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Abstract: Oral Lichen Planus (OLP) is a chronic inflammatory disorder affecting the oral mucosa, with 

diverse clinical presentations and a risk of malignant transformation. Early and precise assessment of 

lesions, along with prediction of immunotherapy outcomes, is critical for personalized patient care. Manual 

evaluation is time-intensive and prone to variability among clinicians. In this study, we introduce a hybrid 

deep learning framework that combines Convolutional Neural Networks (CNNs) for detailed spatial feature 

extraction with Transformer modules for capturing long-range contextual information. A multimodal 

fusion strategy further integrates lesion imaging features with patient-specific clinical data to predict 

individualized therapy responses. Experiments on a curated oral lesion dataset demonstrate that our 

approach achieves superior segmentation accuracy and predictive performance compared to existing 

baseline models. The framework offers a reproducible, interpretable, and automated tool to support 

precision oral healthcare and data-driven treatment planning. 

Index Terms - Oral Lichen Planus; Deep Learning; CNN–Transformer; Lesion Segmentation; Multimodal 

Fusion; Immunotherapy Prediction; Personalized Medicine. 

I. INTRODUCTION 

Oral Lichen Planus (OLP) is a persistent inflammatory disorder of the oral mucosa, presenting in patterns 

ranging from reticular to erosive and ulcerative lesions. These lesions not only cause discomfort but also 

carry a potential risk of malignant transformation [2],[3]. Clinicians face challenges in consistently 

assessing lesion boundaries and predicting therapeutic outcomes due to variability in clinical presentations 

and subjective interpretations [2],[3]. 

Conventional diagnostic methods, including visual inspection and histopathological analysis, are labor-

intensive and often subject to inter-observer differences [2],[3]. This variability can hinder timely 

intervention and precise treatment planning, especially when evaluating immunotherapy, which 

demonstrates highly individualized patient responses [9]. 

Deep learning has emerged as a transformative tool in medical imaging [7],[10]. Convolutional Neural 

Networks (CNNs) excel at capturing fine-grained, local features [4],[5], while Transformer architectures, 

originally developed for natural language processing, have demonstrated strong capabilities in modeling 

global contextual relationships within images [6]. However, using these models in isolation may limit 

effectiveness: CNNs can overlook long-range dependencies, whereas Transformers may underutilize local 

spatial details [6],[13]. 
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To overcome these limitations, we propose a hybrid CNN–Transformer framework that combines the 

detailed spatial feature extraction of CNNs with the global context modeling of Transformers [1],[6]. 

Furthermore, we integrate lesion imaging features with patient-specific clinical data using a multimodal 

fusion strategy, enabling personalized predictions of immunotherapy response [8],[14]. 

Motivation: Current approaches often focus solely on lesion segmentation or classification and do not 

account for patient-level clinical variability [11],[12]. Given the heterogeneity of OLP lesions and the 

diversity of therapy outcomes, there is a pressing need for a framework that simultaneously offers precise 

segmentation and reliable predictive analytics [1],[15]. 

Contributions of this study: 

 Development of a hybrid CNN–Transformer model for accurate lesion segmentation [1],[6]. 

 Design of a multimodal fusion module that incorporates both imaging and clinical data for therapy 

response prediction [1],[8]. 

 Implementation of an end-to-end automated workflow for oral lesion analysis [1],[12]. 

 Evaluation against baseline models, demonstrating improved segmentation and prediction performance 

[1],[13]. 

 Integration of interpretability methods (Grad-CAM and SHAP) to provide clinical insights and increase 

model trustworthiness [15]. 

II. Related Work 

       2.1 Medical Image Segmentation 

 Segmentation of medical images is a critical step for automated diagnosis, treatment planning, and disease 

monitoring. Early methods relied on classical image processing techniques such as thresholding, edge 

detection, and region growing, but these often struggled with complex lesion shapes and inconsistent 

imaging conditions. 

 The introduction of deep learning, particularly Convolutional Neural Networks (CNNs), transformed 

biomedical image analysis by enabling automatic extraction of multi-scale features and precise boundary 

delineation. Architectures like U-Net, U-Net++, and Attention U-Net became widely adopted due to their 

ability to segment regions of interest accurately. However, CNNs primarily capture local spatial features 

and may fail to model long-range dependencies. 

 Transformer-based architectures have recently been adapted to visual tasks, allowing models to consider 

global context through self-attention mechanisms. Models such as TransUNet, Swin-Unet, and SegFormer 

have shown improvements in boundary delineation and context understanding in various medical imaging 

tasks. Hybrid CNN–Transformer models, combining local feature extraction with global attention, have 

demonstrated enhanced performance in organ and lesion segmentation. 

         

        2.2 Oral Lesion Analysis 

 Automated analysis of oral mucosal lesions, including OLP, leukoplakia, and related disorders, has 

become increasingly important for early detection and intervention. Traditional approaches relied on 

handcrafted features, such as color histograms, texture descriptors, and shape-based metrics. These 

methods often underperformed under varying lighting conditions and lesion heterogeneity. 

 Deep learning methods have facilitated automatic identification and segmentation of oral lesions from 

clinical images, improving accuracy over handcrafted techniques. CNN-based models effectively capture 

morphological details but may overlook broader contextual information necessary for robust lesion 

characterization. Furthermore, most studies focus solely on segmentation or classification and do not 

integrate patient-specific clinical parameters, which limits their applicability for personalized therapy 

prediction. 
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2.3 Multimodal AI in Healthcare 

 Multimodal learning combines multiple data sources—such as imaging, clinical records, laboratory tests, 

and genomics—to provide a comprehensive understanding of disease patterns. By integrating these 

heterogeneous inputs, predictive models achieve improved performance and interpretability compared to 

unimodal systems. 

 In healthcare, multimodal approaches have been applied in oncology, dermatology, and neuroimaging. 

Feature fusion strategies—ranging from early fusion to intermediate and late fusion—allow models to 

combine complementary information effectively. However, in oral lesion analysis, multimodal approaches 

remain underexplored. Most existing studies focus exclusively on imaging without incorporating patient-

level data, leaving a gap in personalized therapy prediction. The present study addresses this gap by 

integrating lesion imaging features with clinical parameters using a hybrid CNN–Transformer framework. 

 

        2.4 Summary Table of Prior Work 

Study Method Dataset Contribution Limitation 

Scully & 

Carrozzo 

(2008) 

Clinical 

Observation 

OLP 

patients 

Standard clinical diagnosis 

reference 

Subjective and 

time-

consuming 

Redondo 

et al. 

(2026) 

CNN Oral mucosa 

images 

Multi-lesion segmentation Limited 

integration 

with clinical 

data 

Nie et al. 

(2022) 

CNN–

Transformer 

Skin lesions Hybrid classification 

architecture 

Not applied to 

oral lesions 

Shao et 

al. (2025) 

TransUNet Head & 

neck cancer 

Long-range attention for 

segmentation 

Small dataset 

Alzahrani 

et al. 

(2025) 

Hybrid CNN–

Transformer 

Oral 

carcinoma 

Improved segmentation 

accuracy 

No therapy 

prediction 

Song et 

al. (2025) 

Multimodal AI Cancer 

imaging + 

clinical data 

Fusion of imaging + clinical Limited to 

oncology 

 

III. Materials and Methods 

 

3.1 Dataset 

   

This study utilized a curated collection of clinical oral lesion images, focusing on Oral Lichen Planus (OLP) 

and related mucosal disorders. Images were obtained from collaborating dental and medical institutions 

under approved ethical protocols, ensuring patient anonymity. Each image was captured under standardized 

lighting and magnification to reduce variability and improve model reliability. 

Expert clinicians manually annotated lesion boundaries using digital tools, generating ground truth masks 

for segmentation tasks. In addition, patient-specific clinical information—including age, gender, disease 

duration, immune response history, and treatment regimen—was recorded. These data were subsequently 

used in the prediction module to assess immunotherapy outcomes. 

The dataset was divided into training (70%), validation (15%), and testing (15%) subsets, maintaining 

balanced representation across lesion types and therapy outcomes. 
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3.2 Preprocessing 

 

To ensure consistency and enhance model generalization, all images underwent the following 

preprocessing steps: 

 Resizing: Images were resized to 256 × 256 pixels. 

 Normalization: Pixel intensities were scaled to a uniform range. 

 Data Augmentation: Random horizontal and vertical flips, rotations within ±15°, brightness 

adjustments, and Gaussian noise were applied to simulate real-world variability. 

 Mask Correction: Morphological operations were performed on ground truth masks to correct 

annotation errors. 

 Clinical Data Handling: Patient attributes were normalized using min–max scaling. Missing values 

were replaced with mean values of the respective feature. 

3.3 Segmentation Module 

 

The segmentation model combines local and global feature extraction through a hybrid CNN–Transformer 

architecture: 

 CNN Backbone: A lightweight ResNet-34 extracts fine-grained spatial features such as lesion 

boundaries and texture patterns. 

 Transformer Encoder: Captures long-range dependencies and global context using multi-head self-

attention. 

 Decoder: Aggregates hierarchical features with skip connections to generate binary lesion masks. 

 Loss Function: A combination of Dice loss and binary cross-entropy loss was employed to optimize 

pixel-wise and region-wise segmentation accuracy. 

The output of this module is a binary mask representing the lesion, used both for visualization and as input 

to the feature fusion module. 

 

3.4 Feature Fusion Module 

 

To correlate lesion morphology with patient-specific clinical information, a multimodal feature fusion 

strategy was implemented: 

 Inputs: CNN-derived spatial features, Transformer-derived global context, and normalized clinical 

attributes. 

 Fusion Strategy: Intermediate fusion via concatenation, followed by multi-head attention and fully 

connected layers to generate a unified representation. 

 Objective: Enable the model to capture interactions between lesion appearance and clinical factors, 

supporting personalized immunotherapy prediction. 

3.5 Prediction Module 

 

The prediction module classifies patients into Responder (R), Partial Responder (PR), and Non-

Responder (NR) categories: 

 Network: A dense neural network with ReLU activations and dropout for regularization. 

 Output: Probability scores for each response category. 

 Loss Function: Multi-class cross-entropy loss. 

 Interpretability: Grad-CAM visualizations highlight critical lesion regions, while SHAP identifies 

influential clinical and imaging features. 
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3.6 Workflow Visualization 

 

Figure 1: Representative input image of an oral lesion captured under clinical lighting conditions, with 

corresponding ground truth mask annotated by an expert. 

 
 

Figure 2: End-to-end workflow of the hybrid CNN–Transformer framework, illustrating the sequence 

from raw image input, preprocessing, lesion segmentation, feature fusion, and therapy response 

prediction. 

 

IV. Experimental Setup 

 

4.1 Training Details 

 

 The hybrid CNN–Transformer segmentation model was trained on the curated oral lesion dataset, using 

the training/validation split described in Section 3.1. 

 Optimizer: Adam with an initial learning rate of 0.0001. 

 Batch size: 16; epochs: 100. 

 Early stopping based on validation Dice score to prevent overfitting. 

4.2 Prediction Setup 

 

 Fused features from segmentation and clinical data were fed into a dense neural network with two hidden 

layers. 

 Dropout rate: 0.3 to reduce overfitting. 

 Softmax activation in the output layer produced probabilities for Responder (R), Partial Responder (PR), 

and Non-Responder (NR) classes. 

4.3 Evaluation Metrics 

 

 Segmentation: Dice Similarity Coefficient (DSC), Intersection over Union (IoU), Precision, Recall. 

 Prediction: Accuracy, F1-Score, Area Under the Receiver Operating Characteristic Curve (AUC). 

 Statistical significance was assessed using paired t-tests with p < 0.05. 
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V. Results and Discussion 

 

5.1 Segmentation Performance 

 

The hybrid CNN–Transformer model achieved precise delineation of oral lesions, particularly for irregular 

and low-contrast regions. Compared to conventional models, it produced smoother lesion boundaries and 

reduced over-segmentation of surrounding healthy tissue. 

 

Table 1: Segmentation Performance Metrics 

 

Model DSC IoU Precision Recall 

U-Net 0.891 0.841 0.876 0.864 

DeepLabV3+ 0.903 0.857 0.890 0.872 

SegFormer-B0 0.912 0.872 0.903 0.884 

Proposed Hybrid CNN–Transformer 0.941 0.912 0.935 0.924 

 

Insights: 
 Integration of Transformer attention improved global context understanding, reducing false-positive 

regions. 

 Dice score improvement (~0.03 over SegFormer-B0) indicates better overlap with ground truth masks. 

 Performance was consistent across 5-fold cross-validation (variance < ±1.2%). 

 

Figure 3: Example segmentation results showing raw image, expert-annotated mask, and predicted mask. 

 

 
 

5.2 Therapy Response Prediction 

 

  The multimodal fusion approach allowed the model to classify patients into Responder (R), Partial 

Responder (PR), and Non-Responder (NR) categories with high accuracy. 

 

Table 2: Therapy Response Prediction Metrics 

 

Model Accuracy F1-Score AUC 

Random Forest 0.81 0.79 0.84 

CNN Only 0.85 0.83 0.88 

Transformer Only 0.87 0.85 0.91 

Proposed Hybrid CNN–Transformer 0.924 0.91 0.95 
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Insights: 
 Combining imaging features with clinical parameters improved predictive performance. 

 Grad-CAM visualizations highlighted lesion regions most influential for therapy response prediction. 

 SHAP analysis identified key predictors, including lesion area ratio, contrast intensity, and immune cell 

counts, providing interpretable insights for clinicians. 

 
5.3 Clinical Relevance 
 The model provides an automated, reproducible approach for lesion segmentation and therapy outcome 

prediction. 

 Interpretability tools enhance clinician trust by explaining predictions with visual and feature-level 

insights. 

 Personalized predictions can guide early intervention strategies, improving patient outcomes. 

5.4 Discussion 
 Comparison with Existing Methods: Previous studies focused either on segmentation or therapy 

prediction; the hybrid framework improves both simultaneously. 

 Advantages of Multimodal Fusion: Patient-specific clinical data enrich predictive modeling, while 

attention mechanisms capture global relationships often missed by CNNs. 

 Limitations: Dataset size is limited, and only selected oral lesions were analyzed. Future work includes 

expanding to leukoplakia, submucous fibrosis, and oral cancer precursors, as well as integrating 

histopathology and genomic data for deeper insights. 

VI. Conclusion 
This study introduced a hybrid CNN–Transformer framework for automated segmentation of oral lesions 

and personalized prediction of immunotherapy response. By combining the detailed local feature extraction 

of CNNs with the global contextual understanding of Transformers, the model accurately delineates lesion 

boundaries, even in challenging clinical images with irregular shapes or low contrast. 

Integrating patient-specific clinical data with imaging features through a multimodal fusion module 

allowed for precise classification of therapy outcomes into Responder, Partial Responder, and Non-

Responder categories. The use of interpretability tools such as Grad-CAM and SHAP provided actionable 

insights for clinicians, highlighting the most influential lesion regions and patient features, thereby 

enhancing trust and potential clinical adoption. 

Overall, this framework demonstrates that hybrid, multimodal approaches can bridge the gap between 

image-based diagnosis and patient-specific therapy planning, paving the way for more personalized oral 

healthcare. 
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6.1 Future Work 

  Expansion to Multiple Oral Disorders: Extending the framework to cover Oral Leukoplakia, 

Submucous Fibrosis, and early-stage Oral Cancer, enabling broader clinical applicability. Integration with 

Histopathology and Genomics: Incorporating histopathological slides and genomic profiles alongside 

imaging data to enhance predictive power and biological interpretability. Larger Multi-Center Datasets: 

Collecting and validating on multi-institutional datasets to improve generalization and robustness of the 

model. Real-Time Clinical Deployment: Developing an easy-to-use software tool for clinicians that 

provides immediate lesion analysis and therapy response prediction in a clinical workflow. 
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