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Introduction and Preliminaries

Let (X, d) be a metric space. We denote the class of non empty and bounded subsets of X by B(X). For A,B €
B(X), function D(A, B) and §(4, B) are defined as follows:

D(A,B) = inf{d(a,b): a€ A, b€ B}

6(A,B) = sup{d(a,b): a€ A,bE B}
If A ={a} thenwewrite D(A,B) = D(a,B)and §(4,B) = 6(a, B). Also in addition, if B = { b }, then
D(A,B) = d(a,b)and §(4,B) = d(a,b). Obviously, D(A,B) < §(A,B). Forall A,B,C € B(X), the
definition of § (4, B) yields the following:

8(A,B) =68(B,A)

5(A,B) < 5(A,C) +68(C,B)

§(A,B) =0iff A =B ={a}

6(A,B) = diam A (Fisher 1981, and Iseki, 1983).
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Definition 1: (Beg and Butt, [2]) : Let A and B be two non empty subsets of a ordered set (X, <). The
relation between A and B is denoted and defined as follows:
A < B, ifforevery a € Athere exists b € B suchthat a < b.
We will utilize the following control function which is also referred to a Generalized distance
function.
Definition 2 : (Khan et al. [9]): A function ¢ : [0,00) — [0, ) iscalled a Generalized distance function
if the following properties are satisfied:
I. 1 IS monotone increasing and continuous,
ii. Y() = 0 ifandonlyift = 0.
In this paper we prove certain fixed point theorems for multi valued and single valued mappings in

such spaces, by using Generalized distance function. Our results extend some existing results.

Main Results
Theorem 2.1: Let (X, <) be a ordered set and suppose that there exists a metric d in X such that (X, d) is a

complete metric space. Let T : X — B(X) be a multivalued mapping such that the following conditions are

satisfied,;
i. there exists x, € X suchthat { xo} < Tx_0,
ii. for x,y € X,x < yimpliesTx < Ty,
iii.  if x,, = x isanon decreasing sequence in X, then x,, < x forall n,
1% Y(8(Tx, Ty)) < ap(max { D(x,Tx),D(y, Ty)}) + B (max {D(x,Ty),D(y,Tx)}) +

Y ¥ (d(x,y))
For all comparable x,y € X where «a,5,y € (0,1)suchthat 0 <a + 28+y < landy isan

Generalized distance function. Then T has a fixed point.

Proof: By the assumption (i) there exists x; € Tx, such that x, < x;. By the assumption (ii), Tx, < Tx;.
Then there exists x, € Tx; such that x; < x,. Continuing the process we construct a monotone increasing
sequence {x,} in Xsuch that x,,,1 € Tx, forall n> 0.Thuswehave x, < x; < x, < x3<...... <
Xn X Xps1 N evvn

If there exists a positive integer N such that x5y = x4, then x, is a fixed point of T. Hence we shall assume
that x,, # x,,, foralln > 0.

Using the monotone property of y and the condition (iv), we have for all n > 0,
Y (dCns1, Xn42)) < P(8 (Totn, Txne1))
¥ (8 (Txtn, Txne1)) < @ p(max { D, Tx), D (g1, Tn11)})
+B Y(max { D(xn, Txn11), D (Kns1, Txn)1) +ytp (d (i, Xns1))
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Y (d(xn+1: xn+2)) <a 1l)(max { d(xn» xn+1)' d(xn+1' xn+2)})
+B P (max { d(xp, Xn42), d (st X)) + ¥ W (d (G, Xni1))

There arise two cases.

Case - 1, if we take max { d(x,, Xn41), A(Xpt1, Xns2)} = d(x,, x,41) then,

ll}(d(xn, xn+1))

a+f +y

Y (d(xn41, Xn42)) < 1-p

Case - 2, if we take max { d(xp, Xp41), d(Xny1, Xna2)} = d(xpy1, Xne2) then,

¥ (dXne1 Xns2)) < 222 (dCen Xne1)

1-a-f

Since 0 < a + 2B +y < 1in both cases, which implies
Y (d(xn+1»xn+2)) <k d’(d(xn' xn+1)) (2.1)

B+y a+ﬁ+y}
1-a-B’ 1-8

Therefore, d(xp4+1, Xnt2) < d(x,, xn41) foralln = 0and {d(x,, x,+1)} IS monotone decreasing sequence

where k = max {

of non negative real numbers. Hence there exists an r = 0 such that,
d(Xp, Xp41) > T as N — o0, (2.2)
Taking the limitas n — oo in (2.1) and using the continuity of ¥, we have
Y ()< ky(r)
which is a contradiction unless r = 0.
Hence,
limy e d(Xp, Xpt1) = 0 (2.3)
Next we show that { x,,} is a Cauchy sequence. If otherwise, there exists an e > 0 for which we can find
two sequences of positive integers { m(k) } and { n(k)} such that for all positive integers k, n(k) >
m(k) > kand (e Xnao) = € -
Assume that n(k) is the smallest such positive integer, we get, n(k) > m(k) > k
d(xm(k),xn(k)) > e and d(xm(k),xn(k)_l) <eE€.
Now,
€ < d(Xm@y X)) S d(Xmo» Xno-1) + dx_(n(k) = 1), X))
that is,
€ < d(Xm(iy ¥nao) < € + d(Xngo-1 Xn()
Taking the limitas k — oo in the above inequality and (2.3), we have

limn_)oo d(xm(k),xn(k)) =€ (24)
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Again,
d(Xmey Xnao) < A(Xmay Xmao+1) + A(Xmy+1 Xn@o+1) +

d(Xn()+1 Xni))

and,
d(Xm@ 1 Xno+1) < At +1 Xmeo) + d(Xmeo, Xngo) +
d (X0 Xn(o+1)
Taking the limitas k — oo in the above inequality and (2.3) and (2.4), we have,
LMy o0 d(Xm@ 41 Xno+1) = € (2.5)
Again,
d(Xm@iy Xni) < A(Xmay Xngo+1) + d(Xng+1Xn ()
and,

d(xm@y Xn+1) < A(Xma Xnw) + d(Xn) Xni+1)
Taking the limit as k — oo in the above inequality and (2.3) and (2.4), we have,

limn_)oo d(xm(k),xn(k)+1) =€ (26)

Similarly we have that
limy e d(xn(k)txm(k)+1) =€ (2.7)
For each positive integer K, x,,x) and x,) are comparable. Then using the monotone property of ¢ and the

condition (iv), we have
15 (d(xm(k)+1'xn(k)+1)) =y (5 (Txm(k)thn(k)))

I (5 (Tmey» Txn(k))) < a yp(max {D(Xmao, TXmao)), D (%nae Txnao)})
+B ¥ (max { D(%m@w), Tnw))s D (Xniy Tman)}) +

vy (d(xm(k)’xn(k)))
By using (iv) and on taking limitas k — oo in the above inequality and (2.3) - (2.7), and using the continuity
of Y we have,
Y (e)< ky(e)

which is contradiction by virtue of a property of y.
Hence { x,,} is a Cauchy sequence. From the completeness of X, there existsa z € X such that

Xp— Z as n — oo (2.8)
By the assumption (iii), x,, < z, forall n.

Then by the monotone property of ¥ and the condition (iv), we have
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Y (d(xn41,T2)) < Y (6 (Txn,T(Z)))
By using (iv) and on taking limitas k — oo in the above inequality from (2.3) and (2.8), and using the
continuity of i we have,
1/}(6 (z, TZ)) <k 1/)((Dz, TZ)) < ky (6 (z, TZ)),

which implies that, § (z,Tz) = 0 orthat {z} = Tz.Moreover, z is a fixed point of T.
Corollary 2.2: Let (X, <) be a ordered set and suppose that there exists a metric d in X such that (X, d) is a
complete metric space. Let T : X — B(X) be a multivalued mapping such that the following conditions are
satisfied;

i. there exists x, € X such that { xo} < Tx,,

ii.  for x,y € X,x < yimpliesTx < Ty,

ii. ifx,, = xisanon decreasing sequence in X, then x,, < x forall n,

iv. 6(Tx,Ty) <amax{D(x,Tx),D(y,Ty)}

+B max { D(x,Ty),D(y,Tx)} +y d(x,y)

For all comparable x,y € X where a,f,y € (0,1)suchthat 0 <a + 28 +y < 1land\psi isan
Generalized distance function. Then T has a fixed point.
Proof: On takeing an identity function in Theorem 2.1, then the above result is true and noting to prove.
The following corollary is a spacial case of Theorem 2.1 when T is a singlevalued mapping.
Corollary 2.3: Let (X, <) bea ordered set and suppose that there exists a metric d in X such that (X, d) is a
complete metric space. Let T : X — X be a mapping such that the following conditions are satisfied;

i.  thereexists xq € X such that { xo} < Tx, ,

ii. for x,y€ X,x < yimpliesTx < Ty,

iii. ifx,, » xisanon decreasing sequence in X, thenx,,; < x forall n,

iv. lp(d(Tx, Ty)) < ay(max{d(x,Tx),d(y,Ty)})

+B ¥ (max {d(x,Ty),d(y,Tx)}) +vy ¢ (d(x,y))

For all comparable x,y € X where a,fB,y € (0,1)suchthat 0 <a + 28 +y < landy isan
Generalized distance function. Then T has a fixed point.
In the following theorem we replace condition (iii) of the above corollary by requiring T to be continuous.
Theorem 2.4: Let (X, <) bea ordered set and suppose that there exists a metric d in X such that (X, d) isa
complete metric space. Let T : X — X be a mapping such that the following conditions are satisfied;

i. there exists x, € X suchthat { x,} < Tx,,

. for x,y € X,x < yimpliesTx < Ty,
iii. w(d(Tx, Ty)) < ayp(max{d(x,Tx),d(y,Ty)})
+B Y (max {d(x, Ty),d(y, Tx)}) +y ¥ (d(x,y))
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For all comparable x,y € X where a,f,y € (0,1)suchthat 0 <a + 28 +y < landy isan
Generalized distance function. Then T has a fixed point.
Proof: We can treat T as a multivalued mapping in which case Tx is a singleton set for every x € X. Then we
consider the same sequence {x, } as in the proof of Theorem 2.1, Arguing exactly as in the proof of Theorem
2.1, we have that { x,,} is a Cauchy sequence and lim,,_,., (x,) = z. Then the continuity of T implies that,
z = limyo (Xpy1) = limy,oT(x,) = Tz
and this proves that z is a fixed point of T.
Theorem 2.5: Let (X, <) bea ordered set and suppose that there exists a metric d in X such that (X,d) isa
complete metric space. Let T : X — B(X) be a multivalued mapping such that the following conditions are
satisfied;

i. there exists x, € X such that { x,} < Tx_0,

ii. for x,y € X,x <y impliesTx < Ty,

iii. ifx, = xisanon decreasing sequence in X, then x,, < x forall n,

iv.  Y(6(Tx,Ty)) < Y(max{D(x,Tx),D(y,Ty)})

+ 9 (max { D(x, Ty), DG, T0)Y) +9 (dx))
—¢(max { 5(x,Tx),6(y, Ty), §(x, Ty), 8(y, Tx), d(x,y)})

For all comparable x,y € X where 1 is an Generalized distance function and ¢ : [0,) — [0, o) is any
continuous function with ¢ (t) = Oifandonly if t = 0. Then T has a fixed point.
Proof: We take the same sequence { x,} as in the proof of Theorem 2.1. If there exists a positive integer N
such that xy = xy41, then xy is a fixed point of T. Hence we shall assume that x,, # x,,.; foralln > 0.

Using the monotone property of 1 and the condition (iv), we have for alln > 0,
Y(dns1,%n12)) < W (8 (Txn, Txn41))
W(8(Txn, Txp1)) < W(max { D(xy, Txy), D(Xnp1, TXn41)}) +
Y (max { D (xp, Txn41), D (X1, T3 })
+ 1 (d () Xn41)) =
d(max {6Cxn, Txn), 6(Xp41, TxXn41), 8 O, TXn41), 8 (K1, TXn), d (O, X)) 3)
¥ (dQni1,%n42)) < P(max {dCen, Xn41), d (g1, ¥ns2)}) +
Y (max { d(xp, Xn12), d (K41, Xn41)})
+ (d(xn, Xn41))

_¢( max { d(xm xn+1)' d(xn+1: xn+2): d(xn: xn+2): d(xn+1' xn+1)' d(xn' xn+1)})
wd(xn+11 xn+2) < ¢(max { d(xn' xn+1)' d(xn+1' xn+2)}) + ¢(d(xn' xn+2)) +
l,[) (d(xnl xn+1))
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—p(max { d(xp, Xn11), d (K41, Xn12), A, Xnt2), 1)
Then from the above inequality we have,
¥ (dCnss, Xns2)) < ¥ (dCnsn ¥n12)) = ¢ (AConsr, Xnr2)

thatis, ¢ (d(xns1, Xns2)) < 0 which implies that (d(xy41,%nt2)) = 0,0rthat x,41 = Xpiz
contradicting our assumption that is x, # x,,, for each n.
Therefore, d(xXp41, Xnt2) < d(xg, Xp41) foralln = 0and {d(x,, x,+1)} is monotone decreasing sequence
of non negative real numbers. Hence there exists an r = 0 such that,

d(Xp, Xp41) > T as N> © (2.9)
Taking the limit as n - c and using the continuity of ¥, we have

Yy < Pr) —¢ ()
which is a contradiction unless r = 0.
Hence,

limy e d(xp, Xp4q) = 0 (2.10)
Next we show that { x,,} is a Cauchy sequence. If not then using an argument to that given in Theorem 2.1,

we can find two sequences of positive integers { m(k)} and {n(k)} for which,

iMoo A(Xm@y Xny) = € (2.11)
iMoo d(Xm@ys1 Xno+1) = € (212)

iMoo d(Xmae) Xngo+1) = € (2.13)
iMoo d(Xn), Xm@+1) = € (2.14)

for each positive integer K, x., k), Xn k) are comparable. Then using monotone property of i) and the condition

(iv), we have
¥ (d(xm(k)+1,xn(k)+1)) =y (5 (Txm(k)'Txnm))
1 (5 (Txm(k)'Txn(k)D < p(max { D(Xm@y TXm@i) D (Xnay T )})
+ ¥ (max {D (Xmao), TXn(w))> D (%ntey TXm) ) 1)
1 (d(tmeor Xnao))

—¢ <max { 8 (Xmaey TXmw) ) 8 (Xngiy Txn ) )» 8 (Xmaie, Txn(k)),}>
5(xn(k)' Txm(k))' d(xm(k), xn(k))

b (d(xm(k)+1'xn(k)+1)) < Y(max { d(Xmw, Xmw+1), d(Xngo, Xn+1)3)
+ ¥ (max { d(xma, Xn@w+1) A (Xt Xm@i+1)})
+ (d(xm(k)'xn(k)))
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_ ¢ ( max { d(xm(k); xm(k)+1), d(xn(k); xn(k)+1); d(xm(k)' xn(k)+1)’}>
d(xn(k)' xm(k)+1)' d(xm(k)' xn(k))

Letting k — oo in the above inequality, using (2.10)-(2.14) and the continuous of b and ¢, we have
Y(e) < yY(e) —o(e)
which contradiction by virtue of the property of ¢ .
Hence { x,,} is Cauchy sequence. From the completeness of X, there exists a z € X such that,
Xp—= Zas n-— o (2.15)
by the assumption of (iii), x, < z, foralln,

Then by the monotone property of 1 and the condition (iv), we have

Y (d(Xp1,T2)) < ¥ (S(Txn,T(Z)))

Y (8 (Txn T(@)) < (max { D(x, Tx,), D((2), T(2))}) +

¥ (max { D(x,, T(2)),D((2), Tx,)})
+ (d(xn @) -

oo (" i)
Taking the limitas n — oo in the above inequality and (2.10) and (2.15), we have,

¥(8 (2T@)) YD @T2) - (6 (27(2))
which implies that,

¥ (8(z7@)) 9@ @T@)) - ¢ (6(z 7))

Which is contradiction unless & (z,T(z)) = 0O orthat, z = Tz ; that is Z is a fixed point of T,

On taking ¥ an identity function in Theorem 2.5, we have the following result.
Corollary 2.6: Let (X, <) be a ordered set and suppose that there exists a metric d in X such that (X, d) is a
complete metric space. Let T : X — B(X) be a multivalued mapping such that the following conditions are
satisfied;

i. thereexists x, € X suchthat { x,} < Tx,,

ii. for x,y € X,x < yimpliesTx < Ty,

iii. ifx, — xisanon decreasing sequence in X, then x_n \preceq x for all n,

iv. &6(Tx,Ty) <max{D(x,Tx),D(y,Ty)}
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+ max{ D(x,Ty), D(y, Tx)} + (d(x,y)) —
¢p(max {6(x,Tx),6(y, Ty),8(x, Ty),8(y, Tx),d(x,y)})
For all comparable x, y € X where 1 is an Generalized distance function and ¢ : [0,00) — [0, o) is any

continuous function with ¢ (t) = Oifandonlyif ¢ = 0. Then T has a fixed point.
The following corollary is a special case of Theorem 2.5 when T is a singlevalued mapping.

Corollary 2.7: Let (X,<) be a ordered set and suppose that there exists a metric d in X such that (X, d) is a
complete metric space. Let T : X — X be a multivalued mapping such that the following conditions are
satisfied;

i. there exists x, € X suchthat { x,} < Tx,,

. for x,y € X,x < yimpliesTx < Ty,

iii. if x, = xisanon decreasing sequence in X, then x,, < x for all n,

iv.  Y(d(Tx,Ty)) < p(max {d(x,Tx),d(y,Ty)}) + ¥ (max {d(x,Ty),d(y,Tx)})

+Y (d(x,y)) — ¢(max {d(x,Tx),d(y, Ty),d(x,Ty),d(y,Tx),d(x,y)})

For all comparable x,y € X where 1 is an Generalized distance function and ¢ : [0,0) — [0, ) is any
continuous function with ¢ (t) = Oifandonlyif t = 0. Then T has a fixed point.
In the following theorem we replace condition (iii) of the above corollary by requiring T to be continuous.
Theorem 2.8: Let (X,<) bea ordered set and suppose that there exists a metric d in X such that (X,d) isa
complete metric space. Let T : X — X be a multivalued mapping such that the following conditions are
satisfied;

i. there exists x, € X such that { x,} < Tx_0,

. for x,y € X,x < yimpliesTx < Ty,

iii. l/)(d(Tx, Ty)) < Y(max {d(x,Tx),d(y,Ty)}) + ¢ (max{d(x,Ty),d(y,Tx)})

+Y (d(x,y)) — ¢(max {d(x,Tx),d(y,Ty),d(x,Ty),d(y, Tx),d(x,y)})
For all comparable x,y € X where i is an Generalized distance function and ¢ : [0, ) — [0, ) is any
continuous function with ¢ (t) = Oifandonlyif t = 0. Then T has a fixed point.
Proof: We can treat T as a multivalued mapping in which case Tx is a singleton set for every x € X. Then
we consider the same sequence { x,,} as in the proof of Theorem 2.5, Arguing exactly as in the proof of
Theorem 2.5, we have that { x,,} is a Cauchy sequence and lim,,_,o, (x,) = z. Then the continuity of T
implies that,
z = limyo (Xpy1) = limy, o T(x,) = Tz

and this proves that z is a fixed point of T.
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