andx <y <z<w

Having integer design of solutions is
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x=k"y =kl z=k"3,w=k"2p=k"U=3" V=3"T=203)"

2 2
If1+ k*iseventhen C = ((12’{4) + 1) n, D = ((1+k4) - 1) na=(1+k*)(k®—kH)kF-2nn2,

2
2 2
and if 1 + k* is odd then C = ((“"zﬁ) >n D= ((“"—:)‘1) n @ =1+ kY(kE — kHkB-Dnp2,

I1I. Conclusion

This equation generalizes classical Diophantine problems, blending sums of fourth powers with
multiplicative factorizations. While challenging, targeted parametrization and modular analysis can yield
solutions. Future work may classify solutions for specific a, por link to broader number-theoretic
frameworks. The parametric framework provides infinite families of solutions by exploiting algebraic
identities and modular arithmetic. Future work could explore non-parametric solutions or generalizations
to higher exponents.

In this paper, I focused to find integer design of solutions as two lemmas.

Lemma 1: At y = 2, the Diophantine equation

a(X* +YH(2U? +V?) = T*(C?* — D*)(Z?> —W?)PP With a >0, >0and X <Y <W<Z
Lemma 2: At y = 3, the Diophantine equation

a(X* +YH(3U? +V?) = T*(C* — D*)(Z?> —W?)PE With a >0, >0andX<Y<W<Z
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