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Abstract

The integration of advanced biometrics is critical for the evolving global financial technology (FinTech)
sector, which requires fast, secure, and contactless authentication. This review analyzes the deployment of
palmprint recognition systems for secure payment, a modality projected for significant market expansion
(CAGR of 26.10%) due to its high feature density, permanence, and non-contact nature. The paper details
state-of-the-art deep learning architectures, such as the hybrid Vision Transformer (ViT) and Convolutional
Neural Network (CNN) fusion utilized in the Palm-ID system, which achieves high accuracy (TAR of 98.06%
at FAR=0.01%) and superior operational efficiency, including template sizes compressed to 516 bytes and
sub-millisecond 1:N search times[1]. Crucially, the review examines the robust security framework required
for financial adoption, including Presentation Attack Detection (PAD) and the implementation of cancelable
biometrics for template protection to ensure revocability. Finally, it addresses the mandatory compliance with
international data privacy regulations, such as GDPR and CCPA [2], affirming that optimized palmprint
recognition is technologically ready and strategically positioned to secure the next generation of frictionless
retail payment systems[3].

Index/Key Terms : Palmprint Recognition, Secure Payment Systems, Deep Learning (DL), Vision
Transformer (ViT), Convolutional Neural Network (CNN), Contactless Biometrics, Template Protection,
Cancelable Biometrics, Presentation Attack Detection (PAD), GDPR, CCPA

1. Introduction: The Mandate for Secure, Contactless FinTech Authentication
1.1 The Evolution of Biometric Authentication in Financial Transactions

The global financial technology (FinTech) sector is undergoing a profound transformation driven by the
escalating demand for digital and contactless payment solutions. The market for palmprint payment systems
is projected for robust expansion, growing from USD 68.4 million in 2024 to an estimated USD 662.6 million
by 2034, reflecting a Compound Annual Growth Rate (CAGR) of 26.10%.[4] Similarly, the broader 'Pay by
Palm' market is projected to reach USD 2,594 million by 2035, accelerating at a CAGR of 19.2%[3]. This
growth is fundamentally propelled by technological advancements in biometrics, the necessity for strong,
secure authentication, and the retail sector’s pursuit of seamless, frictionless customer experiences[1], [3].
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A primary challenge confronting FinTech innovation is the critical necessity to balance transaction speed with
high assurance security levels. Commercial success requires rapid authentication, ideally completed in sub-
second time frames[2]. Traditional payment methods, reliant on cash, cards, or PINs, are susceptible to fraud
and often introduce transactional friction. The increasing instances of identity fraud and cybersecurity threats
have accelerated the demand for non-replicable biometric solutions.> Biometric systems aim to provide a
signal that accurately represents a human trait for recognition[5]. Within this context, palmprint recognition
has emerged as a key modality, providing a robust, non-invasive alternative to established methods such as
fingerprint and facial recognition.

1.2 Defining the Core Requirements for Biometric Payment Systems

For a biometric solution to achieve widespread adoption within secure payment systems, it must satisfy
stringent operational and security criteria.

First, the requirement for Accuracy and Robustness demands near-perfect recognition rates. Biometric
systems must reliably maintain high True Acceptance Rates (TAR), often exceeding $99\%$, even at
extremely low False Acceptance Rates (FARs), such as 0.01%][3], [6]. This performance must be preserved in
unconstrained, real-world conditions characterized by variable lighting, low resolution (common with
smartphone capture), and significant pose variation—challenges inherent to contactless imaging.

Second, Latency and Throughput are paramount for retail environments. A positive user experience requires
authentication to be executed in sub-second time frames[2], [5]. This necessitates high system throughput,
particularly for large-scale identification scenarios, known as 1:N searches, which involve matching a user
against an entire database efficiently[7].

Third, the factors of Hygiene and User Experience have been significantly redefined by recent public health
concerns. The contactless nature of palmprint interaction—where the user simply hovers their hand over a
sensor—provides a crucial advantage over modalities that require physical contact, such as fingerprint
readers[8]. This addresses public health concerns and facilitates higher customer adoption in sensitive
environments like hospitals and food-serving areas[7].

Finally, Data Security and Privacy are non-negotiable. Compliance with international regulations, including
the European Union’s General Data Protection Regulation (GDPR) and the California Consumer Privacy Act
(CCPA) [9], [10], is mandatory. Furthermore, the implementation of non-invertible and revocable templates
is essential to mitigate the risk posed by compromised biometric data, which cannot otherwise be re-issued if
breached.!!

1.3 Structure and Scope of the Review

This review provides a rigorous analysis of the current landscape of palmprint recognition for payment
systems. It leverages a state-of-the-art framework, the Palm-ID system [8], as a technical benchmark, detailing
its deep learning architectural innovations and efficiency optimizations. The report then evaluates this
technology against competitive biometric modalities, explores critical security protocols such as Presentation
Attack Detection (PAD) and template protection, and culminates with a discussion of the regulatory landscape
and the practicalities of commercial deployment, exemplified by systems such as Amazon One[11].

2. Comparative Analysis of Biometric Modalities and Palmprint Advantages
2.1 Technical and Operational Comparison of Biometrics

Biometric modalities traditionally deployed in payment and access control include facial recognition,
fingerprint recognition, and, increasingly, palm recognition[9]. Each presents distinct trade-offs regarding
security and usability. Facial recognition is contactless, but its performance can be compromised by factors
such as lighting conditions, low image quality, and occlusions like masks[12]. Fingerprint recognition is
highly accurate and widely adopted but fundamentally requires physical contact, raising hygiene concerns,
particularly in high-throughput public settings[8], [10].

Palm recognition, encompassing both surface palm print and subsurface palm vein patterns, offers a
compelling solution by integrating the high discriminability of friction ridge biometrics with the non-contact
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requirement of modern transactions[13]. The biological richness of the hand provides a robust platform for
identification. A palm print contains a significantly larger feature space—approximately ten times more
unique features than a single fingerprint[13]. This inherently high feature density translates directly into
superior uniqueness and stability, forming a strong technical foundation for achieving exceptionally high
accuracy and reliability in financial authentication systems|[3].

2.2 The Non-Contact and Unconstrained Superiority of Palm Recognition

The contactless nature of palm recognition represents a powerful strategic differentiator, particularly for large-
scale consumer applications[14]. The operation is non-invasive and user-friendly, requiring only that the user
quickly hovers their hand over the scanner[8]. This non-contact interaction directly minimizes the
transmission of germs, enhancing safety in retail, hospital, and food-serving environments, and consequently
accelerating customer adoption[3], [14].

Furthermore, palm recognition exhibits greater operational stability and versatility compared to other
biometrics. Palm prints are generally less vulnerable to external factors such as dirt, wear, cuts, or scars that
often degrade the quality of fingerprint capture[6]. Unlike face recognition, palm scanning is not hindered by
obstructions such as glasses or masks, ensuring efficient and accurate information capture in diverse
settings[15]. Palm biometrics benefits from providing a large surface area for recognition, which allows for
highly distinctive and accurate verification and identification processes[10].

2.3 Palm Print vs. Palm Vein: Multimodal Synergy

The technology is broadly categorized into two main sensing methods: palm print recognition and palm vein
recognition. Palm print recognition utilizes high-resolution visible light cameras or scanners to map the two-
dimensional surface patterns, including creases, lines, and wrinkles[16]. This approach, particularly when
leveraging consumer-grade devices like smartphone cameras, is emphasized in systems like Palm-ID due to
its cost-effectiveness and ease of integration into existing applications[13], [17].

Conversely, Palm Vein Recognition scans the vascular structure beneath the skin using Near-Infrared (NIR)
light. The hemoglobin in the veins absorbs the NIR light, generating a unique, detailed map of the subsurface
vein structure[ 14]. Because this modality relies on internal, subsurface biological traits, it is intrinsically
tamper-resistant and virtually impossible to replicate using surface artifacts.'® This intrinsic security
advantage is why palm vein technology is favored in high-security environments, such as banking and
healthcare[18].

Commercial deployment often acknowledges the strengths of combining these methods. Many systems,
including those by Armatura and Fujitsu, employ a multimodal approach, fusing information derived from
both the visible spectrum (surface print) and the infrared spectrum (vein structure)[ 14]. This hybrid strategy
enhances both the overall recognition accuracy and the system's resistance to presentation attacks, offering a
higher security level than relying on either trait alone[15].

3. State-of-the-Art Deep Learning for Palmprint Recognition
3.1 The Contactless Recognition Pipeline

The efficacy of modern contactless palmprint recognition hinges on a sophisticated, multi-stage processing
pipeline. This process begins with image acquisition, often via unconstrained mobile capture, followed by
precise Region of Interest (ROI) extraction, image enhancement, feature extraction, and finally, matching[19].

The primary technical hurdle in contactless recognition is managing the high intra-class variability introduced
during image capture. Contactless methods must contend with six degrees of freedom (DOF) between the
user's palm and the capture device, leading to issues like extreme perspective distortions, rotation, and non-
linear scale changes[17]. State-of-the-art systems address this by implementing robust preprocessing
techniques. This includes utilizing deep learning models, such as a ResNet-50 based keypoint detection
module, to locate key points around the palmar boundary. These key points facilitate a non-linear homography
transformation and precise alignment, often involving a Spatial Transformer Network (STN) parametrized by
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a thin-plate-spline (TPS), thereby ensuring the extracted 224 times 224 ROI is consistently aligned for
downstream feature extraction[17].

4. Enhanement Module 6. Matching/Decision
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Figure 1: Comprehensive pipeline for contactless palmprint recognition, detailing the sequence from Keypoint
Detection, non-linear ROI Extraction, Learned Enhancement, to Hybrid Feature Extraction (ViT-CNN
fusion), Dimensionality Reduction, and final Matching.

3.2 Hybrid Deep Learning Architecture (Case Study: Palm-ID

Advancements in recognition accuracy have been achieved by moving beyond reliance on a single deep neural
network architecture. The Palm-ID framework exemplifies this trend by employing a multimodal embedding
fusion of a Vision Transformer (ViT) and a Convolutional Neural Network (CNN), specifically ResNet50[14].
This integration is based on the premise that CNNs and ViTs encode different yet complementary features for
biometrics. The ResNet50 component is adept at capturing local, texture-based features, while the ViT
component excels at aggregating global contextual information, thereby improving the overall robustness of
the system[13], [14].

A critical architectural innovation is the use of Multi-Scale Feature Capture within the ViT. Because the
stand-off distance during mobile capture is variable, leading to differences in image scale and resolution across
databases, capturing features at diverse scales is vital for developing a robust system[1]. The ViT architecture
incorporates multi-resolution patches (e.g., 16\times16 and 32\times32) as input features. This fusion of multi-
scale local features yields a measurable improvement in recognition performance compared to using a single

patch size, underscoring its necessity for unconstrained environments[15].
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Palmprint "| (ResNet50) Features
Image
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Figure 2: Conceptual diagram of the hybrid deep learning architecture, illustrating the fusion of
complementary features extracted by the Convolutional Neural Network (CNN) and the Vision Transformer
(ViT) using multi-scale input patches.

Moreover, the system incorporates a learned preprocessing step: a novel Enhancement Module. Given the
common occurrence of low contrast, noise, occlusion, and surface markings (such as tattoos or handwriting)
in unconstrained images, a SqueezeUNet architecture is trained using domain-specific augmentations to
recover the original high-quality image[13]. This module is explicitly trained to suppress degradation while
emphasizing the prominence of principal lines in the palmprint. The ablation analysis confirms that the

IJCRT2510827 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | h97


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

inclusion of this learned enhancement model is pivotal for boosting performance, particularly on challenging,
lower-quality, time-separated datasets[17].

3.3 Performance Benchmarking in Operational Environments

The true measure of a payment biometric system lies in its proven performance across diverse, real-world
conditions, including cross-sensor and longitudinal (time-separated) evaluations.

The Palm-ID system was evaluated against challenging protocols, including datasets separated by up to 13
months, simulating the long-term, time-separated nature of real-world identity management.” In verification
(1:1) scenarios, the system demonstrated state-of-the-art results, achieving a True Acceptance Rate (TAR) of
98.06% at a False Acceptance Rate (FAR) of 0.01% on the demanding, time-separated APDB-2-3 dataset
(collected seven months apart). This performance significantly surpassed other academic and commercial
methods compared in the study[14].

For high-throughput 1:N search scenarios, the model exhibited superior identification performance. In closed-
set identification tests, Palm-ID achieved an average Rank-1 Retrieval Rate of 98.24%, confirming its ability
to accurately locate the correct identity immediately in a large gallery[18]. In open-set identification, the
model dramatically reduced error rates. Compared to baseline methods, the False Negative Identification Rate
(FNIR) at FPIR=1% was significantly lower, averaging 4.42% across all test sets, highlighting the system’s
enhanced ability to manage challenging operational conditions and prevent false rejections[15].

4. System Efficiency, Mobile Deployment, and Economic Feasibility
4.1 Optimization for Edge Computing and Low Latency

The successful deployment of biometrics in payment systems is highly dependent on meeting stringent latency
requirements. Commercial systems like Amazon One emphasize sub-second authentication to ensure a
frictionless user experience[20]. Achieving this speed requires optimizing feature extraction, template size,
and search efficiency for edge devices.

The Palm-ID system is designed as an end-to-end mobile solution, with the entire recognition pipeline,
including capture, feature extraction, and matching, embedded within a smartphone, enhancing both privacy
and reducing communication latency[16]. The model achieves rapid template extraction in just 18ms[3], [17].
Crucially, the system demonstrates exceptional efficiency in large-scale identification: utilizing efficient
threading on a standard server CPU, it performs a 1:10,000 gallery comparison in only 0.33ms[3], [13]. This
sub-millisecond search capability confirms the system's readiness for large-scale retail identification systems
that require near-instantaneous search results[1], [16], [20].

4.2 Template Compression and Dimensionality Reduction

A significant challenge in deep learning biometrics is the need for small, rapidly searchable templates despite
the feature-richness of palmprints. High-dimensional feature vectors, such as the 768-dimensional
embeddings generated by the ViT-CNN fusion, can lead to templates sized at 3080 bytes[16]. The resolution
to this is found in aggressive template optimization.

The system employs a learned, non-linear dimensionality reduction model (DeepMDS++)[19]. This model
compresses the individual ViT and ResNet embeddings from 384 dimensions to 256 dimensions each,
resulting in a concatenated template size of 512 dimensions. This process reduces the template storage size
by approximately four times while maintaining high recognition accuracy, averaging a TAR of 96.97%[5].
This template optimization is vital for minimizing storage costs and maximizing search speed in mobile and
cloud environments[5].

Further optimization is achieved through data compression by converting the feature precision from a 32-bit
float (4 bytes) to an 8-bit unsigned integer (1 byte). This compression scheme, which stores the resulting
template efficiently in 516 bytes (plus 4 metadata bytes), is demonstrated to have a negligible impact on
accuracy, confirming the viability of deploying highly accurate palm recognition on constrained embedded
devices[4].
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Table 1 provides a quantitative comparison, highlighting the Palm-ID system's optimal balance of accuracy
and speed achieved through template optimization.

Metric/Model Technology/Fusion | Accuracy (TAR | Template Extraction 1:10K
@ 0.01% FAR) | Size (Bytes) | Latency (ms) | Search
Latency
(ms)
Palm-ID CNN+VIiT  Multi- | High (Avg. | 516 18.0 0.33
(Proposed) ’ scale 96.97% / 98.06%
APDB-2-3)
Godbole et al. ’ CNN High (Avg. | 3080 9.08 0.84
95.94%)
Armatura  SDK | Undisclosed Competitive 544 <60 <10
(Commercial) ’ (97.78% APDB-
2-3)

Table 1: Comparative Performance and Efficiency of SOTA Contactless Palmprint Recognition Systems
4.3 Economic Justification and Retail ROI

The financial viability of palmprint payment systems rests on the analysis of Return on Investment (ROI),
driven primarily by risk mitigation. While specialized biometric terminals must be integrated with existing
Point-of-Sale (POS) infrastructure, the main economic justification for financial institutions to invest in high-
security biometrics is the potential to "significantly reduce (perhaps eliminate) fraud and theft" associated
with transactions[21], [22].

The deployment of tamper-resistant, highly accurate biometrics is perceived as outweighing the incremental
hardware costs. Consequently, financial entities (like Visa and Mastercard) are incentivized to drive adoption,
sometimes by absorbing the system costs rather than passing them entirely to the merchant[2]. This cost
absorption shifts the economic burden from retail adoption friction to financial risk mitigation, ensuring that
the retail segment remains the largest and fastest-growing application area for palmprint payment systems[1].

5. Advanced Security and Regulatory Compliance
5.1 Presentation Attack Detection (PAD) and Liveness

All biometric payment systems are vulnerable to Presentation Attacks (PA), where fraudulent artifacts such
as photos or casts are presented to the sensor[22]. To counter this, modern systems integrate robust
Presentation Attack Detection (PAD) algorithms, often referred to as liveness detection, which typically run
in the background during the capture process[5], [21].

Systems utilizing the palm vein modality possess a superior defense against spoofing. Since palm vein
recognition requires Near-Infrared (NIR) imaging to detect subsurface, internal biological traits, replicating a
live, functioning vein pattern with a surface artifact is exceptionally difficult[2], [22]. Research demonstrates
that dedicated anti-spoofing algorithms that analyze image noise residuals derived from the acquired image
can effectively detect presentation attacks in palm-vein sensors, achieving near-perfect classification error
rates in controlled studies[6].

For visible-spectrum palmprint systems, security is enhanced through feature-level defenses. One approach
involves using the L2 norm of the deep learning feature embedding as a highly effective, learned metric for
image quality[3], [4]. This metric correlates strongly with image quality factors such as blurriness, contrast,
and occlusion. By establishing a quality threshold, the system gains the flexibility to reject low-quality images
that are often associated with sophisticated presentation attacks or simple artifacts, acting as an implicit
security filter[15].
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Figure 3: Comparative visualization of high-quality (bona fide) palm captures versus low-quality or potential
Presentation Attack (PA) samples, illustrating the role of the learned quality metric for robust anti-spoofing
defense.

5.2 Biometric Template Protection and Revocability

The inherent permanence of biometrics necessitates that raw biometric data never be stored, as a compromised
raw template cannot be revoked[23]. Therefore, robust template protection schemes that satisfy criteria for
high security, unlinkability (preventing cross-database correlation), and revocability (the ability to re-issue a
new template upon compromise) are mandatory for secure payment systems[23].

Cancelable Biometrics represents the preferred template protection paradigm. This involves irreversibly and
intentionally transforming the original biometric features into a non-invertible template[6]. Techniques
combining randomized cuckoo hashing and minHash have been proposed for palmprint systems to resist
unlinkability attacks, demonstrate large re-issuance capability, and still maintain high recognition
performance[6]. Furthermore, research into using Homomorphic Encryption (HE) is underway to secure
template processing, allowing feature comparison to occur on encrypted data, which is crucial for systems
that rely on cloud-based storage for templates[23].

5.3 Regulatory Frameworks (GDPR, CCPA)

The legal status of biometrics as highly sensitive personal data is a major market driver for robust security
implementation. Both the European Union’s GDPR and the California Consumer Privacy Act (CCPA) classify
biometric information within their broad definitions of "personal information" subject to stringent
protection[2].

This regulatory environment mandates transparent data handling practices and ensures that the user maintains
complete control over their digital biometric identity[2]. Commercially deployed systems, such as Amazon
One, demonstrate compliance by explicitly allowing users to manage their data, connect or disconnect from
participating businesses, and delete their biometric signature entirely at any time[2]. Robust template
protection is therefore not merely a technical consideration but a necessary step for regulatory compliance
and ensuring public trust.
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Furthermore, integration into the financial ecosystem requires adherence to global payment security standards.
Any entity that stores, processes, or transmits cardholder data—including third-party agents (TPAs) deploying
biometric POS devices—must comply with the Payment Card Industry Data Security Standard (PCI
DSS)[4], [22].

5.4 International Standards for Interoperability

To ensure market integration and maximum stakeholder interoperability, biometric systems must conform to
international data format standards. The ISO/IEC 19794 series defines these standards for biometric data
exchange and storage[6]. ISO/IEC 19794-1 provides the common biometric record format framework, which
is necessary for government and civilian biometric implementation[2].

In addition, digital identity assurance levels are guided by the NIST SP 800-63 Digital Identity
Guidelines[3], [4]. Secure payment systems require high confidence authentication levels (AAL 2 or 3). The
use of advanced, tamper-resistant biometrics like palm recognition provides the necessary technical
foundation to meet these high assurance level requirements, confirming the user's control over the
authenticator bound to their account[2], [5].

6. Commercial Deployment, Market Trends, and Future Directions
6.1 Current Commercial Landscape (Amazon One and Global Players)

Palmprint recognition systems have successfully transitioned from laboratory research to definitive
commercial deployment, primarily driven by major global enterprises. The most prominent example is
Amazon One, which has fully rolled out its palm-scanning payment system across all Whole Foods stores in
the United States[1]. Amazon One uses the palm for payment, check-in, and digital authentication, processing

over 1 million biometric authentications monthly[1]. The system relies on secure, encrypted storage in the
AWS cloud|[3].

Industry support further validates the technology’s trajectory. Global payment networks, including Visa and
Mastercard, along with major technology players like Tencent and Fujitsu, are actively supporting or
deploying palm-based payment systems[15], [19]. This broad acceptance is facilitated by the availability of
robust SDKs and APIs, enabling the seamless integration of palm scanners into existing payment and identity
verification systems without requiring businesses to completely replace their infrastructure[19].

Modality | Feature Contact Hygiene/User | Primary PAD | Key Regulatory
Density/Security | Requirement | Experience Countermeasure Challenge
Palmprint | Very High (10x | Contactless High Multimodal Fusion | Template
Fingerprint) (Vein/NIR) Revocability
(GDPR/CCPA)
Fingerprint | High Contact Low (Hygiene | Liveness Detection | Standardization
Required Risk) (Capacitive/Optical) | & Storage (ISO
19794-2) [
Face High (External | Contactless Medium/High | Liveness Demographic
features) (3D/Infrared Bias/Privacy
Depth) Concerns
Palm Vein | Extremely High | Contactless High Intrinsic (NIR | Cost/Specialized
(Subsurface) capture) Sensor
Requirement

Table 2: Strategic Comparison of Biometric Modalities for Secure Payment
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6.2 Identified Challenges and Future Research

Despite the demonstrated technical successes, continued research is essential to address practical limitations
for mass deployment.

One persistent area of study is long-term robustness and stability. While palm biometrics are inherently
stable throughout a person's lifetime, the performance must be continuously verified across extended
longitudinal evaluations. Furthermore, the potential for certain short-term physiological factors, such as high
fevers or significant skin conditions, to temporarily interfere with accurate verification must be fully
mitigated.

Another key challenge is ensuring cross-sensor and cross-domain interoperability. The variations
introduced by different capture devices (e.g., various smartphone models or proprietary scanners) in
unconstrained environments necessitate further algorithm development to maintain high matching accuracy
regardless of the acquisition source.

Future directions are focusing on leveraging the most advanced deep learning techniques. Continued
exploration of advanced transformer-based models and the integration of multi-spectral fusion (combining
visible light and NIR) are expected to yield further improvements in both anti-spoofing reliability and
recognition accuracy, driving high-security standards.

6.3 Conclusion and Outlook

The review confirms that palmprint recognition systems are technologically mature and highly optimized for
secure payment applications. The convergence of the biological advantage of high feature density and the
strategic benefit of non-contact interaction, coupled with the technical breakthrough of efficient deep learning
architectures (ViT-CNN fusion and template compression to 516 bytes with sub-millisecond search times ),
has successfully overcome previous barriers regarding accuracy and speed.

The success of large-scale commercial implementations like Amazon One demonstrates that the modality is
ready for mass consumer adoption. However, continued success in the financial sector is inextricably linked
to maintaining stringent compliance with evolving privacy regulations (GDPR and CCPA) through robust
template protection schemes that guarantee revocability and unlinkability. By prioritizing advanced
Presentation Attack Detection and adhering to regulatory mandates for user control, palmprint systems are
strategically positioned to become the dominant technology for the next generation of frictionless, secure
retail payment.
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