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Abstract: Oral Lichen Planus (OLP) is a chronic inflammatory disorder affecting the oral mucosa, with
diverse clinical presentations and a risk of malignant transformation. Early and precise assessment of
lesions, along with prediction of immunotherapy outcomes, is critical for personalized patient care. Manual
evaluation is time-intensive and prone to variability among clinicians. In this study, we introduce a hybrid
deep learning framework that combines Convolutional Neural Networks (CNNs) for detailed spatial feature
extraction with Transformer modules for capturing long-range contextual information. A multimodal
fusion strategy further integrates lesion imaging features with patient-specific clinical data to predict
individualized therapy responses. Experiments on a curated oral lesion dataset demonstrate that our
approach achieves superior segmentation accuracy and predictive performance compared to existing
baseline models. The framework offers a reproducible, interpretable, and automated tool to support
precision oral healthcare and data-driven treatment planning.

Index Terms - Oral Lichen Planus; Deep Learning; CNN-Transformer; Lesion Segmentation; Multimodal
Fusion; Immunotherapy Prediction; Personalized Medicine.

. INTRODUCTION

Oral Lichen Planus (OLP) is a persistent inflammatory disorder of the oral mucosa, presenting in patterns
ranging from reticular to erosive and ulcerative lesions. These lesions not only cause discomfort but also
carry a potential risk of malignant transformation [2],[3]. Clinicians face challenges in consistently
assessing lesion boundaries and predicting therapeutic outcomes due to variability in clinical presentations
and subjective interpretations [2],[3].

Conventional diagnostic methods, including visual inspection and histopathological analysis, are labor-
intensive and often subject to inter-observer differences [2],[3]. This variability can hinder timely
intervention and precise treatment planning, especially when evaluating immunotherapy, which
demonstrates highly individualized patient responses [9].

Deep learning has emerged as a transformative tool in medical imaging [7],[10]. Convolutional Neural
Networks (CNNs) excel at capturing fine-grained, local features [4],[5], while Transformer architectures,
originally developed for natural language processing, have demonstrated strong capabilities in modeling
global contextual relationships within images [6]. However, using these models in isolation may limit
effectiveness: CNNs can overlook long-range dependencies, whereas Transformers may underutilize local
spatial details [6],[13].

[JCRT2511041 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ a386


http://www.ijcrt.org/
https://orcid.org/0009-0006-3828-9032
https://orcid.org/0009-0006-3828-9032

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 11 November 2025 | ISSN: 2320-2882

To overcome these limitations, we propose a hybrid CNN-Transformer framework that combines the
detailed spatial feature extraction of CNNs with the global context modeling of Transformers [1],[6].
Furthermore, we integrate lesion imaging features with patient-specific clinical data using a multimodal
fusion strategy, enabling personalized predictions of immunotherapy response [8],[14].

Motivation: Current approaches often focus solely on lesion segmentation or classification and do not
account for patient-level clinical variability [11],[12]. Given the heterogeneity of OLP lesions and the
diversity of therapy outcomes, there is a pressing need for a framework that simultaneously offers precise
segmentation and reliable predictive analytics [1],[15].

Contributions of this study:
e Development of a hybrid CNN-Transformer model for accurate lesion segmentation [1],[6].

e Design of a multimodal fusion module that incorporates both imaging and clinical data for therapy
response prediction [1],[8].

e Implementation of an end-to-end automated workflow for oral lesion analysis [1],[12].

« Evaluation against baseline models, demonstrating improved segmentation and prediction performance

[11,[13].

o Integration of interpretability methods (Grad-CAM and SHAP) to provide clinical insights and increase
model trustworthiness [15].

I1. Related Work

2.1 Medical Image Segmentation

« Segmentation of medical images is a critical step for automated diagnosis, treatment planning, and disease
monitoring. Early methods relied on classical image processing techniques such as thresholding, edge
detection, and region growing, but these often struggled with complex lesion shapes and inconsistent
imaging conditions.

 The introduction of deep learning, particularly Convolutional Neural Networks (CNNSs), transformed
biomedical image analysis by enabling automatic extraction of multi-scale features and precise boundary
delineation. Architectures like U-Net, U-Net++, and Attention U-Net became widely adopted due to their
ability to segment regions of interest accurately. However, CNNs primarily capture local spatial features
and may fail to model long-range dependencies.

« Transformer-based architectures have recently been adapted to visual tasks, allowing models to consider
global context through self-attention mechanisms. Models such as TransUNet, Swin-Unet, and SegFormer
have shown improvements in boundary delineation and context understanding in various medical imaging
tasks. Hybrid CNN-Transformer models, combining local feature extraction with global attention, have
demonstrated enhanced performance in organ and lesion segmentation.

2.2 Oral Lesion Analysis

o Automated analysis of oral mucosal lesions, including OLP, leukoplakia, and related disorders, has
become increasingly important for early detection and intervention. Traditional approaches relied on
handcrafted features, such as color histograms, texture descriptors, and shape-based metrics. These
methods often underperformed under varying lighting conditions and lesion heterogeneity.

 Deep learning methods have facilitated automatic identification and segmentation of oral lesions from
clinical images, improving accuracy over handcrafted techniques. CNN-based models effectively capture
morphological details but may overlook broader contextual information necessary for robust lesion
characterization. Furthermore, most studies focus solely on segmentation or classification and do not
integrate patient-specific clinical parameters, which limits their applicability for personalized therapy
prediction.
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2.3 Multimodal Al in Healthcare

« Multimodal learning combines multiple data sources—such as imaging, clinical records, laboratory tests,
and genomics—to provide a comprehensive understanding of disease patterns. By integrating these
heterogeneous inputs, predictive models achieve improved performance and interpretability compared to
unimodal systems.

« In healthcare, multimodal approaches have been applied in oncology, dermatology, and neuroimaging.
Feature fusion strategies—ranging from early fusion to intermediate and late fusion—allow models to
combine complementary information effectively. However, in oral lesion analysis, multimodal approaches
remain underexplored. Most existing studies focus exclusively on imaging without incorporating patient-
level data, leaving a gap in personalized therapy prediction. The present study addresses this gap by
integrating lesion imaging features with clinical parameters using a hybrid CNN-Transformer framework.

2.4 Summary Table of Prior Work

Study Method Dataset Contribution Limitation

Scully & | Clinical OLP Standard clinical diagnosis | Subjective and

Carrozzo | Observation patients reference time-

(2008) consuming

Redondo | CNN Oral mucosa | Multi-lesion segmentation Limited

et al. images integration

(2026) with  clinical
data

Nie et al. | CNN— Skin lesions | Hybrid classification | Not applied to

(2022) Transformer architecture oral lesions

Shao et | TransUNet Head & | Long-range  attention  for | Small dataset

al. (2025) neck cancer | segmentation

Alzahrani | Hybrid CNN- | Oral Improved segmentation | No therapy

et al. | Transformer carcinoma | accuracy prediction

(2025)

Song et | Multimodal Al | Cancer Fusion of imaging + clinical Limited to

al. (2025) imaging + oncology

clinical data

I11. Materials and Methods
3.1 Dataset

This study utilized a curated collection of clinical oral lesion images, focusing on Oral Lichen Planus (OLP)
and related mucosal disorders. Images were obtained from collaborating dental and medical institutions
under approved ethical protocols, ensuring patient anonymity. Each image was captured under standardized
lighting and magnification to reduce variability and improve model reliability.

Expert clinicians manually annotated lesion boundaries using digital tools, generating ground truth masks
for segmentation tasks. In addition, patient-specific clinical information—including age, gender, disease
duration, immune response history, and treatment regimen—was recorded. These data were subsequently
used in the prediction module to assess immunotherapy outcomes.

The dataset was divided into training (70%), validation (15%), and testing (15%) subsets, maintaining
balanced representation across lesion types and therapy outcomes.
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3.2 Preprocessing

To ensure consistency and enhance model generalization, all images underwent the following
preprocessing steps:
+ Resizing: Images were resized to 256 x 256 pixels.

+ Normalization: Pixel intensities were scaled to a uniform range.

+ Data Augmentation: Random horizontal and vertical flips, rotations within +£15°, brightness
adjustments, and Gaussian noise were applied to simulate real-world variability.

+ Mask Correction: Morphological operations were performed on ground truth masks to correct
annotation errors.

+ Clinical Data Handling: Patient attributes were normalized using min—max scaling. Missing values
were replaced with mean values of the respective feature.

3.3 Segmentation Module
The segmentation model combines local and global feature extraction through a hybrid CNN-Transformer
architecture:

o« CNN Backbone: A lightweight ResNet-34 extracts fine-grained spatial features such as lesion
boundaries and texture patterns.

« Transformer Encoder: Captures long-range dependencies and global context using multi-head self-
attention.

« Decoder: Aggregates hierarchical features with skip connections to generate binary lesion masks.

« Loss Function: A combination of Dice loss and binary cross-entropy loss was employed to optimize
pixel-wise and region-wise segmentation accuracy.

The output of this module is a binary mask representing the lesion, used both for visualization and as input
to the feature fusion module.

3.4 Feature Fusion Module

To correlate lesion morphology with patient-specific clinical information, a multimodal feature fusion
strategy was implemented:

 Inputs: CNN-derived spatial features, Transformer-derived global context, and normalized clinical
attributes.

 Fusion Strategy: Intermediate fusion via concatenation, followed by multi-head attention and fully
connected layers to generate a unified representation.

« Objective: Enable the model to capture interactions between lesion appearance and clinical factors,
supporting personalized immunotherapy prediction.

3.5 Prediction Module

The prediction module classifies patients into Responder (R), Partial Responder (PR), and Non-
Responder (NR) categories:
« Network: A dense neural network with ReL.U activations and dropout for regularization.

« Output: Probability scores for each response category.
 Loss Function: Multi-class cross-entropy loss.

o Interpretability: Grad-CAM visualizations highlight critical lesion regions, while SHAP identifies
influential clinical and imaging features.
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3.6 Workflow Visualization

Figure 1: Representative input image of an oral lesion captured under clinical lighting conditions, with
corresponding ground truth mask annotated by an expert.

Figure 1: Representative input image of an oral
lesion captured under clinical lighting conditions,
with corresponding ground truth mask annotated by anepert

Figure 2: End-to-end workflow of the hybrid CNN-Transformer framework, illustrating the sequence
from raw image input, preprocessing, lesion segmentation, feature fusion, and therapy response

prediction.
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Figure 2: End-to-end workflow of the hybrid CNN-Transformer framework

V. Experimental Setup
4.1 Training Details

 The hybrid CNN-Transformer segmentation model was trained on the curated oral lesion dataset, using
the training/validation split described in Section 3.1.

« Optimizer: Adam with an initial learning rate of 0.0001.
« Batch size: 16; epochs: 100.
« Early stopping based on validation Dice score to prevent overfitting.

4.2 Prediction Setup

« Fused features from segmentation and clinical data were fed into a dense neural network with two hidden
layers.

« Dropout rate: 0.3 to reduce overfitting.

« Softmax activation in the output layer produced probabilities for Responder (R), Partial Responder (PR),
and Non-Responder (NR) classes.

4.3 Evaluation Metrics

« Segmentation: Dice Similarity Coefficient (DSC), Intersection over Union (loU), Precision, Recall.
« Prediction: Accuracy, F1-Score, Area Under the Receiver Operating Characteristic Curve (AUC).

« Statistical significance was assessed using paired t-tests with p < 0.05.
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V. Results and Discussion

5.1 Segmentation Performance

The hybrid CNN-Transformer model achieved precise delineation of oral lesions, particularly for irregular
and low-contrast regions. Compared to conventional models, it produced smoother lesion boundaries and

reduced over-segmentation of surrounding healthy tissue.

Table 1: Segmentation Performance Metrics

Model DSC | IoU | Precision | Recall
U-Net 0.891 | 0.841 | 0.876 0.864
DeepLabV3+ 0.903 | 0.857 | 0.890 0.872
SegFormer-B0 0.912 | 0.872 | 0.903 0.884
Proposed Hybrid CNN—Transformer | 0.941 | 0.912 | 0.935 0.924

Insights:
« Integration of Transformer attention improved global context understanding, reducing false-positive
regions.

« Dice score improvement (~0.03 over SegFormer-B0) indicates better overlap with ground truth masks.

 Performance was consistent across 5-fold cross-validation (variance < +£1.2%).

Figure 3: Example segmentation results showing raw image, expert-annotated mask, and predicted mask.

-

5.2 Therapy Response Prediction

The multimodal fusion approach allowed the model to classify patients into Responder (R), Partial
Responder (PR), and Non-Responder (NR) categories with high accuracy.

Table 2: Therapy Response Prediction Metrics

Model Accuracy | F1-Score | AUC
Random Forest 0.81 0.79 0.84
CNN Only 0.85 0.83 0.88
Transformer Only 0.87 0.85 0.91
Proposed Hybrid CNN—Transformer | 0.924 0.91 0.95
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Insights:
« Combining imaging features with clinical parameters improved predictive performance.

« Grad-CAM visualizations highlighted lesion regions most influential for therapy response prediction.

« SHAP analysis identified key predictors, including lesion area ratio, contrast intensity, and immune cell
counts, providing interpretable insights for clinicians.
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Figure 4: SHAP feature
importance plots for therapy
response prediction
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5.3 Clinical Relevance
« The model provides an automated, reproducible approach for lesion segmentation and therapy outcome
prediction.

« Interpretability tools enhance clinician trust by explaining predictions with visual and feature-level
insights.

« Personalized predictions can guide early intervention strategies, improving patient outcomes.

5.4 Discussion
« Comparison with Existing Methods: Previous studies focused either on segmentation or therapy
prediction; the hybrid framework improves both simultaneously.

« Advantages of Multimodal Fusion: Patient-specific clinical data enrich predictive modeling, while
attention mechanisms capture global relationships often missed by CNNs.

 Limitations: Dataset size is limited, and only selected oral lesions were analyzed. Future work includes
expanding to leukoplakia, submucous fibrosis, and oral cancer precursors, as well as integrating
histopathology and genomic data for deeper insights.

V1. Conclusion

This study introduced a hybrid CNN—-Transformer framework for automated segmentation of oral lesions
and personalized prediction of immunotherapy response. By combining the detailed local feature extraction
of CNNs with the global contextual understanding of Transformers, the model accurately delineates lesion
boundaries, even in challenging clinical images with irregular shapes or low contrast.

Integrating patient-specific clinical data with imaging features through a multimodal fusion module
allowed for precise classification of therapy outcomes into Responder, Partial Responder, and Non-
Responder categories. The use of interpretability tools such as Grad-CAM and SHAP provided actionable
insights for clinicians, highlighting the most influential lesion regions and patient features, thereby
enhancing trust and potential clinical adoption.

Overall, this framework demonstrates that hybrid, multimodal approaches can bridge the gap between
image-based diagnosis and patient-specific therapy planning, paving the way for more personalized oral
healthcare.
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6.1 Future Work

Expansion to Multiple Oral Disorders: Extending the framework to cover Oral Leukoplakia,
Submucous Fibrosis, and early-stage Oral Cancer, enabling broader clinical applicability. Integration with
Histopathology and Genomics: Incorporating histopathological slides and genomic profiles alongside
Imaging data to enhance predictive power and biological interpretability. Larger Multi-Center Datasets:
Collecting and validating on multi-institutional datasets to improve generalization and robustness of the
model. Real-Time Clinical Deployment: Developing an easy-to-use software tool for clinicians that
provides immediate lesion analysis and therapy response prediction in a clinical workflow.
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