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Abstract: QR codes have become a widespread means for conveying URLS and other information in a quick, 

scannable format. However, this convenience has also created ways for cyber threats, where attackers embed 

malicious URLs that lead to phishing sites, malware downloads or other harmful content. This project presents 

a Malicious QR detection Module that uses machine learning to assess the safety of the URLs embedded 

within the QR codes. By extracting and analysing embedded URLs, the system classifies QR codes as either 

malicious or non-malicious based on learned patterns associated with cyber threats. The URL is normalized; 

features are extracted and vectorized such that a trained model can detect indicators of compromise and can 

enhance user security by warning against unsafe links before engagement. 
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I. INTRODUCTION 

QR codes have become a standard interface for quick access to websites, applications, and services in sectors 

ranging from retail and banking to healthcare and transportation. However, this convenience has also made 

them a target for exploitation by cybercriminals. Malicious QR codes can embed URLs that direct 

unsuspecting users to phishing websites, initiate malware downloads, or collect personal information without 

consent. These threats are often difficult to detect with the naked eye or traditional QR scanners, which lack 

the intelligence to assess the safety of the encoded content. As QR code usage continues to grow, so does the 

urgency for robust security mechanisms to detect and prevent such attacks. This project addresses that need 

by introducing a Malicious QR Detection Module powered by machine learning, capable of analysing and 

classifying URLs embedded in QR Codes based on threat potential, thereby improving user safety and 

mitigating digital risks in real-world applications. Leveraging both handcrafted features and TF-IDF-based 

textual analysis, our system accurately classifies QR-encoded URLs as benign, malicious, or invalid. 
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II. METHODOLOGY 

 

 

Figure 1: Methodology 

2.1 Real-Time QR Code Scanning:  

To extend the practical utility of the trained phishing URL detection model, we implemented a real-time QR 

code scanning module, which automatically extracts and classifies URLs embedded within QR codes. This 

module integrates computer vision and machine learning to detect malicious URLs at the point of interaction. 

2.2 QR Code Processing Workflow:  

The QR-Code Scanner is used for real-time video capture and QR code decoding. A video stream is being 

initiated from the system’s default webcam. Each frame is processed in real-time to detect QR codes. 

In order to enhance detection robustness, the script attempts QR code decoding on both the original grayscale 

image and its inverted binary counterpart, increasing the chance of successful reads under poor lighting or 

low contrast. 

2.3 URL Expansion and Validation:  

Upon successful QR code detection, the embedded URL is first passed through an unshortening function. 

Many malicious actors exploit URL shorteners to disguise harmful destinations. Known URL shortening 

services (e.g., bit.ly, t.co, goo.gl) are checked using domain extraction logic. 

Once expanded, the URL undergoes a validation check to ensure syntactic correctness. This includes 

confirming the presence of a valid scheme (http or https) and a top-level domain (TLD). Invalid or 

unresolvable URLs are immediately flagged and rejected from further processing. 

2.4 Feature Extraction and Prediction:  

For all URLs not classified as inherently safe, the system extracts a set of engineered features identical to 

those used during model training. These include: URL structure-based attributes (e.g., length, symbol 

frequency, keyword presence), Shannon entropy measures for domain and path randomness, Executable file 

indicators and TF-IDF vectorization for capturing textual semantics. 

This feature vector is then fed into the pre-trained XGBoost classifier, which returns a binary prediction: 1 for 

Malicious URL and 0 for Safe URL. 

This ensures that even if a URL is syntactically valid and not in a known blacklist, it can still be accurately 

flagged as suspicious based on behavioural patterns and structural cues. 
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2.5 Result Display and Interaction:  

If a valid prediction is made, the result is printed to the terminal, immediately informing the user whether the 

scanned QR code leads to a safe or malicious link. The scanning loop stops after one successful detection, or 

can be exited manually by pressing the ‘q’ key. 

 

III. MODEL TRAINING 

3.1 Model Selection: XGBoost 

XGBoost (Extreme Gradient Boosting) follows a boosted tree-based ensemble learning approach that 

optimizes both speed and accuracy. Its architecture consists of key components that enhance its efficiency, 

reduce overfitting, and improve predictive performance.  XGBoost follows a gradient boosting approach 

where new trees are created to minimize errors from previous ones. By following an iterative approach, 

XGBoost builds a strong ensemble model, where each tree refines the predictions made by the previous ones.  

This results in a highly accurate and efficient classification model, especially for detecting complex patterns 

in data, such as distinguishing malicious and benign QR codes or URLs. 

 

3.2 Data Collection and Labelling 

The proposed system utilizes four distinct datasets comprising URLs classified into benign, malicious, and 

UPI-based categories. These include general benign URLs, general malicious URLs, benign UPI URLs and 

malicious UPI URLs . 

Each record is labelled accordingly: 0 for benign, 1 for malicious, and 2 for syntactically invalid entries 

determined during preprocessing. The dataset is further augmented with heuristic safety rules based on trusted 

domains and specific UPI scheme validation. 

 

3.3 URL Normalization and Validation 

3.3.1 URL Cleaning:  

URLs are cleaned and normalized before feature extraction to ensure consistency using the urlparse and 

tldextract libraries. To ensure consistency and syntactic integrity, a normalization function is applied to all 

input URLs. This function performs the following steps: 

Step 1: Use urlparse and tldextract to parse the domain and suffix. 

Step 2: Ensure the URL has a valid scheme (defaulting to HTTPS if absent). 

Step 3: Reconstruct the domain from its extracted parts to maintain structural coherence. 

Step 4: Label URLs as invalid (label 2) if the suffix (TLD) is missing or the parsing fails. 

Step 5: Removing extra slashes (https://example.com/ vs. https://example.com) 

Step 6: Reformatting URLs to make them consistent. 

3.3.2 Invalid URL Handling:  

URLs that are not valid (due to incorrect structure or missing domain parts) are flagged as invalid and marked 

with label 2. This ensures that invalid URLs don't interfere with the classification process. 
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3.3.3 Handling Missing or Inconsistent Data: 

Some URLs sometime miss crucial parts (like the domain or path). These cases can be either removed or 

imputed with default values. We flag invalid URLs, ensuring they're not used for training. That’s filling the 

missing data. 

In case of labelling invalid URLs, URLs are deemed invalid after the preprocessing step (for example, missing 

or malformed domain), label 2 (Invalid) is assigned to those URLs. This helps to train the model on 

distinguishing between malicious, benign, and invalid URLs. 

 

3.4  Feature Engineering 

The feature extraction process in this script is identical to what was used while training the model. This ensures 

that the input data (URLs) are transformed in the same way as during model training. If the features were 

extracted differently, the model would receive data in an unfamiliar format, leading to inaccurate predictions. 

Key aspects of consistency in feature extraction consists of ensuring URLs are properly formatted and trusted 

domains are marked as safe, computing Shannon entropy for both domain and path, as done in training. Then 

it involves character counting that measures occurrences of . (dots), - (hyphens), @, ?, =, and & to detect 

suspicious patterns, checking for terms like "login", "secure", "bank", "verify", and "update", which are 

common in phishing attempts, flagging URLs containing .exe, .zip, .rar, and .apk as they might deliver 

malware and finally converting the URL text into numerical features using the same TF-IDF vectorizer trained 

on the dataset. 

By keeping feature extraction identical, the script ensures that the model works optimally while scanning 

URLs extracted from QR codes. 

A hybrid feature extraction strategy was adopted, combining statistical heuristics with textual vectorization: 

3.4.1 Handcrafted features:  

The  features derived from the raw URL consists of URL length and character distribution (dots, hyphens, 

slashes, etc.), presence of suspicious keywords (e.g., login, secure, update), use of IP addresses in place of 

domain names, presence of suspicious file extensions (e.g., .exe, .zip, .apk) and Shannon entropy for both 

domain and path components to quantify randomness 

These features aim to capture common obfuscation and deception tactics employed in phishing URLs. 

Length of URL: The total number of characters in the URL.  

Number of Dots (.): The number of dots in the URL can indicate subdomain complexity or suspicious patterns. 

Number of Hyphens (-): Malicious URLs may have multiple hyphens to create fake-looking domains (e.g., 

login-secure). 

Number of Special Characters: Counts of characters like: @ (commonly used in phishing); ? (used for query 

strings); = (used in query parameters); & (also for query parameters). 

Subdomain Count: URLs with more subdomains could be suspicious, often used by malicious sites to mimic 

legitimate ones (e.g., login.secure.example.com). 

Number of Digits: A higher count of digits may indicate a suspicious or fraudulent URL (e.g., online payment 

links often have numbers). 

Number of Alphabetical Characters: Checks how many letters are in the URL. 

Starts with https: URLs that use HTTPS are typically more trustworthy, as they indicate encryption. 

Presence of an IP Address: Detects URLs containing IP addresses (\d+\.\d+\.\d+\.\d+). These URLs may not 

be fully valid or might be obfuscated. 
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Redirect Indicators: URLs containing "redirect" might indicate attempts to take the user to a different site than 

the one they expect. 

Suspicious File Extensions: Checks if the URL contains file extensions like .exe, .zip, .apk, which are 

commonly associated with malware downloads. 

Pattern Recognition using Regex based detection: The URL is checked for certain words commonly associated 

with phishing or scams: login, secure, bank, verify, update. These keywords suggest that the URL might be 

trying to impersonate a legitimate website and may lead to phishing attempts. 

Entropy of Domain and Path: Entropy is a measure of randomness. A higher entropy in the domain or URL 

path can suggest the URL is randomly generated or obfuscated, which is a common trait in malicious URLs. 

Path Complexity: The path of the URL (after the domain) is analyzed for complexity. Malicious URLs might 

use complex or seemingly random paths to evade detection. 

3.4.2 TF-IDF Vectorization:  

URLs are further processed using a TF-IDF vectorizer configured for character n-grams (2–3). This captures 

contextual patterns within the URL string that are often indicative of malicious intent (e.g., repeated 

substrings, encoded payloads). 

The TF-IDF vectorizer is trained across the combined dataset and serialized using joblib for reusability.  It 

extracts text patterns like character-level bigrams and trigrams i.e., extracts the most significant terms from 

the URL using 2-grams and 3-grams. The most frequent n-grams might indicate whether the URL is trying to 

impersonate known brands, using words like login, secure, pay. It helps capture things like: log.in, bank.verify, 

secure-login, etc. This vectorizer will later be used to convert URLs into numbers. For example, 

"https://www.login-secure.com/payments/verify.php?id=123" could have n-grams like ['ht', 'tp', 'ps', 's:', 'se', 

'cu', 're', ...] 

3.5 Model Architecture 

The final feature vectors are composed of 22 handcrafted statistical features and Top 3 TF-IDF values (selected 

to balance dimensionality and information density). This feature set is used to train an XGBoost classifier 

configured for multi-class classification (objective='multi:softmax') with 3 output classes (benign, malicious, 

invalid). 

After feature extraction, a supervised machine learning algorithm, XGBoost is used to classify URLs based 

on the extracted features. XGBoost ensembles learning with gradient boosting. It handles high-dimensional, 

sparse, and structured data and automatically learns complex feature interactions. 

Training Setup include dataset sources i.e, URLs labelled as safe or malicious from sources like OpenPhish, 

PhishTank, Kaggle and Labels:0 for Safe;1 for Malicious. 

Training Process includes Feature vectorization along with TF-IDF transformation. Then addressing class 

imbalance using scale_pos_weight and tuning Hyperparameters (max_depth, learning_rate, n_estimators, 

subsample, colsample_bytree using RandomizedSearchCV). The training process also involves 

regularization, i.e., to avoid overfitting, regularization techniques like L1 (Lasso) and L2 (Ridge) are used. 

These techniques penalize overly complex models and reduce the impact of irrelevant features. These 

techniques penalize overly complex models and reduce the impact of irrelevant features. 

In Hyperparameter Tuning, we optimize the model for accuracy, generalization, and real-time performance 

by using RandomizedSearchCV  that provides efficient hyperparameter tuning by sampling random 

combinations. 

 max_depth- Controls tree depth. Prevents overfitting by limiting complexity. 

 learning_rate- Shrinks the impact of each tree (boosting step size). Lower = better generalization. 

 n_estimators- Number of trees in the model. More trees = better fit, but costlier. 

 subsample- Fraction of data used per tree. Helps prevent overfitting. 
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 colsample_bytree- Fraction of features used per tree. Boosts generalization. 

The optimization target is the weighted F1 score, ensuring robustness across all classes despite class 

imbalance. 

In the Tuning Process the dataset is split into train/test using train_test_split with stratification. Then a 

parameter grid with value ranges for each hyperparameter is defined and combinations from the grid are 

sampled randomly. After this comes evaluation using cross-validation and classification metrics. And finally 

selecting the best-performing combination. This prevents model overfitting, improves detection of rare 

malicious patterns. 

 

3.6 Post Processing 

3.6.1 Final Model Evaluation: Once the model is trained, it is evaluated using the test set. This ensures that 

the model generalizes well to unseen URLs. 

3.6.2 Model Saving: The trained model is saved as a pickle file (xgboost_url_model2.pkl) so that it can be 

used for future predictions on new URLs without retraining. 

3.6.3 Prediction on New URLs:  After the model is trained and saved, new URLs can be passed to the model 

to classify them as malicious, benign, or invalid. 

 

IV. ALGORITHM 

Step-1: Start 

Step-2: Load the trained XGBoost model 

Step-3: Load the trained TF-IDF Vectorizer 

Step-4: Define known URL shorteners 

Step-5: Initialize webcam using OpenCV 

Step-6: Start real-time frame capture loop 

Step-7: Convert each captured frame to grayscale 

Step-8: Attempt to decode QR codes from the grayscale image 

Step-9: If QR code is not detected, invert the grayscale image and try again 

Step-10: If QR code is detected then 

Extract and decode the embedded URL 

   Print the scanned URL 

   Check if the URL is shortened, if yes, expand it using HTTP redirection 

   Print the final unshortened URL 

Step-11: Validate the structure of the URL using urlparse and tldextract 

    If invalid then print an error and exit 

Step-12: Extract features from URL 

Step-13: Combine features and reshape for prediction 

Step-14: Pass features to the trained XGBoost model and predict the class 
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   If prediction=1 then 

  Print “Malicious URL detected! Proceed with caution.”  

   If prediction=0 then 

  Print “Safe URL.” 

Step-15: Exit the scanning loop and close webcam window 

Step-16: End 

V. TESTING 

Following the completion of model training and feature extraction, the system proceeds with the evaluation 

phase to assess its effectiveness on unseen data. This phase involves using a separate CSV file containing 

URLs for testing purposes. 

The testing script first loads the pre-trained XGBoost classification model and the corresponding TF-IDF 

vectorizer, both of which were serialized during the training phase. These are essential to ensure consistency 

in the transformation of raw input URLs into the same feature space used during training. 

The input test data, supplied in CSV format, is subjected to the same validation and preprocessing pipeline as 

described previously. This includes URL normalization, safety rule enforcement (e.g., identifying trusted 

domains and UPI links), and rejection of syntactically invalid entries. Once pre-processed, the dataset is 

transformed into numerical feature representations using the pre-loaded vectorizer. 

Predictions are then generated by the XGBoost model. Each URL in the test set is classified into one of three 

categories: benign, malicious, or invalid. If the test dataset includes ground truth labels, the system evaluates 

the performance using standard classification metrics: 

1. Accuracy Score, indicating the overall correctness of predictions. 

2. Precision, Recall, and F1-Score, provided per class through a detailed classification report to highlight 

the model’s effectiveness in handling imbalanced data and differentiating between safe and malicious 

URLs. 

In the absence of ground truth labels, the system omits the evaluation phase and outputs the predicted results 

directly to a new CSV file for further analysis or downstream use. 

This testing process ensures that the model performs reliably in real-world scenarios, particularly when 

integrated with systems that scan and assess URLs extracted from sources such as QR codes. 

Making Predictions: The model classifies each URL as safe or malicious, and the results are saved in a new 

CSV file. 

Evaluating the Model: If the dataset contains actual labels, the script calculates- Accuracy score that measures 

overall correctness of predictions and the Classification report shows precision, recall, and F1-score. 

If no labels are available, the script only saves predictions without evaluation. 
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VI. RESULTS AND DISCUSSION 

 

6.1 Results:  

We used several QR codes of three types namely malicious, non-malicious or safe and those embedded with 

invalid URLs; to test the accuracy of our system. The following are a few examples: 

 

Table 1: Results 

 

QR Code Scanner 

 

QR Code 

 

URL Classification 

 

 

 

 
 

 

 

 
 

 

 

 
        

     Scanned URL: https://sxccal.edu/ 

     Final URL: https://sxccal.edu/ 

 

 

 

 

 
 

 

 

 
 

 

 

 
 

    Scanned URL: https://tinyurl.com/29soc9qj 

    Final URL: https://dramacool.bg/video-watch/i-live-alone-

2013-episode-589-b 

 

 

 

 
 

 

 

 
 

 

 

 
 

    Scanned URL: https://tinyurl.com/2d3b52sy 

    Final URL: 

https://www.placeography.org/index.php/Wigington_Pavilion%

2C_Harriet_Island%2C_Saint_Paul%2C_Minnesota 
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This real-time scanning system is particularly useful in environments where users frequently interact with 

printed QR codes—such as public transport, educational institutions, or events—without a reliable way to 

verify the safety of embedded links. The integration of machine learning in this context enables proactive 

phishing mitigation by providing instant feedback before the user engages with a potentially harmful 

destination. 

Report Analysis: Overall Model Performance shows an accuracy of 89% (overall correct predictions), a macro 

average of 0.89 (average precision, recall, and F1-score across all classes) and a weighted average of 0.89 

(considers class imbalance in calculation). The trusted domain approach ensures safe URLs are not 

misclassified, while regex-based checks and machine learning enhance general URL validation. 

6.2 Achievements: 

The Malicious QR Code Detection system has achieved several key milestones in the development and 

deployment of secure, intelligent QR scanning technology: 

1. A machine learning model was developed and trained to classify QR-embedded URLs as malicious or 

non-malicious, demonstrating high classification accuracy. 

2. A hybrid detection framework was designed, integrating URL feature extraction with supervised 

learning algorithms to enable real-time analysis of QR code contents. 

3. An advanced feature extraction pipeline was implemented, utilizing over 25 handcrafted indicators 

such as URL length, suspicious character patterns, redirection behaviour, Shannon entropy, and 

domain reputation metrics. 

4. Heuristic-based filters were incorporated to enhance phishing detection using keyword matching for 

terms like “login”, “secure”, “bank”, and “verify”—common markers in deceptive URLs. 

5. Real-world testing was conducted to evaluate the system's effectiveness in dynamic online 

environments. Results demonstrated strong classification performance with low false positive rates, 

validating the system’s practical reliability and robustness. 

6.3  Applications:  

The Malicious QR Code Detection module is applicable across a wide array of industries and use cases, 

including: 

1. Financial Services: Detecting and blocking QR codes used for fraudulent transactions or phishing. 

2. Retail & E-commerce: Verifying the legitimacy of QR-based promotions, offers, and payment portals. 

3. Hospitality and Public Services: Identifying fake QR codes used in menus, check-in systems, and 

service kiosks. 

4. Digital Marketing: Ensuring campaign integrity by validating QR links used in advertisements and 

promotions. 

5. General Consumers: Empowering users to verify QR codes encountered in public places, printed 

materials, or online platforms. 

6. Cybersecurity Agencies: Assisting in the identification and tracking of QR-based attack vectors, 

including links to the dark web or illegal marketplaces. 

 

VII. CONCLUSION 

The use of the XGBoost algorithm provides a reliable and scalable solution for identifying harmful patterns 

commonly associated with phishing and malware. The system was successfully integrated into a real-time 

scanning interface and can be deployed through a browser extension, allowing users to assess QR codes 

instantly and securely. 

The accuracy of QR code detection can be limited by several real-world factors including differences in QR 

code structure, poor lighting, and image distortion during scanning. Real-time performance is also dependent 

on available computing power, which may pose a challenge when deploying the system at scale. 
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When it comes to identifying malicious QR codes, things get trickier. Advanced phishing URLs that closely 

mimic legitimate domains can be hard to classify accurately. Attackers also use techniques like domain 

generation algorithms (DGA) and URL shorteners to hide the true intent of a link, making it even harder to 

catch malicious behavior. Real-time URL checks that rely on external security databases can sometimes 

introduce delays, impacting the speed of threat detection. 

Future improvements include optimizing detection models for higher accuracy, integrating deep learning 

techniques for more robust analysis, and expanding the system to support a wider range of QR code formats. 

A mobile application can be developed for on-the-go scanning, and blockchain technology could be explored 

for added security in QR-based transactions. Enhancing the threat intelligence module with real-time updates 

will further strengthen malicious QR detection. 
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