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Abstract: 

Diophantine equations of higher degrees, play a meaningful role in generating special elliptic curves that 

are crucial for cryptography and secure communications.  

In this paper, I was focused given Diophantine equation with more than 8 unknowns  and focused on a 

study to find integer design of solutions Diophantine Equation 

 𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝜷  With 𝜶 > 𝟎, 𝜸 = 𝟐, 𝟑, 𝜷 =

𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 𝒂𝒏𝒅  

𝒙 < 𝒚 < 𝒘 < 𝒛 with Mathematical induction & generation of Pythagorean triplets.  

for 𝜷 = 𝟏, having integer design of solution is parameterized by positive integers k and n, with variables 

defined as:  

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛, 

 𝑝 = 𝑘6𝑛, 𝛼 = (𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟐, having integer design of solution is parameterized by integers k and n, with variables defined 

as: 

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛 , 

𝑝 = 𝑘3𝑛, 𝛼 = (𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

 for 𝜷 = 𝟑 , having integer design of solution is parameterized by integers k and n, with variables defined 

as: 

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛, 

𝑝 = 𝑘2𝑛, 𝛼 = (𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 
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for 𝜷 = 𝟒 , having integer design of solution is parameterized by integers k and n, with variables defined 

as: 

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛, 

𝑝 = 𝑘𝑛, 𝛼 = (𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟓 , having integer design of solution is parameterized by integers k and n, with variables defined 

as: 

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛, 

𝑝 = 𝑘2𝑛, 𝛼 = 𝑘𝑛(𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟔 ,  having integer design of solution is parameterized by integers k and n, with variables defined 

as: 

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛, 

𝑝 = 𝑘𝑛, 𝛼 = 𝑘2𝑛(𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟕 ,  having integer design of solution is parameterized by integers k and n, with variables defined 

as: 

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛, 

𝑝 = 𝑘𝑛, 𝛼 = 𝑘3𝑛(𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

 

Keywords: Diophantine Equation, exponential, Pythagorean triplet, Integer design. 

Introduction: 

Diophantine equations—polynomial equations with integer solutions—are a central topic in number 

theory. Among their many variants, exponential Diophantine equations involve terms where variables 

appear as exponents. Finding integer solutions to such equations is notably complex and has implications 

in mathematics, cryptography, and several scientific fields. Historical Context and Theoretical 

Background 

Classical Diophantine Equations: Traditionally, research started with linear and polynomial forms, such 

as the well-known cases of Pythagorean triples . 

Exponential Generalization: The study of exponential forms expanded from these roots, posing 

questions that often lack general solution methods and in some cases are proven to be undecidable. In this 

paper, focused to find the general exponential integer solution of 

The general exponential integer solution of  𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝜷     

With  𝜶 > 𝟎, is derived from fixed value of 𝜷 = 𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 𝒂𝒏𝒅 𝒙 < 𝒚 < 𝒘 < 𝒛. 

Results & Discussions: 

 Proportion 1: A Study on integer design of solution of above Diophantine Equation at 

 𝜷 = 𝟏  is    𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐) 𝑃  

Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘6𝑛, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛. 

Consider 𝛼(𝑋4 + 𝑌4)(𝟐𝑼𝟐 + 𝑽𝟐) = 𝛼𝑘8𝑛(1 + 𝑘4)2(3(2)𝑛)2 

Again consider (𝑍2 + 𝑊2)𝑃 = 𝑘8𝑛(𝑘6 + 𝑘4). 
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It follows that 𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐) 𝑃  implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2(3(2)𝑛)2 = (𝐶2 + 𝐷2)𝑘8𝑛(𝑘6 + 𝑘4)(3(2)𝑛)2 implies 𝛼(1 + 𝑘4)2 = (𝐶2 + 𝐷2)(𝑘6 +

𝑘4).  

Solve for 𝛼, whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐. Hence 𝛼 = (𝑘6 + 𝑘4). 

Hence 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝐶2 + 𝐷2)(𝑍2 + 𝑊2)𝑃 having integer design of solution is 

parameterized by integers k and n, with variables defined as: 

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘6𝑛, 𝛼 = (𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1, 

 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛. 

Verification: Consider LHS  

𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = (𝑘6 + 𝑘4)(𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐 = 𝒌𝟖𝒏(𝑘6 + 𝑘4)(𝟏 + 𝒌𝟒)𝟐(3(2)𝑛)2. 

 Consider RHS 

𝑻𝟐(𝐶2 + 𝐷2)(𝑍2 + 𝑊2)𝑃 = (3(2)𝑛)2(𝟏 + 𝒌𝟒)𝟐(𝑘2𝑛+6 + 𝑘2𝑛+4)𝑘6𝑛 = 𝒌𝟖𝒏(𝑘6 + 𝑘4)(𝟏 +

𝒌𝟒)𝟐(3(2)𝑛)2. 

Hence LHS = 𝑹𝑯𝑺. 

 

Proportion 2: A Study on exponential integer solution of above Diophantine Equation at 

 𝜷 = 𝟐  is    𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝐶2 + 𝐷2)(𝑍2 + 𝑊2)𝑃2 

Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘3𝑛, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛. 

Consider 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝛼𝑘8𝑛(1 + 𝑘4)2(3(2)𝑛)2. 

Again consider (𝑍2 + 𝑊2)𝑷𝟐 = 𝑘8𝑛(𝑘6 + 𝑘4). 

It follows that 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝐶2 + 𝐷2)(𝑍2 + 𝑊2)𝑃2 implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2(3(2)𝑛)2 = (𝐶2 + 𝐷2)𝑘8𝑛(𝑘6 + 𝑘4)(3(2)𝑛)2 implies 𝛼(1 + 𝑘4)2 = (𝐶2 + 𝐷2)(𝑘6 +

𝑘4). Solve for 𝛼, whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐Hence 𝛼 = (𝑘6 + 𝑘4). 

Verification: Consider LHS  

𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = (𝑘6 + 𝑘4)(𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐(3(2)𝑛)2 = (3(2)𝑛)2𝒌𝟖𝒏(𝑘6 + 𝑘4)(𝟏 + 𝒌𝟒)𝟐. 

 Consider RHS 

𝑻𝟐(𝐶2 + 𝐷2)(𝑍2 + 𝑊2)𝑃2 = (3(2)𝑛)2(𝟏 + 𝒌𝟒)𝟐(𝑘2𝑛+6 + 𝑘2𝑛+4)𝑘6𝑛 = 𝒌𝟖𝒏(𝑘6 + 𝑘4)(𝟏 + 𝒌𝟒)𝟐. 

Hence LHS = 𝑹𝑯𝑺. 

Proportion 3: A Study on exponential integer solution of above Diophantine Equation at 

 𝜷 = 𝟑  is    𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟑 
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Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑝 = 𝑘2𝑛, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛. 

Consider 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝛼𝑘8𝑛(1 + 𝑘4)2(3(2)𝑛)2. 

Again consider (𝑍2 + 𝑊2)𝑷𝟑 = 𝑘8𝑛(𝑘6 + 𝑘4). 

It follows that 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟑 implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2(3(2)𝑛)2 = (3(2)𝑛)2(𝐶2 + 𝐷2)𝑘8𝑛(𝑘6 + 𝑘4) implies 𝛼(1 + 𝑘4)2 = (𝐶2 + 𝐷2)(𝑘6 +

𝑘4). Solve for 𝛼, whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐Hence 𝛼 = (𝑘6 + 𝑘4). 

Verification: Consider LHS  

𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = (𝑘6 + 𝑘4)(𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐(3(2)𝑛)2 = 𝒌𝟖𝒏(𝑘6 + 𝑘4)(𝟏 + 𝒌𝟒)𝟐 (3(2)𝑛)2. 

 Consider RHS 

𝑻𝟐(𝐶2 + 𝐷2)(𝑍2 + 𝑊2)𝑃3 = (3(2)𝑛)2 (𝟏 + 𝒌𝟒)𝟐(𝑘2𝑛+6 + 𝑘2𝑛+4)𝑘6𝑛 = (3(2)𝑛)2𝒌𝟖𝒏(𝑘6 +

𝑘4)(𝟏 + 𝒌𝟒)𝟐. 

Hence LHS = 𝑹𝑯𝑺. 

Proportion 4 A Study on exponential integer solution of above Diophantine Equation at 

 𝜷 = 𝟒  is    𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟒. 

Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑝 = 𝑘𝑛, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛 

Consider 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝛼𝑘8𝑛(1 + 𝑘4)2 (3(2)𝑛)2. 

Again consider (𝑍2 + 𝑊2)𝑷𝟒 = 𝑘8𝑛(𝑘6 + 𝑘4). 

It follows that 𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟒 implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2(3(2)𝑛)2 = (3(2)𝑛)2(𝐶2 + 𝐷2)𝑘8𝑛(𝑘6 + 𝑘4) implies 𝛼(1 + 𝑘4)2 = (𝐶2 + 𝐷2)(𝑘6 +

𝑘4). Solve for 𝛼, whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐Hence 𝛼 = (𝑘6 − 𝑘4). 

Verification: Consider LHS  

is    𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = (𝑘6 + 𝑘4)(𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐(3(2)𝑛)2 = 𝒌𝟖𝒏(𝑘6 + 𝑘4)(𝟏 +

𝒌𝟒)𝟐 (3(2)𝑛)2 

 Consider RHS 

𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟒 = (3(2)𝑛)2 (𝟏 + 𝒌𝟒)𝟐(𝑘2𝑛+6 + 𝑘2𝑛+4)𝑘6𝑛

= 𝒌𝟖𝒏(𝑘6 + 𝑘4)(𝟏 + 𝒌𝟒)𝟐(3(2)𝑛)2 

Hence LHS = 𝑹𝑯𝑺. 

Proportion 5: A Study on exponential integer solution of above Diophantine Equation at 

 𝜷 = 𝟓  is    𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟓. 

Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑝 = 𝑘𝑛, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛 
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Consider 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝛼𝑘8𝑛(1 + 𝑘4)2 (3(2)𝑛)2. 

Again consider (𝑍2 + 𝑊2)𝑷𝟓 = 𝑘9𝑛(𝑘6 + 𝑘4). 

It follows that 𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟓 implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2(3(2)𝑛)2 = (3(2)𝑛)2(𝐶2 + 𝐷2)𝑘9𝑛(𝑘6 + 𝑘4) implies 𝛼(1 + 𝑘4)2 = (𝐶2 + 𝐷2)𝑘𝑛(𝑘6 +

𝑘4). Solve for 𝛼, whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐Hence 𝛼 = 𝑘𝑛(𝑘6 + 𝑘4). 

Verification: Consider LHS  

𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑘𝑛 (𝑘6 + 𝑘4)(𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐(3(2)𝑛)2 = (3(2)𝑛)2𝒌𝟗𝒏(𝑘6 +

𝑘4)(𝟏 + 𝒌𝟒)𝟐. 

 Consider RHS 

𝑻𝟐(𝐶2 + 𝐷2)(𝑍2 + 𝑊2)𝑃5 = (3(2)𝑛)2(𝟏 + 𝒌𝟒)𝟐(𝑘4𝑛+6 + 𝑘4𝑛+4)𝑘5𝑛 = (3(2)𝑛)2𝒌𝟗𝒏(𝑘6 +

𝑘4)(𝟏 + 𝒌𝟒)𝟐. 

Hence LHS = 𝑹𝑯𝑺. 

Proportion 6: A Study on exponential integer solution of above Diophantine Equation at 

 𝜷 = 𝟔  is    𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟔. 

Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑝 = 𝑘𝑛, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛 

Consider 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝛼𝑘8𝑛(1 + 𝑘4)2(3(2)𝑛)2. 

Again consider (𝑍2 + 𝑊2)𝑷𝟔 = 𝑘10𝑛(𝑘6 + 𝑘4). 

It follows that 𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟔 implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2(3(2)𝑛)2 = (3(2)𝑛)2(𝐶2 + 𝐷2)𝑘10𝑛(𝑘6 + 𝑘4) implies 𝛼(1 + 𝑘4)2 =
(𝐶2 + 𝐷2)𝑘2𝑛(𝑘6 + 𝑘4). Solve for 𝛼, whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐Hence 𝛼 = 𝑘2𝑛(𝑘6 + 𝑘4). 

Verification: Consider LHS  

𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑘2𝑛 (𝑘6 + 𝑘4)(𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐(3(2)𝑛)2 = (3(2)𝑛)2𝒌𝟏𝟎𝒏(𝑘6 +

𝑘4)(𝟏 + 𝒌𝟒)𝟐. 

 Consider RHS 

𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟔 = (3(2)𝑛)2(𝟏 + 𝒌𝟒)𝟐(𝑘4𝑛+6 + 𝑘4𝑛+4)𝑘6𝑛 = (3(2)𝑛)2𝒌𝟏𝟎𝒏(𝑘6 +

𝑘4)(𝟏 + 𝒌𝟒)𝟐. 

Hence LHS = 𝑹𝑯𝑺. 

Proportion 7: A Study on exponential integer solution of above Diophantine Equation at 

 𝜷 = 𝟕  is    𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟕. 

Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑝 = 𝑘𝑛, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛 
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Consider 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝛼𝑘8𝑛(1 + 𝑘4)2(3(2)𝑛)2. 

Again consider (𝑍2 + 𝑊2)𝑷𝟔 = 𝑘10𝑛(𝑘6 + 𝑘4). 

It follows that 𝛼𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟕. implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2(3(2)𝑛)2 = (3(2)𝑛)2(𝐶2 + 𝐷2)𝑘11𝑛(𝑘6 + 𝑘4) implies 𝛼(1 + 𝑘4)2 =
(𝐶2 + 𝐷2)𝑘3𝑛(𝑘6 + 𝑘4). Solve for 𝛼, whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐. Hence 𝛼 = 𝑘3𝑛(𝑘6 + 𝑘4). 

Verification: Consider LHS  

𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑘3𝑛 (𝑘6 + 𝑘4)(𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐(3(2)𝑛)2 = (3(2)𝑛)2 𝒌𝟏𝟏𝒏(𝑘6 +

𝑘4)(𝟏 + 𝒌𝟒)𝟐. 

 Consider RHS 

𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝟕 = (3(2)𝑛)2(𝟏 + 𝒌𝟒)𝟐(𝑘4𝑛+6 + 𝑘4𝑛+4)𝑘7𝑛 = (3(2)𝑛)2 𝒌𝟏𝟏𝒏(𝑘6 +

𝑘4)(𝟏 + 𝒌𝟒)𝟐. 

Hence LHS = 𝑹𝑯𝑺. 

Main Result:  

A Study on exponential integer solution of above Diophantine Equation at 

   𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝜷. 

Explanation: Let x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑝 = 𝑘𝑛, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛 

Consider 𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝛼𝑘8𝑛(1 + 𝑘4)2 (3(2)𝑛)2. 

Again consider (𝑍2 + 𝑊2)𝑷𝜷 = 𝑘4𝑛+𝑛𝜷(𝑘6 + 𝑘4). 

It follows that   𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝜷. 

 implies that  

𝛼𝑘8𝑛(1 + 𝑘4)2(3(2)𝑛)2 = (3(2)𝑛)2(𝐶2 + 𝐷2)𝑘4𝑛+𝑛𝜷(𝑘6 + 𝑘4) implies 

 𝛼(1 + 𝑘4)2 = (𝐶2 + 𝐷2)𝑘−4𝑛+𝑛𝜷(𝑘6 + 𝑘4). Solve for 𝛼, whenever ( 𝐶, 𝐷, 1 + 𝑘4) is a Pythagorean 

Triplet. 

From the References [1],[2],[3],[4],[5],[6],[7],[8], we know that 

( 𝐶, 𝐷, 1 + 𝑘4) becomes a Pythagorean Triplet with 𝐶 = (2𝑘2 ),  𝐷 = (𝑘4 − 1), 

 𝑪𝟐 + 𝑫𝟐 = (𝟏 + 𝒌𝟒)𝟐. Hence 𝛼 = 𝑘−4𝑛+𝑛𝜷(𝑘6 + 𝑘4) = 𝑘(𝛽−4)𝑛(𝑘6 + 𝑘4). 

Verification: Consider LHS  

𝛼(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑘(𝛽−4)𝑛(𝑘6 + 𝑘4) (𝒌𝟒𝒏 + 𝒌𝟒𝒏+𝟒)𝟐(3(2)𝑛)2 

= (3(2)𝑛)2𝒌(𝛽+4)𝑛(𝑘6 + 𝑘4)(𝟏 + 𝒌𝟒)𝟐. 

 Consider RHS 

𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝜷 = (3(2)𝑛)2(𝟏 + 𝒌𝟒)𝟐(𝑘4𝑛+6 + 𝑘4𝑛+4)𝑘𝛽𝑛  

= (3(2)𝑛)2𝒌(𝛽+4)𝑛(𝑘6 + 𝑘4)(𝟏 + 𝒌𝟒)𝟐. 
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Hence LHS = 𝑹𝑯𝑺. 

Conclusion: 

This equation generalizes classical Diophantine problems, blending sums of fourth powers with 

multiplicative factorizations. While challenging, targeted parametrization and modular analysis can yield 

solutions. Future work may classify solutions for specific α, β or link to broader number-theoretic 

frameworks. The parametric framework provides infinite families of solutions by exploiting algebraic 

identities and modular arithmetic. Future work could explore non-parametric solutions or generalizations 

to higher exponents.  

This paper focused on a study to find integer design of solutions Diophantine Equation 

 𝜶(𝑿𝟒 + 𝒀𝟒)𝟐(𝟐𝑼𝟐 + 𝑽𝟐) = 𝑻𝟐(𝑪𝟐 + 𝑫𝟐)(𝒁𝟐 + 𝑾𝟐)𝑷𝜷  With 𝜶 > 𝟎, 𝜸 = 𝟐, 𝟑, 𝜷 =

𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 𝒂𝒏𝒅  

𝒙 < 𝒚 < 𝒘 < 𝒛 with Mathematical induction & generation of Pythagorean triplets.  

for 𝜷 = 𝟏, having integer design of solution is parameterized by positive integers k and n, with variables 

defined as:  

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛, 

 𝑝 = 𝑘6𝑛, 𝛼 = (𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟐, having integer design of solution is parameterized by integers k and n, with variables defined 

as: 

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛 , 

𝑝 = 𝑘3𝑛, 𝛼 = (𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

 for 𝜷 = 𝟑 , having integer design of solution is parameterized by integers k and n, with variables defined 

as: 

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛, 

𝑝 = 𝑘2𝑛, 𝛼 = (𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟒 , having integer design of solution is parameterized by integers k and n, with variables defined 

as: 

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛, 

𝑝 = 𝑘𝑛, 𝛼 = (𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟓 , having integer design of solution is parameterized by integers k and n, with variables defined 

as: 

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘𝑛+3, 𝑤 = 𝑘𝑛+2, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛, 

𝑝 = 𝑘2𝑛, 𝛼 = 𝑘𝑛(𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 

for 𝜷 = 𝟔 ,  having integer design of solution is parameterized by integers k and n, with variables defined 

as: 

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛, 

𝑝 = 𝑘𝑛, 𝛼 = 𝑘2𝑛(𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 
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for 𝜷 = 𝟕 ,  having integer design of solution is parameterized by integers k and n, with variables defined 

as: 

x = 𝑘𝑛, 𝑦 = 𝑘𝑛+1, 𝑧 = 𝑘2𝑛+3, 𝑤 = 𝑘2𝑛+2, 𝑈 = 2𝑛+1, 𝑉 = 2𝑛 , 𝑇 = 3(2)𝑛, 

𝑝 = 𝑘𝑛, 𝛼 = 𝑘3𝑛(𝑘6 + 𝑘4), 𝐶 = 2𝑘2, 𝐷 = 𝑘4 − 1. 
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