
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

IJCRT2510303 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c554

Enhancing Frequent Pattern Mining Through

Dynamic Mapreduce And Pruning Optimization

In Apache Spark And Hadoop Frameworks

S Usha Manjari¹, Dr. Vikrant Sabnis², Dr. Jay Kumar Jain³

¹Research Scholar, Mansarovar Global University, Bhopal, India

²Professor, Department of Computer Science, Faculty of Engineering and Technology, Mansarovar

Global University, Bhopal, India

³Assistant Professor, Department of Mathematics, Bioinformatics and Computer Applications, Maulana

Azad National Institute of Technology, Bhopal, Madhya Pradesh, India

ORCID IDs: 0009-0004-7118-1897, 009-0007-8623-6602, 0000-0002-9590-0006

Abstract

The exponential expansion of big data has emphasized the necessity for efficient frequent pattern mining

(FPM) techniques capable of extracting meaningful insights from massive datasets. This study integrates

and enhances previous research on optimizing the Apriori algorithm for distributed computing

environments, particularly Apache Spark and Hadoop MapReduce. A Dynamic MapReduce approach

combined with pruning optimization is proposed to minimize computational complexity and execution

time. The enhanced Apriori algorithm achieved an execution time of 43.20 seconds under an optimal

configuration of three mappers and two reducers in Apache Spark, compared to 83.20 seconds without

pruning. Similarly, in Hadoop MapReduce, a dynamic configuration with five mappers and three reducers

achieved 83.84 seconds, outperforming the static configuration (150.37 seconds). The results

demonstrate that adaptive resource allocation and pruning based on the anti-monotone property can

substantially improve scalability and efficiency. The findings have practical implications for data-

intensive domains such as retail and healthcare, where optimized frequent pattern mining enables faster

and more accurate decision-making.

Keywords

Apriori Algorithm, Dynamic MapReduce, Apache Spark, Pruning Techniques, Frequent Pattern Mining

1. Introduction

1.1 Background and Importance of Frequent Pattern Mining

Frequent pattern mining is a cornerstone of data analysis, enabling the discovery of recurring itemsets

and association rules that reveal meaningful insights from large datasets [1]. This technique is pivotal in

domains such as market basket analysis, where it identifies logical relationships in transactional data, and

extends to applications in healthcare, finance, and cybersecurity [2]. The exponential growth of data

volumes in the big data era has amplified the need for efficient mining techniques to handle complex and

high-dimensional datasets [3]. Frequent pattern mining facilitates the extraction of actionable patterns,

such as consumer purchasing behaviors, which are critical for strategic decision-making in retail and

beyond [4].

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

IJCRT2510303 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c555

1.2 Challenges with Traditional Apriori Algorithm

The Apriori algorithm, introduced by Agrawal et al. [5], is a foundational method for frequent pattern

mining, iteratively identifying frequent itemsets and generating association rules. However, its

computational complexity escalates with dataset size due to the exponential growth of candidate itemsets,

leading to high execution times and resource demands [6]. Traditional implementations struggle with

scalability, requiring multiple database scans and generating numerous candidate sets, many of which

fail to meet minimum support thresholds [7]. These limitations necessitate optimization strategies to

enhance the algorithm's performance in big data environments [8].

1.3 Objectives of the Research Summary

This research summary aims to synthesize findings from two studies that optimize the Apriori algorithm

for frequent pattern mining in distributed computing environments, specifically Apache Spark and

MapReduce frameworks [9, 10]. The objectives include evaluating the impact of Dynamic MapReduce

configurations on execution time, assessing the efficacy of pruning techniques in reducing computational

overhead, and providing practical insights for improving scalability and efficiency in large-scale data

analysis [8]. By integrating parallel processing and pruning strategies, this summary highlights

advancements in addressing the computational challenges of traditional Apriori implementations [11].

2. Literature Review

2.1 Apriori Algorithm and Its Limitations

The Apriori algorithm, a seminal method for frequent pattern mining, identifies frequent itemsets and

generates association rules through an iterative process [12]. It begins by counting individual items to

find those meeting a minimum support threshold, then iteratively combines these to form larger itemsets

[13]. However, its computational complexity grows exponentially with dataset size due to the generation

of numerous candidate itemsets, many of which fail to meet support thresholds, leading to high execution

times and resource demands [14]. This scalability challenge is particularly pronounced in big data

contexts, where traditional Apriori implementations struggle with multiple database scans and memory

constraints [15].

2.2 Distributed Computing with MapReduce and Apache Spark

Distributed computing paradigms like MapReduce and Apache Spark have transformed the processing

of large-scale datasets [16]. MapReduce, introduced by Dean and Ghemawat [17], enables parallel

processing by distributing tasks across cluster nodes, enhancing scalability. Apache Spark, with its in-

memory processing capabilities, further accelerates iterative algorithms like Apriori by reducing I/O

overhead [18]. Studies have demonstrated that Spark-based implementations partition datasets across

nodes, parallelizing candidate generation and counting tasks to improve performance over single-node

configurations [19]. However, optimal resource allocation, such as the number of mappers and reducers,

remains critical for maximizing efficiency [20].

2.3 Pruning Techniques in Frequent Pattern Mining

Pruning techniques are essential for reducing the computational overhead of the Apriori algorithm by

eliminating non-frequent itemsets early in the process [21]. The anti-monotone property, which states

that all subsets of a frequent itemset must also be frequent, is commonly used to filter out candidate

itemsets that cannot meet the minimum support threshold [22]. Advanced pruning methods, such as

adaptive minimum support thresholds and probabilistic pruning, further optimize the search space by

dynamically adjusting based on dataset characteristics [23]. These techniques significantly reduce the

number of candidates itemsets, thereby decreasing execution time and resource consumption [24].

2.4 Integration of MapReduce and Pruning in Apriori Optimization

Combining MapReduce with pruning techniques has emerged as a powerful approach to enhance

Apriori’s performance in distributed environments [25]. Research indicates that integrating pruning with

MapReduce reduces the search space by eliminating non-viable candidates during the mapping phase,

leading to substantial improvements in execution time [26]. For instance, Spark-based implementations

with pruning have shown reduced runtimes by leveraging parallel processing and the anti-monotone

property [27]. This hybrid approach optimizes resource utilization and enhances scalability, making it

suitable for large-scale frequent pattern mining in big data applications [28].

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

IJCRT2510303 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c556

3. Research Objectives

3.1 Optimizing Mapper-Reducer Configurations

This objective focuses on evaluating the impact of varying mapper and reducer configurations on the

performance of the Apriori algorithm within Dynamic MapReduce frameworks. By systematically

testing different combinations of mappers and reducers in Apache Spark and MapReduce environments,

the goal is to identify the optimal setup that minimizes execution time while maximizing resource

utilization. The aim is to determine how workload distribution across mappers and reducers affects

computational efficiency, particularly for large-scale datasets, to enhance the scalability of frequent

pattern mining.

3.2 Enhancing Efficiency with Pruning Techniques

The second objective is to investigate the integration of advanced pruning techniques within distributed

computing environments, specifically Apache Spark, to streamline the frequent pattern mining process.

This involves implementing and assessing pruning strategies, such as those leveraging the anti-monotone

property, to eliminate non-frequent itemsets early in the computation. The goal is to reduce computational

overhead, decrease execution times, and improve the overall efficiency and scalability of the Apriori

algorithm for big data applications.

4. Methodology

4.1 Data Collection and Preprocessing

The methodology begins with the collection of a diverse retail transactional dataset, capturing a range of

consumer purchasing patterns. Preprocessing involves handling missing values, standardizing data

formats, and ensuring compatibility with the Apriori algorithm. The dataset is cleaned to remove

inconsistencies and transformed into a suitable format for distributed processing, enabling efficient

frequent pattern mining across large-scale data.

4.2 Implementation of Apriori in Apache Spark and MapReduce

The Apriori algorithm is implemented in two distributed computing environments: Apache Spark and

MapReduce. In Apache Spark, the algorithm leverages in-memory processing to perform iterative

candidate generation and support counting. In the MapReduce framework, the AprioriMR algorithm is

developed to distribute computational tasks across cluster nodes, processing sub databases to generate

key-value pairs for itemsets and their support counts.

4.3 Dynamic MapReduce Configuration

Dynamic MapReduce configurations are employed to optimize resource allocation by adaptively

adjusting the number of mappers and reducers based on workload characteristics and system load.

Various configurations are tested, ranging from 1 to 5 mappers and 1 to 4 reducers, to identify the setup

that minimizes execution time while balancing computational resources in both Spark and MapReduce

environments.

4.4 Pruning Strategies in Distributed Environments

Pruning techniques, primarily based on the anti-monotone property, are integrated into the Apriori

algorithm to reduce the search space. These strategies eliminate candidate itemsets unlikely to meet the

minimum support threshold during the mapping phase. In Apache Spark, adaptive pruning thresholds are

applied to further enhance efficiency, minimizing unnecessary computations in distributed settings.

4.5 Experimental Setup and Evaluation Metrics

Experiments are conducted on a cluster environment using Apache Spark and Hadoop MapReduce

platforms. The retail dataset is processed with varying mapper-reducer configurations, with and without

pruning, to measure performance. Key evaluation metrics include execution time, resource utilization,

and scalability. Results are analyzed to compare the efficiency of static versus dynamic MapReduce

configurations and the impact of pruning on computational overhead.

5. Findings and Analysis

5.1 Performance of Dynamic MapReduce in Apache Spark

The Dynamic MapReduce Apriori algorithm implemented in Apache Spark demonstrated notable

performance improvements. Experiments with varying mapper and reducer configurations revealed that

the optimal setup of 3 mappers and 2 reducers achieved an execution time of 83.20 seconds,

outperforming other configurations with times ranging from 84.11 to 85.21 seconds. This configuration

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

IJCRT2510303 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c557

effectively balanced workload distribution, leveraging Spark’s in-memory processing to enhance

scalability and reduce computational overhead for large-scale frequent pattern mining.

Table 1: Dynamic MapReduce Apriori Algorithm Results in Apache Spark

No. of Mappers No. of Reducers Execution Time (seconds)

1 1 84.03

2 1 85.21

3 2 83.20

4 1 84.11

5.2 Impact of Pruning Techniques on Execution Time

Integrating pruning techniques, based on the anti-monotone property, into the Apache Spark environment

significantly reduced execution times. The optimal configuration of 3 mappers and 2 reducers with

pruning achieved an execution time of 43.05 seconds, a substantial improvement over the 83.20 seconds

without pruning. Across various configurations, pruning consistently lowered execution times to a range

of 43.20 to 45.21 seconds, highlighting its effectiveness in eliminating non-frequent itemsets early and

reducing computational complexity.

Table 2: Dynamic MapReduce Apriori with Pruning in Apache Spark\

No. of Mappers No. of Reducers Execution Time (seconds)

1 1 44.12

2 1 45.56

3 2 43.05

4 1 44.79

5.3 Comparative Analysis of Static vs. Dynamic MapReduce Configurations

The comparison between static and dynamic MapReduce configurations underscored the advantages of

adaptive approaches. In the MapReduce framework, the static AprioriMR configuration with

predetermined mappers and reducers recorded an execution time of 150.37 seconds. In contrast, the

dynamic configuration, adjusting up to 5 mappers and 3 reducers based on workload, achieved a reduced

execution time of 83.84 seconds. This demonstrates that dynamic resource allocation optimizes

performance by adapting to dataset characteristics and system load, significantly enhancing scalability

for large datasets.

5.4 Consumer Behavior Insights from Retail Dataset

Analysis of the retail dataset revealed actionable consumer purchasing patterns. Association rules

identified strong correlations, such as “(strong cheese, shrimp, spaghetti) → (mineral water)” and “(oil,

milk, parmesan cheese) → (spaghetti),” indicating preferences for gourmet combinations. Rules like

“(whole wheat pasta, shrimp, pancakes) → (milk)” highlighted a balance between health-conscious and

indulgent choices. These insights suggest opportunities for retailers to implement targeted promotions

and strategic product placements, leveraging cross-category associations to optimize sales strategies.

6. Discussion

6.1 Implications for Scalability and Efficiency

The findings demonstrate that Dynamic MapReduce configurations and pruning techniques significantly

enhance the scalability and efficiency of the Apriori algorithm in distributed computing environments.

The optimal setup of 3 mappers and 2 reducers in Apache Spark, achieving an execution time of 43.05

seconds with pruning, underscores the potential of adaptive resource allocation to handle large-scale

datasets. This approach minimizes computational overhead and maximizes resource utilization, enabling

frequent pattern mining to scale effectively with increasing data volumes. The ability to dynamically

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

IJCRT2510303 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c558

adjust mappers and reducers based on workload characteristics offers a flexible framework that can adapt

to varying system conditions, paving the way for robust big data processing solutions.

6.2 Practical Applications in Big Data Environments

The optimized Apriori algorithm has broad applications in big data environments, particularly in retail,

healthcare, and finance. In retail, the identified association rules, such as “(strong cheese, shrimp,

spaghetti) → (mineral water),” enable targeted marketing strategies and optimized product placements,

enhancing customer engagement and sales. In healthcare, frequent pattern mining can uncover patterns

in patient data to improve treatment plans, while in finance, it can detect fraudulent transactions by

identifying unusual patterns. The reduced execution times and improved scalability make this approach

viable for real-time or near-real-time analysis in data-intensive industries, where rapid insights are critical

for decision-making.

6.3 Limitations and Challenges

Despite its advancements, the optimized Apriori algorithm faces several limitations. The reliance on

predefined minimum support thresholds may overlook less frequent but potentially valuable patterns,

limiting the algorithm’s flexibility. Additionally, the computational cost of generating association rules

remains high for extremely large datasets, even with pruning. Dynamic MapReduce configurations

require careful tuning to avoid resource underutilization or bottlenecks, which can be challenging in

heterogeneous cluster environments. Furthermore, the approach assumes uniform data distribution, and

skewed datasets may lead to imbalanced workloads, impacting performance. Addressing these challenges

requires further exploration of adaptive thresholding and load-balancing strategies.

7. Conclusion

7.1 Summary of Key Findings

This research summary highlights the significant advancements achieved in optimizing the Apriori

algorithm for frequent pattern mining. The integration of Dynamic MapReduce in Apache Spark, with

an optimal configuration of 3 mappers and 2 reducers, reduced execution time to 83.20 seconds, while

pruning techniques further lowered it to 43.05 seconds. In the MapReduce framework, dynamic

configurations outperformed static ones, achieving an execution time of 83.84 seconds compared to

150.37 seconds. These improvements demonstrate the efficacy of adaptive resource allocation and

pruning in enhancing computational efficiency. Additionally, the retail dataset analysis revealed

actionable consumer behavior insights, such as strong associations like “(strong cheese, shrimp,

spaghetti) → (mineral water),” underscoring the practical value of the optimized algorithm.

7.2 Contributions to Frequent Pattern Mining

The study contributes to frequent pattern mining by presenting a scalable and efficient framework for

processing large datasets. The combination of Dynamic MapReduce and pruning techniques addresses

the computational bottlenecks of traditional Apriori implementations, offering a robust solution for big

data environments. The demonstrated reductions in execution time enable faster pattern discovery,

facilitating real-time applications in retail, healthcare, and other data-intensive domains. Furthermore,

the insights into optimal mapper-reducer configurations and pruning strategies provide practical guidance

for practitioners, advancing the field’s ability to handle the challenges of big data analytics.

8.0 References

[1] L. Liu, J. Wen, Z. Zheng, and H. Su, "An improved approach for mining association rules in parallel

using Spark Streaming," Int. J. Circuit Theory Appl., vol. 49, no. 4, pp. 1028-1039, 2021.

[2] M. Sornalakshmi, S. Balamurali, M. Venkatesulu, M. N. Krishnan, L. K. Ramasamy, S. Kadry, and

S. Lim, "An efficient apriori algorithm for frequent pattern mining using mapreduce in healthcare data,"

Bull. Electr. Eng. Inform., vol. 10, no. 1, pp. 390-403, 2021.

[3] Apache Spark, "Apache Spark: Lightning-fast cluster computing," [Online]. Available: , 2010.

[4] S. Kumar and K. K. Mohbey, "A review on big data based parallel and distributed approaches of

pattern mining," J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 5, pp. 1639-1662, 2022.

[5] L. Abualigah and B. A. Masri, "Advances in MapReduce big data processing: platform, tools, and

algorithms," in Artificial Intelligence and IoT: Smart Convergence for Eco-friendly Topography, pp.

105-128, 2021.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

IJCRT2510303 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c559

[6] S. Raj, D. Ramesh, M. Sreenu, and K. K. Sethi, "EAFIM: efficient apriori-based frequent itemset

mining algorithm on Spark for big transactional data," Knowl. Inf. Syst., vol. 62, pp. 3565-3583, 2020.

[7] N. Verma, D. Malhotra, and J. Singh, "Big data analytics for retail industry using MapReduce-Apriori

framework," J. Manag. Anal., vol. 7, no. 3, pp. 424-442, 2020.

[8] S. Chormunge and R. Mehta, "Comparison analysis of extracting frequent itemsets algorithms using

MapReduce," in Intelligent Data Communication Technologies and Internet of Things: Proceedings of

ICICI 2020, Springer Singapore, pp. 199-210, 2021.

[9] R. Agrawal and R. Srikant, "Fast algorithms for mining association rules," in Proc. 20th Int. Conf.

Very Large Data Bases, VLDB, pp. 487-499, 1994.

[10] A. Soni, A. Saxena, and P. Bajaj, "A methodological approach for mining the user requirements

using apriori algorithm," J. Cases Inf. Technol., vol. 22, no. 4, pp. 1-30, 2020.

[11] M. R. Al-Bana, M. S. Farhan, and N. A. Othman, "An efficient spark-based hybrid frequent itemset

mining algorithm for big data," Data, vol. 7, no. 1, p. 11, 2022.

[12] R. Agrawal and R. Srikant, "Fast algorithms for mining association rules," in Proc. 20th Int. Conf.

Very Large Data Bases, VLDB, pp. 487-499, 1994.

[13] A. Soni, A. Saxena, and P. Bajaj, "A methodological approach for mining the user requirements

using apriori algorithm," J. Cases Inf. Technol., vol. 22, no. 4, pp. 1-30, 2020.

[14] S. Kumar and K. K. Mohbey, "A review on big data based parallel and distributed approaches of

pattern mining," J. King Saud Univ.-Comput. Inf. Sci., vol. 34, no. 5, pp. 1639-1662, 2022.

[15] M. Shawkat, M. Badawi, S. El-ghamrawy, R. Arnous, and A. El-desoky, "An optimized FP-growth

algorithm for discovery of association rules," J. Supercomput., vol. 78, no. 4, pp. 5479-5506, 2022.

[16] L. Abualigah and B. A. Masri, "Advances in MapReduce big data processing: platform, tools, and

algorithms," in Artificial Intelligence and IoT: Smart Convergence for Eco-friendly Topography, pp.

105-128, 2021.

[17] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters.

Communications of the ACM.

[18] Apache Spark, "Apache Spark: Lightning-fast cluster computing," [Online]. Available: , 2010.

[19] M. R. Al-Bana, M. S. Farhan, and N. A. Othman, "An efficient spark-based hybrid frequent itemset

mining algorithm for big data," Data, vol. 7, no. 1, p. 11, 2022.

[20] N. Verma, D. Malhotra, and J. Singh, "Big data analytics for retail industry using MapReduce-

Apriori framework," J. Manag. Anal., vol. 7, no. 3, pp. 424-442, 2020.

[21] S. Raj, D. Ramesh, M. Sreenu, and K. K. Sethi, "EAFIM: efficient apriori-based frequent itemset

mining algorithm on Spark for big transactional data," Knowl. Inf. Syst., vol. 62, pp. 3565-3583, 2020.

[22] C. Fernandez-Basso, M. D. Ruiz, and M. J. Martin-Bautista, "New spark solutions for distributed

frequent itemset and association rule mining algorithms," Cluster Comput., vol. 27, no. 2, pp. 1217-1234,

2024.

[23] Z. Zhao, Z. Jian, G. S. Gaba, R. Alroobaea, M. Masud, and S. Rubaiee, "An improved association

rule mining algorithm for large data," J. Intell. Syst., vol. 30, no. 1, pp. 750-762, 2021.

[24] S. Chormunge and R. Mehta, "Comparison analysis of extracting frequent itemsets algorithms using

MapReduce," in Intelligent Data Communication Technologies and Internet of Things: Proceedings of

ICICI 2020, Springer Singapore, pp. 199-210, 2021.

[25] M. Sornalakshmi, S. Balamurali, M. Venkatesulu, M. N. Krishnan, L. K. Ramasamy, S. Kadry, and

S. Lim, "An efficient apriori algorithm for frequent pattern mining using mapreduce in healthcare data,"

Bull. Electr. Eng. Inform., vol. 10, no. 1, pp. 390-403, 2021.

[26] L. Luo, C. Wang, C. Zhou, and Q. Li, "An adaptive Apriori algorithm for mining association rules

based on MapReduce," J. Parallel Distrib. Comput., vol. 99, pp. 82-91, 2017.

[27] P. Gupta and V. Sawant, "A Parallel Apriori Algorithm and FP-Growth Based on SPARK," in ITM

Web Conf., vol. 40, p. 03046, 2021.

[28] P. S. Sundari and M. Subaji, "An improved hidden behavioral pattern mining approach to enhance

the performance of recommendation system in a big data environment," J. King Saud Univ.-Comput. Inf.

Sci., vol. 34, no. 10, pp. 8390-8400, 2022.

http://www.ijcrt.org/

