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Introduction and Preliminaries 

Let (𝑋, 𝑑) be a metric space. We denote the class of non empty and bounded subsets of X by 𝐵(𝑋). For 𝐴, 𝐵 ∈

 𝐵(𝑋), function 𝐷(𝐴, 𝐵) and 𝛿(𝐴, 𝐵) are defined as follows: 

   𝐷(𝐴, 𝐵) =  𝑖𝑛𝑓 { 𝑑(𝑎, 𝑏) ∶  𝑎 ∈ 𝐴, 𝑏 ∈  𝐵 }   

   𝛿(𝐴, 𝐵) =  𝑠𝑢𝑝 { 𝑑(𝑎, 𝑏) ∶  𝑎 ∈ 𝐴, 𝑏 ∈  𝐵 }   

If  𝐴 = { 𝑎 }   then we write 𝐷(𝐴, 𝐵)  =  𝐷(𝑎, 𝐵) and  𝛿(𝐴, 𝐵)  = 𝛿(𝑎, 𝐵). Also in addition, if 𝐵 = { 𝑏 }, then 

𝐷(𝐴, 𝐵)  =  𝑑(𝑎, 𝑏) and 𝛿(𝐴, 𝐵)  =  𝑑(𝑎, 𝑏). Obviously, 𝐷(𝐴, 𝐵) ≤ 𝛿(𝐴, 𝐵). For all 𝐴, 𝐵, 𝐶 ∈  𝐵(𝑋), the 

definition of 𝛿(𝐴, 𝐵) yields the following:  

  

   𝛿(𝐴, 𝐵)  = 𝛿(𝐵, 𝐴)   

   𝛿(𝐴, 𝐵) ≤ 𝛿(𝐴, 𝐶)  + 𝛿(𝐶, 𝐵)   

   𝛿(𝐴, 𝐵)  = 0 iff  𝐴 =  𝐵 = { 𝑎 }   

   𝛿(𝐴, 𝐵)  =  𝑑𝑖𝑎𝑚 𝐴   (Fisher 1981, and Iseki, 1983). 
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Definition 1: (Beg and Butt, [2]) : Let A and B be two non empty subsets of a   ordered set (𝑋, ≼). The 

relation between A and B is denoted and defined as follows:  

𝐴 ≼  𝐵, if for every 𝑎 ∈  𝐴 there 𝑒𝑥𝑖𝑠𝑡𝑠  𝑏 ∈  𝐵 such that  𝑎 ≼  𝑏. 

 We will utilize the following control function which is also referred  to a Generalized  distance 

function. 

Definition 2 : (Khan et al. [9]):  A function  𝜓 ∶  [0, ∞)  →  [0, ∞)  is called a Generalized  distance function 

if the following properties are satisfied:  

i. 𝜓  is monotone increasing and continuous, 

ii. 𝜓(𝑡)  =  0  if and only if 𝑡 =  0. 

  In this paper we prove certain fixed point theorems for multi valued and single valued mappings in 

such spaces, by using Generalized  distance function. Our results extend some existing results. 

 

Main Results 

Theorem 2.1:  Let (𝑋, ≼) be a   ordered set and suppose that there exists a metric d in X such that (𝑋, 𝑑) is a 

complete metric space. Let 𝑇 ∶  𝑋 →  𝐵(𝑋) be a multivalued mapping such that the following conditions are 

satisfied; 

  

i.  there exists 𝑥0 ∈  𝑋 such that { 𝑥0} ≼  𝑇𝑥_0 , 

ii.  for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼  𝑦 implies 𝑇𝑥 ≼  𝑇𝑦, 

iii.  if 𝑥𝑛 →  𝑥 is a non decreasing sequence in X, then 𝑥𝑛 ≼  𝑥 for all n, 

iv.    𝜓(𝛿(𝑇𝑥, 𝑇𝑦)) ≤ 𝛼 𝜓(𝑚𝑎𝑥 { 𝐷(𝑥, 𝑇𝑥), 𝐷(𝑦, 𝑇𝑦)}) + 𝛽 𝜓 (𝑚𝑎𝑥 { 𝐷(𝑥, 𝑇𝑦), 𝐷(𝑦, 𝑇𝑥)})  +

𝛾 𝜓 (𝑑(𝑥, 𝑦))   

For all comparable 𝑥, 𝑦 ∈  𝑋 where  𝛼, 𝛽 , 𝛾 ∈  (0,1) such that  0 < 𝛼 +  2𝛽 + 𝛾 <  1 and 𝜓  is an 

Generalized  distance function. Then T has a fixed point. 

Proof: By the assumption (i) there exists 𝑥1 ∈  𝑇𝑥0 such that 𝑥0 ≼  𝑥1. By the assumption (ii), 𝑇𝑥0 ≼  𝑇𝑥1. 

Then there 𝑒𝑥𝑖𝑠𝑡𝑠 𝑥2 ∈  𝑇𝑥1 such that 𝑥1 ≼  𝑥2. Continuing the process we construct a monotone increasing 

sequence  { 𝑥𝑛}  in X such 𝑡ℎ𝑎𝑡 𝑥𝑛+1 ∈  𝑇𝑥𝑛  for all  𝑛 ≥   0. Thus we have 𝑥0 ≼  𝑥1 ≼  𝑥2 ≼  𝑥3 ≼ . . . . . . ≼

 𝑥𝑛 ≼   𝑥𝑛+1 ≼ . . . ..  

If there exists a positive integer N such that 𝑥𝑁  =  𝑥𝑁+1, then 𝑥𝑁 is a fixed point of T. Hence we shall assume 

that 𝑥𝑛 ≠  𝑥𝑛+1  for all 𝑛 ≥  0. 

Using the monotone property 𝑜𝑓 𝜓 and the condition (iv), we have for all 𝑛 ≥  0, 

   𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤   𝜓(𝛿 (𝑇𝑥𝑛, 𝑇𝑥𝑛+1))   

  𝜓 (𝛿 (𝑇𝑥𝑛, 𝑇𝑥𝑛+1)) ≤ 𝛼 𝜓(𝑚𝑎𝑥 { 𝐷(𝑥𝑛, 𝑇𝑥𝑛), 𝐷(𝑥𝑛+1, 𝑇𝑥𝑛+1)})    

      +𝛽 𝜓(𝑚𝑎𝑥 { 𝐷(𝑥𝑛, 𝑇𝑥𝑛+1), 𝐷(𝑥𝑛+1, 𝑇𝑥𝑛)})  +𝛾𝜓 (𝑑(𝑥𝑛, 𝑥𝑛+1))    
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   𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤ 𝛼 𝜓(𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2)})    

      +𝛽 𝜓 (𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+2), 𝑑(𝑥𝑛+1, 𝑥𝑛+1)})   + 𝛾 𝜓 (𝑑(𝑥𝑛, 𝑥𝑛+1))   

  

There arise two cases.  

Case - 1, if we take 𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2)}   =  𝑑(𝑥𝑛, 𝑥𝑛+1) then, 

    𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤  
𝛼 +𝛽 +𝛾

1 −𝛽
  𝜓(𝑑(𝑥𝑛, 𝑥𝑛+1))   

  

Case - 2, if we take 𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2)}   =  𝑑(𝑥𝑛+1, 𝑥𝑛+2)  then, 

  𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤  
 𝛽 +𝛾

1 −𝛼 –𝛽
  𝜓(𝑑(𝑥𝑛, 𝑥𝑛+1))   

Since  0 < 𝛼 +  2𝛽 + 𝛾 <  1 in both cases, which implies  

  𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤  𝑘  𝜓(𝑑(𝑥𝑛, 𝑥𝑛+1))      (2.1) 

  

where  𝑘 =  𝑚𝑎𝑥 { 
 𝛽 +𝛾

1 −𝛼 –𝛽
,

𝛼 +𝛽 +𝛾

1 –𝛽
} . 

Therefore, 𝑑(𝑥𝑛+1, 𝑥𝑛+2)  <   𝑑(𝑥𝑛, 𝑥𝑛+1) for all 𝑛 ≥  0 and  {𝑑(𝑥𝑛, 𝑥𝑛+1)}   is monotone decreasing sequence 

of non negative real numbers. Hence there exists an  𝑟 ≥  0 such that, 

   𝑑(𝑥𝑛, 𝑥𝑛+1) →  𝑟   𝑎𝑠   𝑛 → ∞ .     (2.2) 

Taking the limit as  𝑛 → ∞  in (2.1) and using the continuity of 𝜓, we have 

   𝜓 (𝑟) ≤  𝑘 𝜓 (𝑟)   

which is a contradiction unless  𝑟 =  0 .  

Hence,  

   𝑙𝑖𝑚𝑛→∞  𝑑(𝑥𝑛, 𝑥𝑛+1)  =  0      (2.3) 

Next we show that  { 𝑥𝑛}   is a Cauchy sequence. If otherwise, there exists an 𝜖 >  0 for which we can find 

two sequences of positive integers {   𝑚(𝑘) }  𝑎𝑛𝑑 { 𝑛(𝑘)}  such that for all positive integers k,  𝑛(𝑘)  >

 𝑚(𝑘)  >  𝑘 and (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≥ 𝜖 . 

Assume that n(k) is the smallest such positive integer, we get,  𝑛(𝑘) >  𝑚(𝑘) >  𝑘  

   𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≥ 𝜖 and 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1)  < 𝜖. 

Now, 

   𝜖 ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1)  +  𝑑(𝑥_(𝑛(𝑘) − 1), 𝑥𝑛(𝑘))    

that is, 

     𝜖 ≤ 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤ 𝜖 +  𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) 

Taking the limit as  𝑘 → ∞   in the above inequality and (2.3), we have 

    𝑙𝑖𝑚𝑛→∞  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))  = 𝜖      (2.4) 

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882 

IJCRT2510306 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c580 
 

Again, 

    𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)+1)  +  𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1) +

 𝑑(𝑥𝑛(𝑘)+1, 𝑥𝑛(𝑘)) 

and, 

    𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1) ≤  𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑚(𝑘))  +  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) +

 𝑑(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1)  

Taking the limit as  𝑘 → ∞  in the above inequality and (2.3) and (2.4), we have, 

    𝑙𝑖𝑚𝑛→∞ 𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1)  = 𝜖     (2.5) 

Again, 

   𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1)  +  𝑑(𝑥𝑛(𝑘)+1, 𝑥𝑛(𝑘))  

and, 

   𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1) ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))  +  𝑑(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1) 

Taking the limit 𝑎𝑠  𝑘 → ∞  in the above inequality and (2.3) and (2.4), we have, 

    𝑙𝑖𝑚𝑛→∞   𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1)  = 𝜖         (2.6) 

 

Similarly we have that 

    𝑙𝑖𝑚𝑛→∞  𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)+1)  = 𝜖      (2.7) 

For each positive integer k, 𝑥𝑚(𝑘) and 𝑥𝑛(𝑘) are comparable. Then using the monotone property of 𝜓 and the 

condition (iv), we have 

   𝜓 (𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1)) ≤  𝜓 (𝛿 (𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘)))  

   𝜓 (𝛿 (𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))) ≤ 𝛼 𝜓(𝑚𝑎𝑥 {𝐷(𝑥𝑚(𝑘), 𝑇𝑥𝑚(𝑘)), 𝐷(𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘))})    

     +𝛽 𝜓 (𝑚𝑎𝑥 { 𝐷(𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘)), 𝐷(𝑥𝑛(𝑘), 𝑇𝑥𝑚(𝑘))})  +

𝛾 𝜓 (𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)))  

By using (iv) and on taking  limit as  𝑘 → ∞  in the above inequality and (2.3) - (2.7), and using the continuity 

of 𝜓  we have, 

   𝜓 (𝜖) ≤  𝑘 𝜓 (𝜖)  

which is contradiction by virtue of a property of 𝜓. 

𝐻𝑒𝑛𝑐𝑒 { 𝑥𝑛} is a Cauchy sequence. From the completeness of X, there exists a  𝑧 ∈  𝑋 such that  

    𝑥𝑛 →  𝑧   𝑎𝑠   𝑛 → ∞      (2.8) 

By the assumption (iii), 𝑥𝑛 ≼  𝑧 , for all n. 

Then by the monotone property of 𝜓 and the condition (iv), we have 
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    𝜓 (𝑑(𝑥𝑛+1, 𝑇𝑧)) ≤   𝜓 (𝛿 (𝑇𝑥𝑛, 𝑇(𝑧))) 

By using (iv) and on taking  limit as  𝑘 → ∞  in the above inequality from (2.3) and (2.8), and using the 

continuity of 𝜓  we have, 

    𝜓(𝛿 (𝑧, 𝑇𝑧)) ≤  𝑘 𝜓((𝐷𝑧, 𝑇𝑧)) ≤  𝑘 𝜓 (𝛿 (𝑧, 𝑇𝑧)), 

which implies that,  𝛿 (𝑧, 𝑇𝑧)  =  0  or that  { 𝑧 } =  𝑇𝑧 . Moreover, z is a fixed point of T. 

Corollary 2.2: Let (𝑋, ≼) be a   ordered set and suppose that there exists a metric d in X such that (𝑋, 𝑑) is a 

complete metric space. Let 𝑇 ∶  𝑋 → 𝐵(𝑋) be a multivalued mapping such that the following conditions are 

satisfied; 

i.  there exists 𝑥0 ∈ 𝑋 such that { 𝑥0} ≼  𝑇𝑥0 , 

ii.  for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼  𝑦 implies 𝑇𝑥 ≼ 𝑇𝑦, 

iii.  if 𝑥𝑛 →  𝑥 is a non decreasing sequence in X, then 𝑥𝑛 ≼  𝑥 for all n, 

iv.  𝛿(𝑇𝑥, 𝑇𝑦) ≤ 𝛼 max{ 𝐷(𝑥, 𝑇𝑥), 𝐷(𝑦, 𝑇𝑦)}  

    +𝛽 𝑚𝑎𝑥 { 𝐷(𝑥, 𝑇𝑦), 𝐷(𝑦, 𝑇𝑥)}  + 𝛾 𝑑(𝑥, 𝑦) 

For all comparable 𝑥, 𝑦 ∈  𝑋 where  𝛼 , 𝛽 , 𝛾 ∈  (0,1) such that  0 < 𝛼 +  2𝛽 + 𝛾 <  1 and \𝑝𝑠𝑖  is an 

Generalized  distance function. Then T has a fixed point. 

Proof: On takeing an identity function in Theorem 2.1, then the above result is true and noting to prove.  

The following corollary is a spacial case of Theorem 2.1 when T is a singlevalued mapping. 

Corollary 2.3: Let (𝑋, ≼) be a   ordered set and suppose that there exists a metric d in X such that (𝑋, 𝑑) is a 

complete metric space. Let 𝑇 ∶  𝑋 →  𝑋 be a mapping such that the following conditions are satisfied; 

i. there exists 𝑥0 ∈  𝑋 such that { 𝑥0} ≼ 𝑇𝑥0 , 

ii.  for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼  𝑦 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑇𝑥 ≼  𝑇𝑦, 

iii.  if 𝑥𝑛 →  𝑥 is a non decreasing sequence in X, then 𝑥𝑛 ≼  𝑥 for all n, 

iv.  𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝛼 𝜓(max{ 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)})  

    +𝛽 𝜓 (𝑚𝑎𝑥 {𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)} )  + 𝛾 𝜓 (𝑑(𝑥, 𝑦))  

For all comparable 𝑥, 𝑦 ∈ 𝑋 where  𝛼 , 𝛽 , 𝛾 ∈  (0,1) such that  0 < 𝛼 +  2𝛽 + 𝛾 <  1 and 𝜓  is an 

Generalized  distance function. Then T has a fixed point. 

In the following theorem we replace condition (iii) of the above corollary by requiring T to be continuous. 

Theorem 2.4: Let (𝑋, ≼) be a   ordered set and suppose that there exists a metric d in X such that (𝑋, 𝑑) is a 

complete metric space. Let 𝑇 ∶  𝑋 →  𝑋 be a mapping such that the following conditions are satisfied; 

i.  there exists 𝑥0 ∈  𝑋 such that { 𝑥0} ≼  𝑇𝑥0 , 

ii.  for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼  𝑦 implies 𝑇𝑥 ≼  𝑇𝑦, 

iii.  𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝛼 𝜓(𝑚𝑎𝑥 { 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)})   

   +𝛽 𝜓 (𝑚𝑎𝑥 { 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)}) + 𝛾 𝜓 (𝑑(𝑥, 𝑦))   
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For all comparable 𝑥, 𝑦 ∈  𝑋 where  𝛼 , 𝛽 , 𝛾 ∈   (0,1) such that  0 < 𝛼 +  2𝛽 + 𝛾 <  1 and 𝜓  is an 

Generalized  distance function. Then T has a fixed point. 

Proof: We can treat T as a multivalued mapping in which case 𝑇𝑥 is a singleton set for every  𝑥 ∈  𝑋. Then we 

consider the same sequence {𝑥𝑛 }  as in the proof of Theorem 2.1, Arguing exactly as in the proof of Theorem 

2.1, we have that { 𝑥𝑛}  is a Cauchy sequence and 𝑙𝑖𝑚𝑛→∞  (𝑥𝑛)  =  𝑧. Then the continuity of T implies that, 

 𝑧 =  𝑙𝑖𝑚𝑛→∞ (𝑥𝑛+1)  =  𝑙𝑖𝑚𝑛→∞ 𝑇(𝑥𝑛)  =  𝑇𝑧  

and this proves that z is a fixed point of T. 

Theorem 2.5: Let (𝑋, ≼) be a   ordered set and suppose that there exists a metric d in X such that (𝑋, 𝑑) is a 

complete metric space. Let 𝑇 ∶  𝑋 →  𝐵(𝑋) be a multivalued mapping such that the following conditions are 

satisfied; 

i.  there exists 𝑥0 ∈  𝑋 such that { 𝑥0} ≼  𝑇𝑥_0 , 

ii.  for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼ 𝑦 implies 𝑇𝑥 ≼  𝑇𝑦, 

iii.  if 𝑥𝑛 →  𝑥 is a non decreasing sequence in X, then 𝑥𝑛 ≼  𝑥 for all n, 

iv.    𝜓(𝛿(𝑇𝑥, 𝑇𝑦)) ≤   𝜓(𝑚𝑎𝑥 { 𝐷(𝑥, 𝑇𝑥), 𝐷(𝑦, 𝑇𝑦)})    

    +  𝜓 (𝑚𝑎𝑥 { 𝐷(𝑥, 𝑇𝑦), 𝐷(𝑦, 𝑇𝑥)})  +𝜓 (𝑑(𝑥, 𝑦)) 

    −𝜙( 𝑚𝑎𝑥 { 𝛿(𝑥, 𝑇𝑥), 𝛿(𝑦, 𝑇𝑦), 𝛿(𝑥, 𝑇𝑦), 𝛿(𝑦, 𝑇𝑥), 𝑑(𝑥, 𝑦)})   

For all comparable 𝑥, 𝑦 ∈  𝑋 where  𝜓  is an Generalized  distance function 𝑎𝑛𝑑 𝜙 ∶  [0, ∞) →  [0, ∞) is any 

continuous function 𝑤𝑖𝑡ℎ 𝜙 (𝑡)  =  0 if and only 𝑖𝑓  𝑡 =  0. Then T has a fixed point. 

Proof:  We take the same sequence  { 𝑥𝑛}  as in the proof of Theorem 2.1. If there exists a positive integer N 

such that 𝑥𝑁 =  𝑥𝑁+1, then 𝑥𝑁 is a fixed point of T. Hence we shall assume that 𝑥𝑛 ≠  𝑥𝑛+1  for all 𝑛 ≥  0. 

Using the monotone property of 𝜓 and the condition (iv), we have for all 𝑛 ≥  0, 

 𝜓(𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤   𝜓 (𝛿 (𝑇𝑥𝑛, 𝑇𝑥𝑛+1))  

  𝜓(𝛿(𝑇𝑥𝑛, 𝑇𝑥𝑛+1)) ≤   𝜓(𝑚𝑎𝑥 { 𝐷(𝑥𝑛, 𝑇𝑥𝑛), 𝐷(𝑥𝑛+1, 𝑇𝑥𝑛+1)})   +

  𝜓 (𝑚𝑎𝑥 { 𝐷(𝑥𝑛, 𝑇𝑥𝑛+1), 𝐷(𝑥𝑛+1, 𝑇𝑥𝑛)})  

         + 𝜓 (𝑑(𝑥𝑛, 𝑥𝑛+1)) −

𝜙( 𝑚𝑎𝑥 {𝛿(𝑥𝑛, 𝑇𝑥𝑛), 𝛿( 𝑥𝑛+1, 𝑇𝑥𝑛+1), 𝛿(𝑥𝑛, 𝑇𝑥𝑛+1), 𝛿(𝑥𝑛+1, 𝑇𝑥𝑛), 𝑑(𝑥𝑛, 𝑥𝑛+1) })  

  𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤    𝜓(𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2)} )  +

  𝜓 (𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+2), 𝑑(𝑥𝑛+1, 𝑥𝑛+1)} )    

       +𝜓 (𝑑(𝑥𝑛, 𝑥𝑛+1))  

  

  −𝜙( 𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2), 𝑑(𝑥𝑛, 𝑥𝑛+2), 𝑑(𝑥𝑛+1, 𝑥𝑛+1), 𝑑(𝑥𝑛, 𝑥𝑛+1)})   

  𝜓𝑑(𝑥𝑛+1, 𝑥𝑛+2)  ≤    𝜓(𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2)})  +   𝜓(𝑑(𝑥𝑛, 𝑥𝑛+2))  +

𝜓 (𝑑(𝑥𝑛, 𝑥𝑛+1))    
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    −𝜙( 𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2), 𝑑(𝑥𝑛, 𝑥𝑛+2), })   

Then from the above inequality we have, 

 𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤ 𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2))  − 𝜙 (𝑑(𝑥𝑛+1, 𝑥𝑛+2))  

that is , 𝜙 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤  0 which implies that  (𝑑(𝑥𝑛+1, 𝑥𝑛+2))  =  0, or that  𝑥𝑛+1  =  𝑥𝑛+2, 

contradicting our assumption that is  𝑥𝑛 ≠ 𝑥𝑛+1 for each n. 

Therefore, 𝑑(𝑥𝑛+1, 𝑥𝑛+2)  <   𝑑(𝑥𝑛, 𝑥𝑛+1) for all 𝑛 ≥  0 and  { 𝑑(𝑥𝑛, 𝑥𝑛+1)}  is monotone decreasing sequence 

of non negative real numbers. Hence there exists 𝑎𝑛  𝑟 ≥  0 such that, 

  𝑑(𝑥𝑛, 𝑥𝑛+1) →  𝑟   𝑎𝑠  𝑛 →  ∞       (2.9) 

Taking the limit 𝑎𝑠  𝑛 → ∞   and using the continuity of 𝜓, we have 

  𝜓 (𝑟) ≤   𝜓 (𝑟)  − 𝜙 (𝑟)        

which is a contradiction 𝑢𝑛𝑙𝑒𝑠𝑠  𝑟 =  0 .  

Hence,  

  𝑙𝑖𝑚𝑛→∞ 𝑑(𝑥𝑛, 𝑥𝑛+1)  =  0       (2.10) 

Next we show that  { 𝑥𝑛} is a Cauchy sequence. If not then using an argument to that given in Theorem 2.1,    

we can find two sequences of positive integers { 𝑚(𝑘)}  𝑎𝑛𝑑 {𝑛(𝑘)}  for which, 

  𝑙𝑖𝑚𝑘→∞  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))  = 𝜖       (2.11) 

  𝑙𝑖𝑚𝑘→∞  𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1)  = 𝜖      (2.12) 

  𝑙𝑖𝑚𝑘→∞ 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1)  = 𝜖       (2.13) 

  𝑙𝑖𝑚𝑘→∞ 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)+1)  = 𝜖       (2.14) 

for each positive integer k, 𝑥𝑚(𝑘), 𝑥𝑛(𝑘) are comparable. Then using monotone property of 𝜓 and the condition 

(iv), we have 

  𝜓 (𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1)) ≤ 𝜓 (𝛿(𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘)))  

  𝜓 (𝛿 (𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))) ≤   𝜓(𝑚𝑎𝑥 { 𝐷(𝑥𝑚(𝑘), 𝑇𝑥𝑚(𝑘)), 𝐷(𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘))} )    

      +  𝜓 (𝑚𝑎𝑥 {𝐷(𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘)), 𝐷(𝑥𝑛(𝑘), 𝑇𝑥𝑚(𝑘))})    

      +𝜓 (𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)))  

     −𝜙 (max {
 𝛿(𝑥𝑚(𝑘), 𝑇𝑥𝑚(𝑘)), 𝛿(𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘)), 𝛿(𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘)),

𝛿(𝑥𝑛(𝑘), 𝑇𝑥𝑚(𝑘)), 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))
})    

  𝜓 (𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1)) ≤   𝜓(𝑚𝑎𝑥 { 𝑑(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)+1), 𝑑(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1)} )   

      +  𝜓 (𝑚𝑎𝑥 { 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1), 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)+1)})   

       +𝜓 (𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)))      
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 − 𝜙 ( 𝑚𝑎𝑥 {
 𝑑(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)+1), 𝑑(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1), 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1),

𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)+1), 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))
})    

  

Letting  𝑘 → ∞ in the above inequality, using (2.10)-(2.14) and the continuous of 𝜓  and 𝜙, we have 

   𝜓(𝜖) ≤ 𝜓(𝜖)  − 𝜙(𝜖)  

which contradiction by virtue of the property of 𝜙 .  

Hence { 𝑥𝑛} is Cauchy sequence. From the completeness of X, there exists a  𝑧 ∈  𝑋 such that, 

    𝑥𝑛 →  𝑧  𝑎𝑠     𝑛 → ∞     (2.15) 

by the assumption of (iii),  𝑥𝑛 ≼  𝑧 , for all n, 

Then by the monotone property of  𝜓 and the condition (iv), we have 

  𝜓 (𝑑(𝑥𝑛+1, 𝑇𝑧)) ≤   𝜓 (𝛿(𝑇𝑥𝑛, 𝑇(𝑧)))  

    𝜓 (𝛿 (𝑇𝑥𝑛, 𝑇(𝑧))) ≤   𝜓(𝑚𝑎𝑥 { 𝐷(𝑥𝑛, 𝑇𝑥𝑛), 𝐷((𝑧), 𝑇(𝑧))})   +

  𝜓 (𝑚𝑎𝑥 { 𝐷(𝑥𝑛, 𝑇(𝑧)), 𝐷((𝑧), 𝑇𝑥𝑛)} )    

     +𝜓 (𝑑(𝑥𝑛, (𝑧))) −

𝜙 ( 𝑚𝑎𝑥 {
 𝛿(𝑥𝑛, 𝑇𝑥𝑛), 𝛿((𝑧), 𝑇(𝑧)), 𝛿(𝑥𝑛, 𝑇(𝑧)),

𝛿((𝑧), 𝑇𝑥𝑛), 𝑑(𝑥𝑛, (𝑧))
})     

Taking the limit as  𝑛 → ∞  in the above inequality and (2.10) and (2.15), we have, 

   𝜓 (𝛿 (𝑧, 𝑇(𝑧))) ≤ 𝜓(𝐷(𝑧, 𝑇𝑧))  − 𝜙 (𝛿 (𝑧, 𝑇(𝑧)))  

which implies that, 

𝜓 (𝛿(𝑧, 𝑇(𝑧))) ≤ 𝜓(𝛿 (𝑧, 𝑇(𝑧))) − 𝜙 (𝛿(𝑧, 𝑇(𝑧))) 

Which is contradiction unless 𝛿 (𝑧, 𝑇(𝑧))  =  0 or that,  𝑧 =  𝑇𝑧 ; that is Z is a fixed point of T. 

  

On taking 𝜓 an identity function in Theorem 2.5, we have the following result. 

Corollary 2.6: Let (𝑋, ≼) be a   ordered set and suppose that there exists a metric d in X such that (𝑋, 𝑑) is a 

complete metric space. Let 𝑇 ∶  𝑋 →  𝐵(𝑋) be a multivalued mapping such that the following conditions are 

satisfied; 

i.  there exists 𝑥0 ∈  𝑋 such that { 𝑥0} ≼  𝑇𝑥0, 

ii.  for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼  𝑦 implies 𝑇𝑥 ≼  𝑇𝑦, 

iii.  if 𝑥𝑛 → 𝑥 is a non decreasing sequence in X, then 𝑥_𝑛 \𝑝𝑟𝑒𝑐𝑒𝑞 𝑥 for all n, 

iv.  𝛿(𝑇𝑥, 𝑇𝑦) ≤ max{ 𝐷(𝑥, 𝑇𝑥), 𝐷(𝑦, 𝑇𝑦)}  
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   + max{ 𝐷(𝑥, 𝑇𝑦), 𝐷(𝑦, 𝑇𝑥)} +  (𝑑(𝑥, 𝑦)) −

𝜙( 𝑚𝑎𝑥 { 𝛿(𝑥, 𝑇𝑥), 𝛿(𝑦, 𝑇𝑦), 𝛿(𝑥, 𝑇𝑦), 𝛿(𝑦, 𝑇𝑥), 𝑑(𝑥, 𝑦)})   

For all comparable 𝑥, 𝑦 ∈ 𝑋 where  𝜓  is an Generalized  distance function and 𝜙 ∶  [0, ∞) →  [0, ∞) is any 

continuous function with 𝜙 (𝑡)  =  0 if and only if  𝑡 =  0. Then T has a fixed point. 

  

The following corollary is a special case of Theorem 2.5 when T is a singlevalued mapping. 

  

Corollary 2.7: Let (𝑋, ≼) be a   ordered set and suppose that there exists a metric d in X such that (𝑋, 𝑑) is a 

complete metric space. Let 𝑇 ∶  𝑋 →  𝑋 be a multivalued mapping such that the following conditions are 

satisfied; 

i.  there exists 𝑥0 ∈  𝑋 such that { 𝑥0} ≼  𝑇𝑥0 , 

ii.  for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼  𝑦 implies 𝑇𝑥 ≼  𝑇𝑦, 

iii.  𝑖𝑓 𝑥𝑛 →  𝑥 is a non decreasing sequence in X, then 𝑥𝑛 ≼  𝑥 for all n, 

iv. 𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) ≤   𝜓(𝑚𝑎𝑥 { 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)})   +   𝜓 (𝑚𝑎𝑥 { 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)})   

     +𝜓 (𝑑(𝑥, 𝑦))  − 𝜙( 𝑚𝑎𝑥 { 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥), 𝑑(𝑥, 𝑦)})   

For all comparable 𝑥, 𝑦 ∈  𝑋 where  𝜓  is an Generalized  distance function and 𝜙 ∶  [0, ∞) →  [0, ∞) is any 

continuous function with 𝜙 (𝑡)  =  0 if and only if  𝑡 =  0. Then T has a fixed point. 

In the following theorem we replace condition (iii) of the above corollary by requiring T to be continuous. 

Theorem 2.8: Let (𝑋, ≼) be a   ordered set and suppose that there exists a metric d in X such that (𝑋, 𝑑) is a 

complete metric space. Let 𝑇 ∶  𝑋 →  𝑋 be a multivalued mapping such that the following conditions are 

satisfied; 

i.  there exists 𝑥0 ∈  𝑋 such that { 𝑥0} ≼  𝑇𝑥_0 , 

ii.  for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼  𝑦 implies 𝑇𝑥 ≼  𝑇𝑦, 

iii. 𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) ≤   𝜓(𝑚𝑎𝑥 { 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)})   +   𝜓 (𝑚𝑎𝑥 { 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)})   

    +𝜓 (𝑑(𝑥, 𝑦))  − 𝜙( 𝑚𝑎𝑥 {𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥), 𝑑(𝑥, 𝑦)})  

For all comparable 𝑥, 𝑦 ∈  𝑋 where  𝜓  is an Generalized  distance function and 𝜙 ∶  [0, ∞) →  [0, ∞) is any 

continuous function with 𝜙 (𝑡)  =  0 if and only if  𝑡 =  0. Then T has a fixed point. 

Proof: We can treat T as a multivalued mapping in which 𝑐𝑎𝑠𝑒 𝑇𝑥 is a singleton set for every  𝑥 ∈  𝑋. Then 

we consider the same sequence { 𝑥𝑛}  as in the proof of Theorem 2.5, Arguing exactly as in the proof of 

Theorem 2.5, we have that { 𝑥𝑛}  is a Cauchy sequence and 𝑙𝑖𝑚𝑛→∞ (𝑥𝑛)  =  𝑧. Then the continuity of T 

implies that, 

    𝑧 =  𝑙𝑖𝑚𝑛→∞ (𝑥𝑛+1)  =  𝑙𝑖𝑚𝑛→ ∞ 𝑇(𝑥𝑛)  =  𝑇𝑧 

 and this proves that z is a fixed point of T. 
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