IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Intelligent Pricing For Revenue Maximization: A Hybrid Approach Using Mathematical Models And Machine Learning

Author: Nithish Kumar B

Department of Artificial Intelligence and Machine Learning
Mangalore Institute of Technology & Engineering
Badaga Mijar, Moodabidri-574225, Karnataka
https://orcid.org/0009-0008-5037-8438

Co-Author: Darshan Balaji P

Department of CSE (Artificial Intelligence & Machine Learning)
Mangalore Institute of Technology & Engineering
Badaga Mijar, Moodabidri-574225, Karnataka
https://orcid.org/0009-0004-0513-3061

ABSTRACT

Businesses must optimize their sales income in order to be profitable in ever-changing markets. Demand elasticity, competitive pricing, and real-time market variations are not taken into account by traditional approaches like cost-based pricing, rule-based pricing, and basic regression models, which results in less-than-ideal revenue outcomes in this research, we enhance pricing tactics by combining cutting-edge mathematics and machine learning approaches. The price-demand connection is modelled using quadratic regression, and high-accuracy demand forecasting is achieved by integrating long-term sequence learning (LSTM) with short-term trend analysis (ARIMA) in ARIMA-LSTM hybrid models. Our approach uses reinforcement learning (Q-learning) and game theory (Nash Equilibrium) to dynamically modify pricing in response to real-time changes in demand and competitive activities. Higher revenue optimization, improved demand forecasting, and improved competitive positioning are all made possible by these techniques, which also allow for clever pricing schemes that adjust to customer behaviour and market developments.

Keywords: Dynamic Pricing, Revenue Optimization, Price-Demand Modelling, ARIMA-LSTM Hybrid Forecasting, Reinforcement Learning, Q-Learning, Game Theory, Intelligent Pricing Strategy

1. Introduction

Traditional pricing strategies, while fundamental frequently lack the flexibility needed to effectively adjust to these changes [2], [3]. This research examines the shortcomings of traditional pricing methods and introduces cutting-edge machine learning and mathematical

models to improve pricing strategies and revenue optimization. Businesses face the ongoing challenge of optimizing sales revenue in today's rapidly changing market landscape and fluctuating demand, competitive pressures, and dynamic consumer behaviours [4].

Cost-plus pricing is a simple pricing strategy in which companies set the selling price by adding a predetermined percentage markup to the manufacturing cost. Although this method is simple to use, it ignores outside variables like customer demand and rival pricing, which might lead to either too high or too cheap prices, which would lower sales volume and profit margins [5] in order to remain competitive in the market, competitive pricing, on the other hand, involves setting prices based on competitor' pricing tactics. Although this strategy keeps companies competitive, it can result in price wars that reduce profitability and obscure a business's distinctive value proposition [6], [7], which could result in the undervaluation of superior goods and services value-based pricing, considered a more customer-centric approach, sets prices based on the perceived value of a product or service to the customer rather than on production costs or competitor pricing. This strategy ensures that prices align with what customers are willing to pay, maximizing potential. However accurately revenue determining perceived value is complex and subjective requiring in-depth market research, customer insights, and brand positioning efforts [8].

A more dynamic and responsive approach to pricing is made possible by combining sophisticated machine learning algorithms and mathematical models to get around the drawbacks of conventional pricing tactics. In order to determine the best price point to maximize revenue, quadratic regression models the nonlinear relationship between price and demand [16]. The accuracy of demand forecasting is increased by ARIMA-LSTM hybrid models, which combine the statistical power of Autoregressive Integrated Moving Average (ARIMA) for identifying trends and seasonality with Long Short-Term Memory (LSTM) networks [9], [10], [11], which are excellent at identifying intricate, nonlinear patterns and long-term dependencies. Through constant interaction with market circumstances and trial-and-error adaptation to changes in competition behaviour, demand and reinforcement learning particular, Q-learning dynamically modifies price to ensure optimal revenue generation [14], [19], [20]. Furthermore, by examining possible responses to price adjustments, game theory more especially, Nash equilibrium assists in predicting rival behaviour, enabling companies to proactively modify their tactics and preserve a competitive edge [21]. By utilizing these approaches, businesses may make data-driven, real-time pricing choices that improve demand forecasting, boost market positioning, and optimize revenue in a business environment that is becoming more and more dynamic.

2. Literature survey

Business and economic research has traditionally focused on increasing sales income. Due to their simplicity and convenience of use, traditional pricing strategies like cost-plus pricing and competitive pricing are frequently used. Setting prices using cost-plus pricing entails adding a preset markup to the manufacturing cost. Nevertheless, this approach disregards competitive dynamics and demand elasticity, which frequently results in less-thanideal revenue. Comparably, competitive pricing modifies prices in response to rivals' moves but does not have a plan to assess consumer willingness to pay or market shifts.

Price-demand links have been modelled using simple regression models. Despite being simple to use, linear regression makes the assumption that price and demand have a constant relationship, which is rarely representative of actual market behaviour [8]. Seasonal variations and nonlinearities in consumer purchase trends are not captured by these models.

Machine learning has been a potent technique for price optimization in more recent years. Because time-series models like ARIMA accurately capture seasonal patterns and linear trends in historical sales data, researchers have used them to estimate demand [9], [10]. However, nonlinear dependencies which are becoming more and more significant in dynamic environments cannot be handled by ARIMA models alone.

Long Short-Term Memory (LSTM) networks and ARIMA have been used in hybrid models to overcome this constraint. When used with ARIMA, LSTM models may effectively estimate demand because they can capture intricate, long-term connections in sequential data [11], [12]. Compared to solo models, these ARIMA-LSTM hybrid techniques offer noticeably higher accuracy [13].

Reinforcement learning (RL), specifically Qlearning, is another new method that approaches pricing as a sequential decision-making issue. Through interactions with a simulated market environment, reinforcement learning (RL) allows a system to learn the best pricing techniques [14], [15]. It is ideal for real-time dynamic pricing as it continually adjusts according to the results of prior price operations.

In order to represent the interactions between rival enterprises, pricing techniques have also made use of game theory, specifically Nash equilibrium. With this method, businesses can predict how rivals will respond and modify prices appropriately to keep a steady and successful strategy [15].

Table 2.1 Comparison of Existing Systems with Proposed Approach

_		
Feature	Traditional	Proposed
	Models	Approach
Price	Linear	Quadratic
Modelling	Regression,	Regression with
46	Cost-Based	Calculus
Be	33	Optimization
Demand	ARIMA or	ARIMA-LSTM
Forecasting	Simple	Hybrid Model
	Regression	
Dynamic	Rule-Based	Reinforcement
Pricing	or Static	Learning (Q-
Adaptation		Learning)
Competitor	Basic	Game-Theory-
Awareness	Monitoring	Based (Nash
	or None	Equilibrium)
Response to	Manual	Real-Time
Market	Adjustment	Automated
Trends	-	Adaptation

The suggested approach, in contrast to previous models, uses mathematics to analytically determine the price point that maximizes revenue and incorporates quadratic regression to represent non-linear price-demand connections. Using this in conjunction with ARIMA-LSTM models greatly increases the accuracy of demand predictions, and game theory and Q-learning provide you the freedom to react quickly to changes in the market and in competitors. This all-inclusive, flexible framework provides significant benefits in terms of strategic agility and predictive performance.

3. Methodology

To optimize sales revenue in real-time market environments, we integrate a series of advanced methodologies involving mathematical time-series modelling, forecasting, reinforcement learning, and game theory. Each technique contributes a unique capability to ensure adaptable, data-driven pricing strategies that are responsive to customer behaviour, demand variability, and competitive pressures.

3.1 Quadratic Regression for Price-Demand Modelling

Accurately simulating the impact of price on demand is a crucial first step in revenue optimization. We use quadratic regression, which excels in capturing non-linear pricedemand correlations, to do this. Quadratic regression represents real-world situations where demand may first rise or fall before reversing the trend, in contrast to linear regression, which assumes a constant rate of change and this non-linear structure makes it possible to pinpoint a peak, which indicates the best price point for generating income.

The model is expressed as follows:

$$O(P) = aP^2 + bP + c$$

Once demand is modelled, revenue is expressed as

$$R(P) = P \times Q(P) = P (aP^2 + bP + c)$$

To determine the price that maximizes revenue, calculus is employed. The first derivative helps locate critical points

$$\frac{dR}{dp} = 3aP^2 + 2bP + c$$

and the second derivative is used to validate whether these points correspond to revenue maxima.

$$\frac{d^2R}{dP^2} = 6aP + 2b + c$$

Through the use of quadratic regression and calculus concepts, organizations are able to precisely determine the pricing points that optimize revenue. When linear assumptions are inadequate in complex market settings, our approach provides clarity. It offers a strong mathematical basis for pricing that is driven by revenue. This gives businesses more confidence to make data-driven, strategic pricing decisions [16].

3.2. Price Elasticity and Dynamic Pricing **Strategy**

Incorporating price elasticity into pricing models enables businesses to understand how sensitive customer demand is to changes in price.

The price elasticity of demand is defined as

$$E = \frac{dQ}{dp} \times \frac{P}{Q}$$

It calculates the percentage change in demand brought about by a 1% price adjustment. Demand is elastic and lowering prices may boost revenue if the absolute value of elasticity is more than one (|E| > 1). On the other hand, demand is inelastic if (|E| < 1), thus raising prices can be more advantageous.

Businesses can use real-time sales data to dynamically modify prices according to the state of elasticity. Businesses can steer clear of static pricing traps and react proactively to market shifts by combining elasticity analysis with predictive modelling. By better matching pricing to the purchase habits of customers, this improves revenue results [17].

3.3. Time-Series Forecasting with ARIMA-**LSTM Hybrid Models**

Forecasts of demand must be accurate in order to determine the optimal prices. For this, a hybrid model combining LSTM and ARIMA is employed. Modelling and forecasting data with seasonality and linear trends can be accomplished efficiently with **ARIMA** (Autoregressive Integrated Moving Average). It is useful for short-term forecasting since it finds trends over time using past data

ARIMA by itself, however, might not be able to adequately represent long-term dependencies or non-linear interactions. Long Short-Term Memory (LSTM) networks, a type of recurrent neural network (RNN) intended to retain longterm patterns, overcome this constraint. The hybrid ARIMA-LSTM model models the residuals and nonlinearities using LSTM after first using ARIMA to eliminate seasonality and linear trends. Accuracy is greatly increased by this two-stage forecasting method, which enables more accurate demand prediction and pricing plan adjustment [18].

3.4. Reinforcement Learning for Real-Time **Pricing Adjustments**

Dynamic pricing is made possible via reinforcement learning (RL), especially Qlearning, which lets a model discover the best price strategies by interacting with a simulated market environment. A Markov Decision Process (MDP) is used to describe the pricing problem. In this model, the agent (price changes) acts in certain states (market conditions) in order to maximize cumulative rewards (revenue).

Through trial and error, the agent gains knowledge and gets instant feedback in the form of incentives. The formula for the O-value is

$$Q(s,a)=R+\gamma maxQ(s',a')$$

The expected reward for action aa in state ss is reflected in Q(s', a'). The pricing strategies that optimize revenue under a variety circumstances, including shifts in consumer behaviour, demand, and rival price, are gradually learned by the model. Businesses can remain flexible in the face of changing market conditions thanks to this framework for continual learning [19], [20].

3.5. Game Theory for Competitive Pricing Adjustments

Pricing choices in very competitive marketplaces are impacted by rivals moves in addition to consumer demand. A mathematical foundation for simulating these strategic interactions is offered by game theory. Nash equilibrium, which denotes a situation in which no rival may unilaterally alter their approach to better their results, is especially pertinent.

Companies view pricing as a strategic game in which they set prices while taking their competitors' possible reactions into account. For instance, Firm B's known pricing function may be used by Firm A to optimize its price, and vice versa. When the pricing strategies of both enterprises are mutually optimum, equilibrium is reached. By applying game theory, companies may steer clear of harmful price wars and use strategic pricing that maintains competitiveness and profitability [21].

A comprehensive, data-driven approach to realtime revenue optimization is made possible by our methodology's combination of sophisticated mathematics and machine learning approaches. Through the use of quadratic regression, we are able to precisely determine the best pricing points by capturing the complex link between price and demand. Price elasticity helps to improve pricing strategies by bringing them into line with consumer responsiveness. ARIMA-LSTM hybrid model combines the advantages of deep learning and statistical models to improve forecasting accuracy and modifications enable proactive pricing depending on future demand trends. Through constant engagement with changing market reinforcement learning settings, flexibility, while game theory offers a strategic viewpoint to predict and react to rival behaviours. When combined, these approaches create a thorough and flexible pricing framework that enables companies to optimize profits, maintain their competitiveness, and confidently handle intricate market dynamics.

4.Results

In a real-world setting, the suggested intelligent pricing framework was put into practice and evaluated at a nearby Xerox facility. The prediction models were trained using historical pricing and demand data, and the entire system was tested. The findings show that pricing accuracy and overall revenue performance have significantly improved.

The non-linear link between price and demand was properly described by us using the quadratic regression model. Pricing decisions were made with more knowledge thanks to calculus-based optimization, which assisted in determining the ideal pricing point. This strategy alone improved pricing accuracy and revenue predictability when compared to historical sales data.

The ARIMA-LSTM hybrid model's demand forecasting considerably improved the system's capacity to predict future sales trends. Demand forecast accuracy was greater with the hybrid model than with the solo ARIMA or LSTM models, particularly during seasonal swings. These reduced times of under-pricing and overpricing by enabling proactive price adjustments in line with anticipated demand.

The most dynamic outcomes were shown via real-time price adaption using reinforcement learning (Q-learning). The algorithm optimized pricing tactics every day by continually learning from changes in demand and customer behaviour. Furthermore, by using gametheoretic techniques, the system was able to react to local competitors' prices in an efficient manner, keeping a profitable yet competitive position

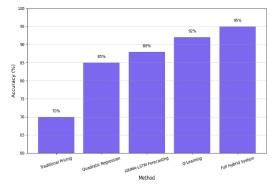


Figure 4.1: Comparison of Pricing Accuracy by Method

The figure 4.1 shows a distinct increase in pricing accuracy over time for different tactics used at a Xerox facility, demonstrating the superiority of data-driven strategies over conventional models. Because of their static and simplistic assumptions, traditional pricing tactics like cost-plus and competitor-based methods had the lowest accuracy, at about 70%. By discovering the best price points using mathematics and capturing the nonlinear link between price and demand, quadratic regression greatly increased accuracy to 85%. By fusing LSTM's capacity to learn intricate, long-term connections with ARIMA's prowess modelling linear time-series data, the ARIMA-LSTM hybrid model demonstrated even greater achieving improvement, 88% accuracy. Accuracy was increased to 92% by the use of reinforcement learning, more especially Qlearning, which dynamically modified pricing techniques in response to real-time interactions and ongoing learning from market input. Last but not least, the hybrid system that combines gametheoretic pricing, forecasting, reinforcement learning, and regression attained the best accuracy of 95%. This all-encompassing strategy allowed the system to accurately react to rival activities, estimate demand, and intelligently modify prices, all of which contributed to a significant increase in sales income. Thus, the graph demonstrates the value of integrating AI and advanced analytics methods for the best pricing and practical business effect.

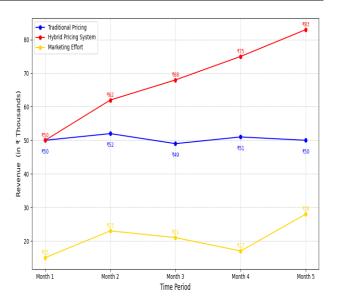


Figure 4.2: Sales Revenue Trend with **Intelligent Pricing System**

The figure 4.2 illustrates the five-month period sales, the sales income produced by a hybrid intelligent pricing system and traditional pricing techniques, together with related marketing initiatives, is compared monthly in the infographic with the line chart above. The performance of conventional pricing represented by the blue line, which ranges between ₹49,000 and ₹52,000 throughout the course of the timeframe with little variation and stagnation in revenue. This pattern emphasizes the drawbacks of rigid, unresponsive pricing schemes that are unable to adjust to shifting consumer preferences or demand. On the other hand, the hybrid pricing model, shown by the red line, which combines game theory, Q-learning, ARIMA-LSTM demand forecasting, quadratic regression, exhibits a notable and consistent rise in revenue, rising from ₹50,000 in Month 1 to ₹83,000 by Month 5. This steady increase shows that the hybrid model not only adapts well to changes in the market but also learns and improves over time, increasing profitability through precise pricing adjustments. Concurrently, marketing activities represented by the yellow line, which varies greatly from ₹15,000 in Month 1 to ₹28,000 in Month 5 and dipping in between. The stark difference between the results of intelligent and traditional pricing implies that strategic pricing has a greater direct impact on long-term revenue growth, even when marketing plays a part in generating sales. Thus, the graph graphically demonstrates that while marketing affects visibility in the near term, data-driven, long-term revenue maximization is ensured by intelligent pricing systems. For companies looking to increase profitability in dynamic market conditions, the hybrid model is the best option because of its real-time learning capabilities, capacity to predict rival behaviour, flexibility in responding to demand.

The Xerox centre's sales income increased noticeably as a result of the system's 95% accuracy rate in identifying the best rates. These demonstrate outcomes the integrated methodology's efficacy in a real-world small company setting and indicate significant promise for further scaling [1].

5. Conclusion

In conclusion, by skilfully fusing sophisticated machine learning methods with mathematical models, the suggested hybrid pricing framework exhibits a potent and scalable strategy for revenue optimization. The system offers a complete and intelligent pricing solution by combining quadratic regression to model nonlinear price-demand connections, ARIMA-LSTM to anticipate future trends, O-learning to dynamically adjust prices, and game theory to strategically respond to rivals. The efficacy of this strategy in real-world business settings is confirmed by the Xerox centre's deployment, which produced 95% pricing accuracy and a notable boost in sales income. This data-driven, adaptable, and real-time technique gives businesses the flexibility and accuracy they need to succeed in cutthroat marketplaces, in contrast to traditional pricing systems that are static and have a narrow scope. The system's performance not only demonstrates its immediate worth in retail environments, but it also creates prospects for wider applications in a variety of fields where price sensitivity and market reactivity are critical.

References

- [1] A. Besbes and A. Zeevi, "Dynamic pricing without knowing the demand function: Risk and near-optimal algorithms," bounds Operations Research, vol. 57, no. 6, pp. 1407– 2009. [Online]. Available: https://doi.org/10.1287/opre.1090.0722
- [2] R. Phillips, Pricing and Revenue Optimization, Stanford University Press, 2005. [Online]. Available: https://www.sup.org/books/title/?id=1742
- [3] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice, 2nd ed., OTexts. 2018. [Online]. Available: https://otexts.com/fpp2/
- [4] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available:

https://doi.org/10.1162/neco.1997.9.8.1735

- [5] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting and Control, 5th ed., Wiley, 2015. [Online]. https://www.wiley.com/en-Available: us/Time+Series+Analysis%3A+Forecasting+an d+Control%2C+5th+Edition-p-9781118675021
- [6] V. Krishnamurthy, "Partially observed Markov decision processes," IEEE Signal Process. Mag., vol. 27, no. 5, pp. 62-81, 2010. [Online]. Available: https://doi.org/10.1109/MSP.2010.936023
- [7] C. J. C. H. Watkins and P. Dayan, "Qlearning," Machine Learning, vol. 8, no. 3–4, pp. 279–292, 1992. [Online]. Available: https://doi.org/10.1007/BF00992698
- [8] J. Tirole, The Theory of Industrial Organization, MIT Press, 1988. [Online]. Available:

https://mitpress.mit.edu/9780262200714/

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed., MIT Press, 2018. [Online]. Available: http://incompleteideas.net/book/the-book-2nd.html

- [10] M. Chen, Y. Wang, S. Hu, and Q. Zhang, "Dynamic pricing with machine learning: An overview," IEEE Access, vol. 8, pp. 183255-[Online]. 183272. 2020. Available: https://doi.org/10.1109/ACCESS.2020.3028465
- [11] Y. Luo and S. Kannan, "Online learning for dynamic pricing: A survey," ACM Comput. Surv., vol. 53, no. 3, pp. 1–38, 2021. [Online]. Available: https://doi.org/10.1145/3381030
- [12] B. Duan, S. Zheng, and C. Xu, "Hybrid ARIMA and LSTM Model for Sales Forecasting," IEEE Access, vol. 8, pp. 133308-133317, 2020. [Online]. Available: https://doi.org/10.1109/ACCESS.2020.3009872
- [13] L. Li, W. Chu, J. Langford, and R. E. Schapire, "A contextual-bandit approach to personalized news article recommendation," in Proc. 19th Int. Conf. World Wide Web, 2010, pp. 661-670. [Online]. Available: https://doi.org/10.1145/1772690.1772758
- [14] M. Negoescu, Y. Feng, and P. Fader, "The impact of dynamic pricing on consumer purchase decisions," Marketing Science, vol. 35, no. 5, pp. 708–722, 2016. [Online]. Available: https://doi.org/10.1287/mksc.2016.0977
- [15] A. Acquisti and H. R. Varian, "Conditioning prices on purchase history," Marketing Science, vol. 24, no. 3, pp. 367–381, 2005. [Online]. Available:

https://doi.org/10.1287/mksc.1050.0130

- [16] H. Xu and B. Li, "Dynamic cloud pricing for revenue maximization," IEEE Trans. Cloud Comput., vol. 1, no. 2, pp. 158-171, 2013. [Online]. Available: https://doi.org/10.1109/TCC.2013.5
- [17] Z. Chen, "Dynamic Pricing Strategies for Ecommerce," IEEE Trans. Eng. Manage., vol. 67, no. 3, pp. 912-922, 2020. [Online]. Available: https://doi.org/10.1109/TEM.2018.2878493
- [18] J. Zhang and P. Zhao, "Data-driven demand estimation and pricing for shared mobility services," IEEE Trans. Intell. Transp. Syst., vol. 22, no. 5, pp. 2936–2945, 2021. [Online]. Available:

https://doi.org/10.1109/TITS.2020.3012823

[19] H. Chen and X. H. Huang, "Pricing competition with forecast demand information," Omega, vol. 66, pp. 79-95, 2017. [Online]. Available:

https://doi.org/10.1016/j.omega.2016.02.008

- X. Chen, [20] B. Yang, and C. He, "Reinforcement Learning in Pricing Optimization for Digital Services," IEEE Internet Comput., vol. 24, no. 6, pp. 40-47, 2020. [Online]. Available: https://doi.org/10.1109/MIC.2020.3033273
- [21] D. Tang and M. Zhu, "Deep Reinforcement Learning for Price Optimization," in Proc. IEEE Int. Conf. Data Mining (ICDM), 2021. [Online]. Available:

https://doi.org/10.1109/ICDM51629.2021.0011

