IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A Review On Object Detection Techniques: From Traditional Methods To Deep Learning Approaches

Sayyed Humaira Ali

Department of Electronics and Tele Communication Engineering, Govt. College of Engineering Amravati

Abstract

Object detection plays a crucial role in modern computer vision, enabling applications ranging from autonomous driving and surveillance to robotics and healthcare. Traditional methods relied on handcrafted features such as Haar, HOG, and SIFT combined with classical classifiers like SVM and Adaboost. However, the advent of deep learning revolutionized object detection through Convolutional Neural Networks (CNNs) and advanced models such as the R-CNN family, YOLO, SSD, and Transformers. This review compares traditional and deep learning-based methods, summarizing their advantages, limitations, and applications while highlighting current challenges and potential future research directions.

Index Terms—Object detection, computer vision, deep learning, CNN, YOLO, SSD, transformers, image processing.

1 Introduction

Object detection is a fundamental task in computer vision that involves identifying and locating objects within an image or video. It extends beyond image classification by providing both the category and spatial location of multiple objects. Object detection techniques have evolved significantly, transitioning from handcrafted feature-based methods to deep learning and transformer-based approaches. This review explores these advancements and provides a comparative analysis of different methods.

2 Traditional Object Detection Techniques

Before the deep learning era, object detection relied heavily on manual feature extraction and classical machine learning algorithms. These methods focused on designing descriptors that captured essential image properties like edges, gradients, and textures. 2.1 Feature Extraction Techniques Common handcrafted features include Haar-like features, HOG (Histogram of Oriented Gradients), SIFT (Scale-Invariant Feature Transform), and SURF (Speeded-Up Robust Features).

IJCRT2510276 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | c314

Feature extraction is a critical step in traditional object detection. The Histogram of Oriented Gradients (HOG) [3] method captures edge directions and gradient structures to identify object shapes. The Scale-Invariant Feature Transform (SIFT) [3] extracts distinctive keypoints that remain robust against scaling, rotation, and illumination changes. Similarly, Speeded-Up Robust Features (SURF) [3] is a faster alternative to SIFT that utilizes integral images and approximations for real-time detection tasks. 2.2 Classification Methods Machine learning classifiers such as Support Vector Machines (SVM) [1], Adaboost [1], and Random Forests [1] were used for classification. The Viola–Jones face detector (2001) is one of the earliest successes using Haar features with Adaboost [1].

Support Vector Machines (SVM) [1] are supervised learning models that find optimal hyperplanes to separate object classes. Adaboost [1] is an ensemble technique that combines weak classifiers, such as decision stumps, into a strong classifier — it gained popularity in early face detection models. Random Forests [1] employ multiple decision trees to enhance accuracy and generalization, offering robustness to overfitting. 2.3 Limitations These traditional methods struggled with variations in scale, illumination, and occlusion, and required extensive feature engineering.

Traditional techniques suffer from several drawbacks. They rely on handcrafted features that require expert knowledge and do not generalize well across datasets. These models perform poorly in complex backgrounds or when objects vary in orientation, scale, or lighting. Moreover, their high computational cost and inability to process large-scale data limit their use in real-time applications.

3 Deep Learning-based Object Detection Techniques

The introduction of Convolutional Neural Networks (CNNs) marked a paradigm shift in object detection. Deep learning models automatically learn hierarchical representations of data, improving accuracy and robustness. 3.1 Region-based CNN Family R-CNN, Fast R-CNN [2], and Faster R-CNN [2] introduced region proposal methods combined with CNN feature extraction, achieving high accuracy but with slower inference.

The Region-based Convolutional Neural Network (R-CNN) [2] introduced the concept of region proposals combined with CNN feature extraction. Fast R-CNN [2] improved training speed by sharing convolutional computations, while Faster R-CNN [2] further optimized performance with a Region Proposal Network (RPN), achieving both accuracy and efficiency. 3.2 Single-Shot Detectors YOLO [3] (You Only Look Once), SSD [3] (Single Shot MultiBox Detector), and RetinaNet [3] offered real-time detection with trade-offs between speed and precision.

Single-shot detectors like YOLO [3] and SSD [3] perform detection and classification in one pass, significantly improving inference time. YOLO [3] divides the image into grids and predicts bounding boxes directly, while SSD [3] detects objects at multiple feature map scales. RetinaNet [3] introduced the Focal Loss to handle class imbalance, achieving an excellent balance between speed and precision. 3.3 Transformer-based and Hybrid Models DETR (Detection Transformer) and its successors such as Deformable DETR [4] and Swin Transformer [4] leverage self-attention mechanisms for end-to-end detection.

Transformer-based models [4], such as DETR, replace traditional anchor-based detection with an attention mechanism that captures global relationships in the image. Deformable DETR [4] enhances this by integrating multi-scale deformable attention, while hybrid CNN-transformer architectures like Swin Transformer [4] combine local feature extraction with contextual understanding for superior accuracy. 3.4 Performance Metrics Common evaluation metrics include mean Average Precision (mAP), Intersection over Union (IoU), and Frames per Second (FPS).

Performance metrics [5] are vital for evaluating object detection models. The mean Average Precision (mAP) measures detection accuracy across object classes. Intersection over Union (IoU) quantifies overlap between predicted and actual bounding boxes, and Frames Per Second (FPS) indicates inference speed, critical for real-time systems.

5Existing Applications

Deep learning-based object detection has found extensive applications across various domains. In autonomous driving [1], algorithms like YOLO and Faster R-CNN are used for real-time detection of pedestrians, vehicles, and traffic signs to enhance safety. In healthcare [2], CNN-based models assist in medical image analysis by detecting tumors, lesions, and other abnormalities in X-rays, CT scans, and MRIs, improving diagnostic accuracy and treatment planning.

6 Challenges and Future Directions

Despite remarkable progress, several challenges remain. Object detection models require large annotated datasets, often struggle with small object detection, and must balance speed with accuracy. Future trends include lightweight transformers, edge AI deployment, and multimodal learning for robust real-world performance.

7 Conclusion

This review summarized the evolution of object detection techniques from handcrafted feature-based methods to modern deep learning and transformer-based models. Deep learning has drastically improved detection performance, but further research is needed to address generalization, efficiency, and scalability challenges.

References

[1] Zou et al., 'Object Detection in 20 Years: A Survey,' IEEE TPAMI, 2023. [2] Liu et al., 'Deep Learning for Generic Object Detection: A Survey,' IJCV, 2020. [3] Bochkovskiy et al., 'YOLOv4: Optimal Speed and Accuracy of Object Detection, 'arXiv, 2020. [4] Carion et al., 'End-to-End Object Detection with Transformers (DETR), ECCV, 2020. [5] Zhao et al., 'A Review on Deep Learning-based Object Detection,' IEEE Access, 2019.