# **IJCRT.ORG**

ISSN: 2320-2882



# INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

# **Preserving Medical Device Accessibility: Compliance Pathway To The Eumdr**

<sup>1</sup>Piyush K. Chauhan, <sup>2</sup>Dr. Kalpana G. Patel, <sup>3</sup>Ms. Droma H. Patel, <sup>4</sup>Ms. Dhruvi B. Thakker <sup>1</sup>M. Pharm Research Scholar, <sup>2</sup>Professor and Vice Principal, <sup>3</sup>Assistant Professor of Quality Assurance and Regulatory Affairs, <sup>4</sup>Quality Assurance & Regulatory Affairs Executive

<sup>1</sup>Department of Regulatory Affairs

<sup>1</sup>Anand Pharmacy College, Near Town Hall, Anand, Gujarat 388001, India

## **Abstract**

Medical devices are integral to healthcare systems, providing essential diagnostic, therapeutic, and preventive support. The European Union's transition from the Medical Device Directive (MDD) to the Medical Device Regulation (MDR) introduces stricter requirements for safety, performance, and clinical evidence. This manuscript examines the compliance pathway for the EUMDR and its implications for global manufacturers, particularly in maintaining the accessibility of medical devices. Key focus areas include safety and performance requirements, quality management systems, postmarket surveillance, postmarket clinical follow-up, and gap analysis. Strategies for manufacturers to preserve accessibility are discussed, emphasizing the importance of regulatory compliance as a continuous process. These findings highlight that timely adaptation to the EUMDR is crucial for safeguarding patient access to critical medical technologies.

## Keywords

Medical Devices; EUMDR; Regulatory Compliance; Accessibility; Post-Market Surveillance

# 1. INTRODUCTION

## 1.1 Medical Device stands in healthcare system and market

In the healthcare system, medical technology is a crucial component. The health system is only partially functional without medical technology. As part of the healthcare system, human resources and medications are insufficient. The balancing component of this system is provided by medical technology. A medical device is a piece of equipment that is used in the medical field to help people improve their health or medical condition. A tool, bodily implants, programmed technology, a chemical agent, a physical substance, or another product are all examples of this. It primarily or as a support to other devices or pharmaceuticals accomplishes its action of diagnosis, treatment, prevention, or relief of medical condition [1-3]

Medical devices are used at every stage of the healing process. From simple devices such as a stethoscope, thermometer, oximeter, sphygmomanometer, and glucometer to complex devices such as X-ray technology, MRI, and sonography machines are used to diagnose underlying medical conditions. In vitro diagnostics are used to examine different medical disorders. Bandages and plasters are used to heal minor to major injuries, whereas penetrating medical devices are used to address underlying injuries. A hospital setting would be incomplete without hospital beds, wheelchairs, and stretchers, which would aid in patient mobility during their hospital stay. Cardiac stents, ventilators, oxygen masks, brain neurostimulators, and orthopedic implants are critical life-supporting devices that not only relieve patients from the sufferings of diseases but also improve their quality of life [2].

As a result, medical devices play a role in the healing process at every step. All of this medical equipment is evaluated for its degree of safety and performance, as well as the danger it poses in the event of a malfunction. They all have modest to high regulatory requirements owing to their distinct classifications. Regardless of the risk class, however, safety and performance are the most important requirements. Imagine losing access to even a single medical device during this entire healing process. This would be an enormous setback for efficiently treating patients and might put them in danger [1,2].

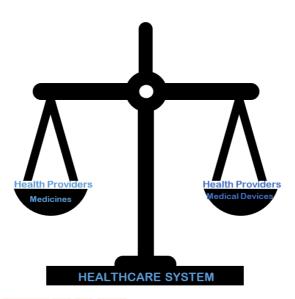



Figure: 1. Balancing Components of the Healthcare System

The worldwide medical device industry is worth more than US \$572 billion, with the United States of America, the European Union, and Japan accounting for more than 75% of it [4,5]. Over the next several years, the market is predicted to increase at a steady rate of 6% to 7% annually, meaning that the healthtech revolution will continue [4]. This is only achievable if all of its compliance requirements are fully aligned with regional legislation for its market status in the region, as well as country-specific regulations if it is intended for export [1,5].

Medical device technology is an active component once it is on the market, but its effective use may be missed due to a variety of factors, such as a lack of understanding of how to use it, performance loss during use due to device-related issues, or incompatibility with the patient due to an unidentified underlying condition <sup>[2]</sup>. As a result, producers must provide proof of efficacy throughout the product's existence <sup>[1,6]</sup>. Clinical research, user experiences, clinical follow-up surveys, field safety and corrective reports, and other published sources all contribute to this clinical evidence [6].

# 1.2 European Medical Device Scenario

According to estimates, the European medical device industry accounts for 26.4 % of the global market. The United States is the world's second-largest market for medical devices (47.2%) [7,8]. Germany, France, the United Kingdom, Italy, and Spain are Europe's most important medical device markets [7].

In terms of med-tech breakthroughs, more than 15000 goods were filed for patent protection with the European Patent Office in 2021, representing a 0.8 percent increase over the previous year. More than 800,000 individuals work directly in the European medical technology business. These figures illustrate that the medical technology business in Europe has significant economic and societal influence. In Europe, there are over 33,000 medical technology businesses. Germany has the most, followed by Italy, the United Kingdom, France, and Switzerland. Approximately 95% of the medical technology sector is composed of small and medium-sized businesses (SMEs) [7].

Among the top five export destinations for European medical device technology in 2023 are the United States (over 40%), China (11%), Russia, Japan (5.4%), and Australia, as well as other countries such as India, Saudi Arabia, and South Korea. Any product that is exported globally must first fulfill its home country's compliance requirements as well as the export destination country's mandates [5,9]. Medical equipment is also imported into Europe from other nations such as the United States, China, Mexico, Japan, Malaysia, and Singapore [8,9]. Compliance with regional and destination country regulations is also vital for importing providers [6].

As a result, putting any product into the healthcare market is subject to regulatory compliance, regardless of whether the product is being marketed in the same nation, by a manufacturer from another country, or by export producers <sup>[5,9]</sup>.

# 2. EUROPEAN MEDICAL DEVICE REGULATORY TRANSITION: MDD TO MDR

In the present environment, a change in the regulatory framework is unavoidable, since the quality and safety of healthcare goods remain important concerns. The changing environment and people's lives call into question the current condition of healthcare, as well as the acceptability of new goods [10,12]. Medical technology improvements are another factor. Understanding its use and safety requirements necessitates placing it in the right category. The scope of regulatory housing should therefore be broadened to incorporate new categories and regulatory criteria for innovative health technologies [13]. To address such questions, regulatory standards and regulations must be revised on a regular basis, particularly for healthcare-related items [10,11]. Recent changes in European medical device legislation have led to a significant departure from the previous Medical Device Directive. New medical device regulation legislation, which has been in place since May 26, 2021, has raised compliance requirements for medical device producers. According to the new guidelines, the maker must be able to certify compliance with the device's General Safety and Performance Requirements (GSPR) [12,13]. Compared with the Essential principles in Directives, it has more stringent data sufficiency requirements. In addition, the MDR requires a higher level of evidence for specified purposes and patient populations that may be exposed to the devices [10]. This means that clinical evidence may emerge when particular indications and patient demographics are evaluated. Additional Post-Market Surveillance (PMS) and Post-Market Clinical Follow-up (PMCF) requirements are also mentioned in the document [11,13].

# 2.1 Impact of European Medical Device Regulatory Transitions on other Countries

The new European medical device framework law will have an impact on more than just European manufacturers. We also know from data that there is much intra-European commerce as well as trade between Europe and other nations [14,16]. The most basic need for importing and exporting goods is that they meet regulatory requirements in their native nation [14,15]. This acts as proof of data during the registration of the product in other countries. It is also critical for import providers to satisfy the requirements of new legislation to sell their products in the European market [15,16].

# 2.2 Impact on New and Old Manufacturers

Manufacturers of new medical technology breakthroughs may only get market approval by determining if their product fits inside the scope of the new MDR and, if so, complying with the new requirements. Manufacturers that have previously had their devices authorized under the Medical Device Directive can continue to sell them until their certifications expire, which is no later than May 2025. All manufacturers who want to keep their medical equipment on the market must comply with MDR and supply the relevant data. If they fail to submit clinical evidence that their device meets safety and performance requirements, a gap in clinical data may be considered, and the device may not be recertified under the new MDR. As a result, manufacturers must now have a thorough grasp of the new MDR to avoid the market disruption of their medical devices [17-19].

## 3. MILESTONES TO EUMDR COMPLIANCE



Figure: 2. Milestones to EUMDR compliance

# 3.1 Demonstrating the device's continual safety and performance

Continuous demonstration of compliance with medical device safety and performance is a crucial regulatory obligation for medical device manufacturers. This approach adds to the greatest degree of clinical evidence quality possible. The GSPR relevant to any device class must always be considered. The medical device's appropriate parameters must be established and justified [19,20].

The safety of a device is a combined method that allows any medical item or equipment to perform according to the manufacturer's stated purpose while also ensuring that the patient is not harmed or their medical condition is not jeopardized throughout short-term, long-term, or continuous use <sup>[20]</sup>. It should not cause physical or biological harm to the patient or any other user. After the development stage of the medical device, the identification of appropriate safety parameters that are relevant to the device in question must be completed. Before a medical device is utilized by a patient, it is critical to ensure that it meets all safety requirements <sup>[19]</sup>.

Performance is the ability of medical equipment and all of its parts or units to perform according to the manufacturer's specifications. If any material or unit of a medical device fails to operate effectively during its operation, it may constitute a risk to the patient or user [20].

# 3.2 System of Quality Management

Manufacturers must comply with MDR by implementing a quality management system that is appropriate for their business (QMS). The manufacturer must plan, record, implement, and work on continuous system and product improvement. It takes into account the five Rs. The first stage ensures regulatory compliance at all times. The second step is resource management. The management of responsibilities among personnel is the third step. The fourth is a risk management strategy that is suitable, and the fifth is timely report updates with updated results and frequent surveillance data [20].

## 3.3 Post Market Surveillance

A PMS refers to a potential system for collecting and evaluating the safety and performance of medical devices once they are placed on the market and for the rest of their lives [21,22]. Its key responsibilities include obtaining evidence and conducting in-depth analysis. Data collection based on user experience, customer feedback reports, complaint-based reporting on any significant, non-serious, expected or unexpected side effects; and proof of field safety notification, rectification, and CAPA [22,23].

## 3.4 Post market clinical follow-up

Clinical data gathered via the usability of CE-marked devices when used as intended by the medical device maker are collected and analyzed in the postmarket clinical follow-up procedure [19,23]. This generates real-world evidence from patients, which may be used to assess whether a medical device meets its safety and performance standards across its entire lifespan. It includes the submission of a pre study plan and a post study clinical evaluation report [19]. The regulatory aims of this research are to address concerns about the device's safety and performance during its expected lifetime, to detect and monitor unknown side effects and to perform a risk-benefit analysis on the basis of that information. The device complies with the state-of-the-art device and, if relevant, is likely to a predicated device [19,23].

## 4. STRATEGIES CAN BE IMPLEMENTED BY MANUFACTURERS

Manufacturers who must recertify their devices in accordance with the EUMDR after their prior validity period has expired must begin by understanding the guidelines from the base. The following are some of the techniques that these producers can choose and apply as soon as possible [24-26]:

- **4.1 EUMDR Requirements Checklist:** Manufacturers and all people engaged in the regulatory lifecycle of a medical device at various stages must be well-versed in the most recent rules. It is necessary to plan for the expanded scope and increased compliance requirements, as well as the degree of proof required for each device class. A large checklist of activities must be completed to obtain evidence [25].
- **4.2 Gap Analysis:** After completing the checklist, the next step is to determine where the real gap is located. Various studies, such as PMSs and PMCFs, are necessary to create additional information about clinical data to establish continuing device safety and performance. Before the validity of devices approaches their expiration dates, the ongoing gap between what is available and what is required must be bridged <sup>[25]</sup>.

- **4.3 Planning:** A suitable planning document must be presented to the notified entities before any study can be carried out. This document should include the technique of performing the study and collecting data, as well as time frames. If any such proof is collected via market vigilance, it must also contain previously recognized risks and procedures of how they will be remedied. The important documents in this context are the risk management plan and the postmarket research plan [25,26].
- **4.4 Bridging the identified gaps:** Clinical data on medical devices are strengthened by evidence from clinical investigations, postmarket studies, postmarket clinical follow-up, and published literature [24,25]. A literature search should be undertaken on the basis of important safety outcomes and performance metrics to identify any new results related to device usage. It should be meta-analyzed and rated using the evidence that is available. If no evidence exists, new research should be developed to create evidence in the context of device usage. PMCF research data are essential proofs for highrisk class devices. Nothing should be overlooked, and all data should be investigated and reported in clinical evaluation reports that are updated on a regular basis [24-26].

# 5. PRESERVING MEDICAL DEVICE ACCESSIBILITY

Regulation compliance is not a single, final process. It is a never-ending process. When a healthcare product or even a medicine is on the market and delivered to the target patient, it should perform as efficiently as possible. In regard to patient safety and device performance while in use, the shift to a regulated framework is critical [27]. The increasing demand for medical technology indicates how reliant the healthcare system is on it, as well as how crucial it is for patients to simplify their lives and enhance their quality of life [28]. A single product being removed from the market because it lacks adequate evidence of safety and performance is a significant setback for the company, patients, and the national economy. As a result, the moment has come for manufacturers to comprehend the requirements of new legislation and to act in accordance with them. The ultimate objective is to keep medical devices accessible to their intended patients. This may be accomplished by planning a path for EUMDR compliance and bridging the gaps between the device and the regulatory framework [27,29].

Every second country can adopt a regulatory compliance pathway to avoid any safety concerns regarding device usage and performance mishaps by embracing the medical device regulatory compliance cycle as a continuous process, which will help to preserve device accessibility for patients and maintain their trust in the quality, safety, and performance of medical technology [28-30].

# 6. CONCLUSION:

The adoption of the EU Medical Device Regulation (MDR) represents a critical inflection point for both existing and new medical device manufacturers. Under MDR, demonstrating safety and performance via robust clinical evidence—both premarket and postmarket—is no longer optional but is essential for regulatory compliance and continued market access. A strong quality management system (QMS), comprehensive postmarket surveillance (PMS), and postmarket clinical follow-up (PMCF) form the backbone of this compliance landscape.

Manufacturers must undertake systematic gap analyses, detailed planning, and evidence-generation activities well ahead of existing certification expirations to avoid market disruption. While MDR improves patient safety and fosters public trust, it also introduces significant technical and financial challenges especially for small and medium-sized enterprises (SMEs). Future work should explore cost-effective methods for gathering clinical evidence, the use of real-world data, and best practices for balancing regulatory rigor with innovation and access.

# 7. REFERENCES

- 1. European Union. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices. Off J Eur Union. 2017;L117:1–175. Available from: https://eurlex.europa.eu/eli/reg/2017/745/oj/eng
- 2. World Health Organization. Medical devices. Geneva: World Health Organization; 2025. Available https://www.who.int/teams/health-product-policy-and-standards/assistive-and-medicalfrom: technology/medical-devices
- 3. Medical Device Regulation. MDR Article 2 definitions. 2019. Available from: https://www.medical-device-regulation.eu/2019/07/10/mdr-article-2-definitions/

- 4. Fortune Business Insights. Medical devices market size, share and global industry trend by product type, end user and forecast 2023–2032. Pune: Fortune Business Insights; 2023. Available from: https://www.fortunebusinessinsights.com/industry-reports/medical-devices-market-100085
- 5. Ministry of Economy, Trade and Industry (Japan). Vision for the medical device industry 2024. METI; 2024. Available https://www.meti.go.jp/policy/mono info service/healthcare/iryou/downloadfiles/pdf/iryoukikis angyouvision2024/Vision for the Medical Device Industry 2024.pdf
- 6. LNE-GMED. Post-market clinical follow-up (PMCF) under the European Medical Device (MDR). 2021 Jul 29. Available https://lne-gmed.com/wp-Regulation from: content/uploads/2021/07/newsletter-gmed-en-pmcf-07292021-1.pdf
- 7. MedTech Europe. The European medical technology industry in figures 2023. Brussels: MedTech Europe; 2023. Available from: https://www.medtecheurope.org/wp-content/uploads/2023/10/theeuropean-medical-technology-industry-in-figures 2023.pdf
- 8. MedTech Europe. Market data hub. Brussels: MedTech Europe; 2025. Available from: https://www.medtecheurope.org/datahub/market/
- 9. MedTech Europe. Trade data hub. Brussels: MedTech Europe; 2025. Available from: https://www.medtecheurope.org/datahub/trade/
- 10. Fink M, Akra B. Comparison of the international regulations for medical devices USA versus 2023;110908. Europe. Injury. Available from: https://www.sciencedirect.com/science/article/pii/S0020138323005946
- 11. Tyagi S. The role of post market clinical follow up in vigilance system. I3CGlobal. 2025. Available from: https://www.i3cglobal.com/pmcf-in-transitioning-legacy-devices/
- FDA Group. MDR vs MDD: 13 key changes. 2025. Available https://www.thefdagroup.com/blog/mdr-vs-mdd-13-key-changes
- 13. European Commission. Guidance MDCG endorsed documents and other guidance. Luxembourg: European Commission; 2025. Available https://health.ec.europa.eu/medical%20devices%20sector/new%20regulations/guidance%20mdc g%20endorsed%20documents%20and%20other%20guidance en
- 14. MedTech Europe. Impact of changes under the new EU Medical Devices Regulation (EU) 2017/745 to international registrations. Brussels: MedTech Europe; 2020 May 26. Available from: https://www.medtecheurope.org/wpcontent/uploads/2020/05/20200526 Impact Changes Int Reg MedicalDevices MDR.pdf
- 15. Asia Pacific Medical Technology Association. APACMed EU-IVDR position paper. Singapore: Available 2021. https://apacmed.org/wpcontent/uploads/2021/05/APACMed EU-IVDR-Position-Paper.pdf
- 16. Bayrak T, Yilmaz ES. What will be the economic impact of the new Medical Device Regulation? An interrupted time series analysis of foreign trade data. Value Health Reg Issues. 2022;29:1–7. Available from: https://www.valuehealthregionalissues.com/article/S2212-1099(21)00117-5/fulltext
- 17. Faruque FA. Notified bodies concerned with lack of MDR/IVDR applications as deadlines approach. Rockville (MD): Regulatory Affairs Professionals Society (RAPS); 2024 May 21. Available from: <a href="https://www.raps.org/news-and-articles/news-articles/2024/5/notified-bodies-">https://www.raps.org/news-and-articles/news-articles/2024/5/notified-bodies-</a> concerned-with-dearth-of-mdr-ivdr
- 18. ZOLL Medical Corporation. EU MDR frequently asked questions. 2023. Available from: https://info.zoll.com/hubfs/Corporate/COR%20-%20Website/International/UK/MDR FAQ Flyer EN-05.pdf
- 19. European Commission. Medical Device Coordination Group (MDCG) guidance on clinical evaluation (MDR)/performance evaluation (IVDR) of medical device software. MDCG 2020 1. 2020 Mar 16. Available from: https://health.ec.europa.eu/system/files/2020-09/md mdcg 2020 1 guidance clinic eva md software en 0.pdf
- 20. Court L. Ultimate guide to device class requirements under EU MDR. Greenlight Guru. 2024 May 22. Available from: https://www.greenlight.guru/blog/device-class-requirements-eu-mdr
- 21. DistillerSR. Literature review best practices accelerate EU MDR post market surveillance (PMS). Ottawa: Evidence Partners; 2025. Available from: https://www.distillersr.com/resources/guideswhite-papers/literature-review-best-practices-accelerate-eu-mdr-post-market-surveillance-pms
- 22. European Union Medical Device Regulation (EU MDR). Post market surveillance system. 2025. Available from: <a href="https://eumdr.com/post-market-surveillance-system/">https://eumdr.com/post-market-surveillance-system/</a>

- 23. Xu R. Post market surveillance (PMS): understanding PMCF & vigilance under the EU MDR. Mantra Systems. 2025 Jul 22. Available from: https://mantrasystems.com/articles/pmsunderstanding-pmcf-vigilance-under-eu-mdr
- 24. Xu R. MDR gap analysis a key step in compliance. Mantra Systems. 2025. Available from: https://mantrasystems.com/eu-mdr-compliance/gap-analysis
- 25. European Commission. Medical Device Coordination Group (MDCG) 2020 6: guidance on sufficient clinical evidence for legacy devices. 2020 Apr 22. Available from: https://health.ec.europa.eu/system/files/2020-09/md mdcg 2020 6 guidance sufficient clinical evidence en 0.pdf
- 26. Celegence. Strategies for successful PMCF under EU MDR: unlocking the mystery. Webinar. 2024 Mar 6. Available from: https://www.celegence.com/strategies-for-successful-pmcf-under-eumdrunlocking-the-mystery-webinar-medtech-intelligence/
- 27. Nüssler A. The new European Medical Device Regulation: friend or foe? Technovation. 2023;S0020-1383(23)00059-34. Available from: https://www.sciencedirect.com/science/article/pii/S0020138323005934
- 28. European Commission, Directorate-General for Health and Food Safety. MDCG 2025 6: FAQ on interplay between the Medical Devices Regulation (MDR) & In Vitro Diagnostic Medical Devices Regulation (IVDR) and the Artificial Intelligence Act (AIA). Luxembourg: European Commission; 19. Available from: Jun https://health.ec.europa.eu/document/download/b78a17d7-e3cd-4943-851de02a2f22bbb4 en?filename=mdcg 2025 6 en.pdf
- 29. HyScaler. Technology in healthcare: 7 key trends transforming medical device regulation (MDR) compliance by 2025. 2025 Jan 7. Available from: https://hyscaler.com/insights/transformingmedical-device-regulation/
- 30. Amaral C, Paiva M, Rodrigues AR, Veiga F, Bell V. Global regulatory challenges for medical devices: impact on innovation and market access. Appl Sci. 2024;14(20):9304. Available from: https://www.mdpi.com/2076-3417/14/20/9304

