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Abstract 

  Cardiovascular disease (CVD) is one of the serious health issues in the world that causes the death 

of many people annually. Early CVD diagnosis is important in enhancing survival. The proposed research 

will contribute to creating a novel system to detect CVDs based on the synthesis of innovative hybrid 

techniques to impute missing data, detect outliers, balance the classes, select features, and classify them. It is 

also aimed at improving accuracy and reliability using a new combination of techniques, hyperparameter 

optimization and prevention of Type II errors. 

This framework applies a real-time dataset that belongs to the Salem Private Hospital and a benchmark 

dataset that is found in the UCI repository to identify CVDs. The Heuristic-SHAP Adaptive MissForest 

(HSAMF) approach addressed missing data by adopting a hybrid technique of imputation that involves the 

combination of MissForest, SHAP and heuristic rules. Removal of outliers was done through the Hybrid 

Global-Local-Structural Outlier Detection (HGLS-OD) method, which is a combination of Local Outlier 

Factor (LOF), Isolation Forest (IF) and Multi-Model Outlier Detection (MMOD) algorithm. Target encoding 

was implemented on categorical data. Class imbalance was addressed using optimized K-Means and Synthetic 

Minority Oversampling TEchnique (OKSMOTE), which includes K-Means, SMOTE, optuna and RF. The 

Min-MaxScaler was used to perform data normalization. The features were selected using the Cluster-

Weighted Mutual Information - Genetic Algorithm (CWMI-GA) methodology that comprised the application 

of Mutual Information (MI), clustering and Genetic Algorithm (GA). Various classification methods had been 

used, such as traditional methods, such as Optimized Random Forest (ORF), Optimized XGBoost (OXGB) 

and ensemble techniques, such as Optimized Bagging-Boosting Stacked Ensemble (OBBSE), Optimized 

Heterogeneous Soft Voting Ensemble (OHSVE), Optimized Feature-Augmented Heterogeneous Stacking 

(OFAHS), Optimized Heterogeneous Bootstrap-Ensemble (OHBE) and Optimized Heterogeneous Sequential 

Boosting (OHSB). Optuna was used to maximize the classification and threshold tuning procedures. 

The OFAHS model was superior to all the other models with the default threshold of 99.1% when 

applied to real-time data and 97% when applied to benchmark data. The ideal threshold of 0.47 greatly 

minimized Type II errors. With this threshold, accuracy increased further to 99.4 and 98.5 on real-time and 
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benchmark data, respectively. Thus, not only were the Type II errors lowered by modifying the threshold, but 

also the reliability of the forecasts was enhanced. This study demonstrates significant improvement in 

cardiovascular disease detection through advanced methods that led to improved data handling, accuracy, and 

performance. The findings are the precursors of the prospective advancements in cardiovascular diagnostics 

and health management. 

 

Index Terms: Cardiovascular Disease, Pre-Processing, Ensemble Classification, Tuning, Type 2 Error 

Reduction 

 

1. Introduction 

       More people die each year due to CVD as compared to all other diseases (1). Cardiovascular disease is a 

collection of conditions that influence the heart and blood vessels, and it consists of hypertension, heart failure, 

stroke and coronary artery disease. Due to its risk factors, which include smoking, poor diet, high blood 

pressure, high cholesterol, inactivity, and diabetes, it has continued to be one of the top causes of death across 

the world. Early CVD diagnosis is significant to reduce the rate of mortality and improve treatment outcomes. 

Machine learning and statistical models have become very important in the medical field, particularly in the 

prediction of heart diseases. Exploring historical training information allows the machine learning of the 

disease diagnosis (2). Through analysis of patient data, the models are useful in identifying trends and 

predicting the likelihood of the occurrence of CVD. The attention of many medical researchers is devoted to 

the development of new machine learning-based predictive models in terms of disease prediction (3, 4, 5). 

Hospitals tend to employ classification techniques to enhance the precision of disease prediction and diagnosis 

(6, 7, 8). Random Forest, Decision Tree, Logistic Regression, Naive Bayes, and Support Vector Machine are 

some of the methods that are used to detect the disease (9, 10). 

Pre-processing in medical data analytics is required as it purifies and organises unstructured or variant 

health data into a standard and trustworthy format. Part of this process includes cleaning up the errors and the 

null values, dealing with outliers, class balancing, choosing the key features and so on. Dealing with missing 

data in medical data is essential to eliminate false results and reduce bias. Effective management of null values 

makes the dataset complete and reliable and enhances healthcare decision-making. The outliers may skew the 

results and draw the wrong conclusions; that is why it is necessary to cope with them properly. A proper 

outlier control increases the accuracy of data, and it promotes reliable medical findings. Class balancing 

ensures equal learning in all the classes so that the majority class does not benefit from the models. This leads 

to increased general accuracy of prediction and increases detection. The feature selection is important as it 

eliminates redundant features that make the models faster and more accurate. It enhances prediction and 

decision-making in medical analysis as it pays attention to the most valuable information. The feature 

selection algorithms could be classified into supervised, unsupervised and semi-supervised. 

 

1.1 Types of CVD: 

 Coronary Artery Disease (CAD): Blockage of the coronary arteries as a result of the deposits of plaque. 

 Hypertension: High blood pressure over an extended period of time. 

 Heart Attack: A Casualty of the heart caused by a blockage in the blood flow. 

 Heart Failure: This is the inability of the heart to pump blood sufficiently. 

 Arrhythmias: The heartbeat of the body is affected. 

 Stroke: This is a condition that leads to the loss of cells due to interference with the blood flow to the 

brain. 

 Peripheral Artery Disease (PAD): The lack of blood supply to the limbs because the arteries are 

constricted. 

 Cardiomyopathy: A disease that prevents the heart muscle from functioning properly. 

 Congenital Heart Disease: “Congenital disabilities of the heart. 

 Valvular Heart Disease: The heart damage affects the flow of blood through the heart valves. 
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 Deep vein thrombosis (DVT): A blood clot within one of the veins, usually in the legs, is termed deep 

vein thrombosis. 

 Endocarditis: It is an infection of the inner surface of the heart. 

 

1.2 Motivation of Cardiovascular Disease Detection: 

 High Mortality and Prevalence: Cardiovascular diseases are the number one cause of death in the 

world, and therefore, early and accurate diagnosis of the disease is essential to curb mortality. 

 Personalized Treatment: Accurate classification will enable the creation of treatment plans that are 

specific to a patient and will enhance patient outcomes and reduce unnecessary operations. 

 Improved Knowledge of CVDs: Detection of CVDs is an improvement in medical research and 

treatment through the identification of illness patterns. 

 Key Resource Allocation: Categorizing the high-risk events assists healthcare professionals in 

prioritizing the high-risk events so that they can allocate resources in the best way possible. 

 Reducing Healthcare Costs: This is achieved through early and accurate detection that reduces the 

long-term costs. 

 

2. Literature Study: 

   The most current research in heart disease prediction is summarised in Table 1. 

Table 1: Related Studies 

S.No Author Paper Title Dataset Pre-

processing 

Classification Tuning Best 

Accuracy 

1 Jingyi 

Zhang, 

Huolan 

Zhu, 

Yongkai 

Chen, et 

al., 2021 

[11] 

Ensemble 

machine 

learning 

approach for 

screening of 

coronary heart 

disease based 

on 

echocardiogra

phy and risk 

factors 

Clinical 

trial 

dataset 

 

 

 

DR: PCA 

 

 

 

 

 

 

Stacking Using 

Many 

Classifiers 

 

      - 87.7 

 

 

 

 

2 Ya-Han 

Hu et al., 

2024 

[12] 

 

 

 

 

 

A novel 
missforest-
based missing 
values 
imputation 
approach with 
recursive 
feature 
elimination in 
medical 
applications 

Multiple 

Dataset 

Imputation: 

RFE-

MissForest 

(MF), 

Mean/Mode

, kNN, 

MICE, 

MissForest 

NRMSE, PFC        - 1stRank 

RFE-MF  

3  Aljee 

AK, 

Mukherj

ee A, et 

al. 2013 

[13] 

Comparison of 

imputation 

methods for 

missing 

laboratory data 

in medicine 

Inflammat

ory Bowel 

Disease, 

Cirrhosis 

Cohort  

Imputation:  

MissForest, 

Mean, NN, 

MICE 

LR, RF 

 

         - MissFores

t produced 

the lowest 

error. 

4 K. 

Sentham

arai 

Kannan 

et 

A comparative 

study of outlier 

detection 

methods in 

Heart 

Disease 

dataset 

HND0 to 

HND4  

Outlier 

Handling: 

k-NN, 

LOF 

 

NB, SVM 

 

-  83.1% 

(LOF, NB, 

HND2) 
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al.,2024 

[14] 

heart disease 

data 

 

5 Bilal 

Ahmad 

et al., 

2025 

[15] 

Feature 
selection 
strategies for 
optimized 
heart disease 
diagnosis 
using ML and 
DL models  

Cleveland 

Heart 

Disease 

Dataset  

Feature 

Selection: 

MI, 

ANOVA F-

test, Chi-

Square test 

NN, LR, RF, 

GBoost, 

AdaBoost, DT, 

LDA, SVM, 

Nu-SVC, 

KNN, NB 

     - 82.3 (MI 

with NN) 

6 Moiz Ur 

Rehman, 

Shahid 

Naseem  

et al., 

2025 

[16] 

Predicting 

coronary heart 

disease with 

advanced 

machine 

learning 

classifiers for 

improved 

cardiovascular 

risk 

assessment 

UCI CHD 

Dataset 

 

 

 

 

Imputation: 

(mean/mod

e), 

encoding: 

One-hot, 

Balancing: 

SMOTE,  

FS: MI, 

DR: PCA 

KNN, NB, 

SVC, RF, LR, 

PSO-ANN 

 Grid 

search 

96.1 

PSO-ANN 

7 Ghalia A. 

Alshehri 

et al., 

2023 

[17] 

Prediction of 

Heart Disease 

using an 

Ensemble 

Learning 

Approach 

StatLog, 

Z-

Alizadeh 

Sani, 

CVD 

Normalizati

on: 

MinMaxSca

ler, 

Balancing: 

SMOTE,  

FS: 

(Forward/B

ackward 

Wrapper) 

AdaBoost, 

SVM (Linear 

Kernel), 

DT, RF, 

Ensemble 

(ELA)-

Adaptive 

boosting, 

SVM, DT, and 

RF 

     

Manual 

Tuning 

 Z-

Alizadeh 

Sani: 91% 

(ELA) 

StatLog: 

83% 

(ELA) 

CVD: 

73% 

(ELA) 

8 Chandral

ekha E, 

S. 

Vinodhin

i, et al., 

2025 

[18] 

Heart Rate 

Anomaly 

Detection in 

Healthcare 

Using Elliptic 

Envelope and 

Local Forest 

Three 

Synthetic 

Heart Rate 

Data 

datasets  

Normalizati

on: Min-

Max 

Scaling, 

Outlier: IF, 

LOF, 

OCSVM, 

and EE 

        -       - 93 (IF) 

9 Vaishali 

M 

Deshmuk

h 2019 

[19] 

Heart Disease 

Prediction 

using 

Ensemble 

Methods 

Cleveland Normalizati

on: Min-

Max 

Scaling, 

Standardiza

tion: 

Standard 

Scaler,  

FS: ET 

Majority 

Voting with 

Bagging (DT, 

LR, ANN, 

KNN, NB)  

       - 87.78 

 

 

 

 

 

 

 

10 Jeevan 

Babu 

Maddala 

et al., 

2024 

[20] 

Heart Failure 

Prediction 

Using Machine 

Learning 

Z-

Alizadeh 

Sani, 

SPECTF, 

Kaggle 

CVD 

dataset 

Feature 

Extraction: 

RF, 

Balancing: 

SMOTE 

 RF, GB, ADB, 

ET, XGB, 

Hybrid Model 

(ET, RF, 

XGBoost) 

Grid 

Search

CV 

 

 

89.82 

(Hybrid 

Model) 
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2.1 Research Gap: 

It is evident in the interrelated research papers that many critical research gaps exist. These are: 

 Real-Time Data: The classification of cardiovascular diseases based on real-time data is also an 

important gap in the research. 

 Reduction of Type II errors: Changing threshold values should be more evident to reduce Type II 

errors. 

 Imputation: The importance of features and heuristic rules coupled with imputation algorithms has 

not been studied comprehensively. 

 Outlier Detection: To date, no study has been carried out on hybrid models of detecting local, global, 

and structural outliers of the aortic heart data. 

 Feature Selection: Selecting variables, more complex methods like MI and GA, are not used 

effectively during the pre-processing of hybrid pipelines. 

 Optuna Hyperparameter Tuning: There is a gap in the adoption of Optuna for pre-processing and 

classification processing hybrid models optimization. 

 Boosting and Bagging: It is possible to tap into a relatively untapped opportunity in fusing boosting 

and bagging in detecting CVD. 

 Stacking models: It has not been thoroughly explored in the literature on CVD detection research 

whether combinations of various models of learning aid optimality of stacking using advanced 

methods of hyperparameter optimization in feature-enhanced stacking. 

 Bagging Ensemble: Bagging, Optuna tuning, and Soft Voting have been previously applied 

individually in CVD detection; however, there is no study offering a combination of these models. 

 Sequential boosting: It involves sequential boosting techniques based on numerous algorithms, which 

need further studies to enhance CVD detection rates. 

To overcome these dilemmas, we have come up with a formidable and new framework for detecting 

cardiovascular disease. 

 

3. Novel CVD Detection Framework: 

We provide a machine learning-based system that integrates numerous techniques to enhance 

cardiovascular disease risk identification. Data cleaning, imputation procedure, outlier handling, 

encoding, class balancing, scaling, feature inference, classification, and type 2 error reduction procedure 

are steps implemented in this structure. The framework of CVD detection is shown in Figure 1. 

 

Step 1: Data Collection: In the detection of CVD, real-time and benchmark data were obtained. 

 

 

Step 2: Pre-processing: 

 Imputation: To impute missing values, MissForest, SHAP, and a heuristic rule were utilized. 

 Outlier Management IF was applied to detect the global outliers; LOF was used for local outliers, 

and MMOD was applied to detect the cluster-based outliers. 

 Class Balancing: The SMOTE and K-means clustering algorithms were used to solve the class 

imbalance. In order to maximize the K-means hashing and SMOTE parameters, Optuna tested the 

performance of the classifier on the balanced dataset. 

Step 3: Feature Selection: MI, Clustering and GA hybrid algorithm were employed in the selection of 

features that are globally and intrinsically significant to the target variable. 

Step 4: Classification: Various ensemble techniques are utilized in classification, including feature 

augmented stacking, bootstrap ensemble, sequential boosting and soft voting. These methods have been 

trained and optimized with the help of the Optuna hyperparameter tuner to give the perfect classification 

accuracy. The current paper is the continuation of our previous classifier project (21). 

http://www.ijcrt.org/


www.ijcrt.org                                                © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882 

IJCRT2509623 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f461 
 

 

Step 5: Optimisation and evaluation of the Threshold: To reduce Type II mistakes, Optuna was used 

to optimise the classification threshold. The model was then comprehensively checked with the help of 

wide evaluation measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Novel Framework for CVD Detection 

 

4. Data Collection 

4.1 Data Description of Real-Time Dataset: 

Figure 2 contains the trait information of the real-time data of a private hospital in Salem. This dataset 

contains 16 features: 15 input features, 1 output feature and 2300 records. 

 
Figure 2: Attributes of Real-time Dataset 
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4.2 Data Description of Benchmark Dataset: 

Figure 3 demonstrates the attribute information of the benchmark dataset that is taken from the UCI 

repository. This dataset consists of the Cleveland, Hungarian, Switzerland, Long Beach VA, and Statlog heart 

disease datasets. It has one output feature, eleven input features, and 1190 records.  

 
Figure 3: Attribute Description 

 

5.  Pre-processing: 

5.1 Heuristic-SHAP Adaptive MissForest (HSAMF) Imputation: 

The HSAMF method aims at attaining strong imputation of absent values through a combination of 

feature-importance and data-driven parameter optimization. In this method, the MissForest algorithm is used 

to infer the missing data, and SHAP (SHapley Additive explanations) is used to determine which features are 

salient and dictate the imputation procedure. MissForest fills in missing values in a dataset using random 

forests, depending on patterns in other features to predict the missing values. The process is repeated until the 

maximum accuracy in the prediction of all the missing values is achieved. SHAP uses Shapley values of 

cooperative game theory to assign an importance score to each variable for a particular prediction. Figure 4 

shows the HSAMF workflow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Workflow of HSAMF 
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HSAMF Pseudocode: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Steps of HSAMF: 

Step 1: Setup and Data Preparation: 

After loading the dataset, cross-validated target encoding is utilised to encode categorical features. 

Then, missing values along with cardinality are identified.  

Determine the missingness for each feature (f): 

 
                                                  Count of missing values in f 
                                  Mf         = 

                                                             Total Samples  

To calculate SHAP values, which indicate the most influential factors for prediction, the dataset is 

temporarily imputed using the median.  

 

 

Step 2: MissForest Parameter Initialisation and SHAP-based Adjustment:   

Heuristically, MissForest initialises the number of trees ntrees in the random forest models in 

accordance with the size of the dataset N: 

                               ntrees = min (100, max (10,10 * log2 (N)))        

 The importance score for feature j is: 

𝐼𝑗 =
1

𝑁
∑|𝜙𝑖,𝑗|

𝑁

𝑖=1

 

Where ɸi,j  denotes SHAP values.  

The number of trees parameter is modified to better capture intricate patterns based on the relative 

importance of a subset S of top features: 

𝑛tr ⅇⅇ𝑠
𝑎 ⅆ𝑗

= 𝑛tr ⅇⅇ𝑠 × (1 + 𝜆 ×

∑ 𝐼𝑗
𝑗∈𝑆

𝛴𝑗𝐼𝑗
) 

Where the tuning hyperparameter that controls the amplitude of the adjustment is denoted by λ.  

Input: A Dataset with missing values. 

Output: Imputed dataset.                      

Step 1: Setup and Data Preparation 

 Import required libraries and load the dataset. 

 Apply cross-validated target encoding. 

 Check missing values and cardinality in the dataset. 

 Temporarily impute the dataset with the median to compute SHAP 

values. 

Step 2: MissForest Parameter Initialisation and SHAP-based Adjustment 

 Calculate base parameters of MF using the heuristic rules. 

 Get SHAP importance from temporarily imputed data. 

 Adjust base parameters using SHAP importance and store. 

Step 3: Iterative MissForest Imputation 

 Train MF with updated parameters on the encoded dataset with missing 

values. 

 Impute missing values in the dataset. 

 Save the final imputed dataset. 

Step 4: Result 

 Plot data before and after imputation. 
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MissForest hyperparameters are initially set heuristically and then fine-tuned via SHAP importance 

scores. Like the tree structure, SHAP values were used to optimise MissForest's other hyperparameters to 

direct the tuning procedure and increase imputation accuracy. Here, both the heuristic rules and this SHAP 

result are used to adjust the MissForest imputation settings to emphasize more important features. Then, the 

MissForest with adjusted settings is used to impute missing values. 

 

Step 3: Iterative MissForest Imputation: 

MissForest uses iterative imputation with the modified parameters. Every feature f with missing entries 

is predicted by a random forest RFf trained on other features at iteration t + 1, producing updated imputations: 

 

𝑥𝑖
(𝑓),𝑡+1

= 𝑅𝐹𝑓 (𝑥𝑖
(−𝑓),𝑡

) 

Until convergence, the process is repeated under observation by: 

𝐸𝑟𝑟𝑜𝑟(𝑡) =
1

|𝑀|
∑ |𝑥𝑖

(𝑓),𝑡
 −  𝒙𝒊

(𝒇),𝒕−𝟏
|

(𝑖,𝑓)∈𝑀

 

Where the set of missing elements is represented by M. Iterations come to an end at Error(t) <ϵ. 

 

Step 4: Result: 

Finally, plots of the data before and after imputation are displayed. These plots validate the efficacy 

of the suggested approach by evaluating the decrease in missingness. 

The use of the HSAMF method is innovative since it provides direction to the imputation of the MF 

by means of synthesizing SHAP-based feature importance with heuristic knowledge. The method adapts the 

indispensability of each feature to the model by adjusting the parameters of MissForest imputation, and this 

provides a smart and cost-efficient way to work with the missing data compared to the traditional ways of 

using constant parameters. 

 

5.2 Hybrid Global-Local-Structural Outlier Detection (HGLS-OD): 

This HGLS-OD method is designed to identify and address local, global and structural outliers in an 

imputed dataset in an efficient way. This approach provides a complete outlier detection strategy by 

integrating the strengths of LOF, which is good at detecting local abnormalities, IF, which is good at detecting 

global outliers, and MMOD, which is good at detecting structural or cluster-based outliers. 

IF is an outlier detection method with no supervision, which isolates outliers with a tree-like structure 

of random partitions. Reductions in the number of splits to separate outliers are fewer than in the rest of the 

data, which decreases tree path length. The amount of anomaly is increased to a greater level when data points 

have a lower and lower path length over multiple of these isolation trees. The LOF is an unsupervised anomaly 

detection method that is useful for estimating the local deviation of the density of a data point compared to its 

neighbors to determine the presence of outliers. When the local density of a data point is considerably smaller 

than that of its neighbours, then it is considered an outlier. Due to this reason, LOF can be applied in the 

detection of outliers in datasets of different densities. MMOD is an outlier detector that is graph-based, thus 

needing no prior knowledge of outlier rates, and can deal with datasets consisting of clusters of different 

densities and shapes. The workflow of the HGLS-OD method is presented in Figure 5. 
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Figure 5: Workflow of HGLS-OD 

HGLS-OD Pseudocode: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Steps of HGLS-OD: 

Step 1: Setup and Data Preparation: 

In this workflow, the imputed dataset is used to detect and address the outliers using three procedures. 

The initial phase is the setup and data preparation. 

 

 

Step 2: Detect Outliers: 

First, globally isolated anomalies are detected with the help of the IF methodology. Then the anomaly 

in the local density changes is identified using the LOF, and the atypical points or structurally disconnected 

points are then determined using the MMOD. 

      IF Score: 

𝑆(𝑥, 𝑛) = 2
−

𝐸[ℎ(𝑥)]

𝑐(𝑛)  
 

Input: Imputed dataset with outliers. 

Output: Outlier-handled dataset. 

Step 1: Setup and Data Preparation 

 Import libraries and load the dataset. 

Step 2: Detect Outliers 

 Run Isolation Forest → Get IF scores. 

 Run Local Outlier Factor → Get LOF scores. 

 Run MMOD → Get MMOD flags. 

 Set IF threshold value. 

 Outlier flag = (IF score < threshold) OR (LOF 

score > 1) OR (MMOD flag = 1). 

Step 3: Handle Outliers  

 For each feature, replace outlier values with the 

median of non-outliers. 

 Save the cleaned dataset. 

Step 4: Result 

 Plot data before and after outlier handling. 
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Where: 

 For data point x, the average path length across all trees is E[h(x)]. 

 c(n) is a normalisation factor. 

 

      LOF Score: 

𝐿𝑂𝐹𝑘(𝑥) =
1

|𝑁𝑘(𝑥)|
∑

𝑙𝑟 ⅆ𝑘(𝑦)

𝑙𝑟ⅆ𝑘(𝑥)
𝑦∈𝑁𝑘(𝑥)

 

Where: 

 The nearest neighbours of x are referred to as Nk(x).  

 𝑙𝑟ⅆ𝑘(𝑥) is the local reachability density of the data point x.  

 The local reachability density of a nearby data point y is defined as 𝑙𝑟 ⅆ𝑘(𝑦). 

within the k-nearest neighbours of x. 

         MMOD Score: 

𝑀𝑀𝑂𝐷(𝑥𝑗) = {1  ⅈ𝑓|𝑥𝑗 − 𝑚ⅇⅆⅈ𝑎𝑛(𝑋𝑗)| > 𝑘 × 𝑀𝐴𝐷𝑗 , 0 𝑜𝑡ℎⅇ𝑟𝑤ⅈ𝑠ⅇ 

Where: 

 The value of a data point in feature j is represented by xj. 

 The median of feature j is denoted by median (Xj).  

 Feature j's median absolute deviation is represented by MADj. 

 k is a threshold constant. 

A data point is classified as an outlier if its LOF score exceeds 1 or its IF score is below a 

predetermined threshold, or the MMOD algorithm has indicated it to be so. 

 

Step 3: Handle Outliers: 

On all the flagged records, we substitute each feature value with the median of the non-outlier values. 

This approach helps maintain data consistency while preserving the dataset's overall distribution.  

 

Step 4: Result: 

Finally, visualizations compare data before and after outlier handling to confirm effective outlier 

handling. 

This HGLS-OD approach is regarded as novel since it combines several outlier detection models (IF, 

LOF and MMOD) in a complementary manner, guaranteeing more resilience by flagging an instance as an 

outlier if any one model discovers it. Furthermore, compared to utilising a single detection method or 

straightforward removal techniques, substituting the column median for found outliers offers innovation while 

maintaining the dataset's statistical distribution and minimising information loss. 

 

5.3 Optimized K-Means and SMOTE (OKSMOTE) Class Balancing: 

The aim of the objective is to equalise the dataset and enhance the classification performance with 

Optuna by streamlining the K-Means clustering algorithm and SMOTE. In this work, a fully automated, end-

to-end optimisation pipeline that concurrently optimises K-Means clustering and SMOTE oversampling 

parameters with the help of Optuna is described. K-Means approach is an unsupervised learning algorithm 

that is often applied in clustering data points that do not have labels associated with them, and is based on 

similarity to group data points into K clusters. An uneven dataset is one where the underlying classes of output 

have unequal distributions. The SMOTE approach is considered to be among the most reliable ways of 

managing unequal data. SMOTE solves the problem of class imbalance in a dataset by synthesizing samples 

of the minority class rather than merely duplicating data of the minority class. Optuna is a free open-source 

framework of hyperparameter tuning that was created to accomplish the process of determining the ideal 

hyperparameters for machine learning and deep learning frameworks and models. The workflow of the 

OKSMOTE approach is presented in Figure 6. 
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Figure 6: Workflow of OKSMOTE 

OKSMOTE Pseudocode: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Steps of OKSMOTE: 

This hybrid method works by first dividing the minority group into small clusters with the K-Means 

algorithm. 

𝐽 = ∑ ∑ ‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

 

 

Where k is the number of clusters, x is a data point, 𝐶𝑖 is cluster i, 𝜇𝑖 is the centroid of the cluster i. After that, 

SMOTE generates new samples within every cluster. 

 

𝑥𝑛ⅇ𝑤 = 𝑥 + 𝜆(𝑥𝑛𝑛 − 𝑥), 𝜆~𝑈(0,1) 
 

 

Input: Imbalanced Dataset. 

Output: Balanced dataset. 

Step 1: Setup and Data Preparation 

 Import libraries and load the dataset. 

Step 2: Optimise K-Means and SMOTE Parameters 

 Use Optuna to find the best K-Means and SMOTE 

parameters. 

 For each trial: 

 Apply K-Means clustering on the dataset. 

 Apply SMOTE to balance the classes based on K-Means 

clusters. 

 Train the RF model with the balanced dataset. 

 Evaluate the model’s performance. 

 Track and store the best K-Means and SMOTE parameters 

based on RF F1 score. 

Step 3: Final Model 

 Apply the best K-Means and SMOTE parameters to balance 

the entire data. 

Step 4: Result 

 Print and plot the final results. 
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Where: 

 x→ Sample of the initial minority class. 

  𝑥𝑛𝑛→ From the minority class, one of x's k closest neighbours. 

 λ→ Picking a random number between 0 and 1 from a uniform distribution. 

 𝑥𝑛ⅇ𝑤 artificial data point produced between x and 𝑥𝑛𝑛. 
 

According to the F1 score of RF, Optuna automatically decides the best settings of this process. When the 

optimum setup is identified, the whole data set is balanced, and the results are presented. 

 

The specialty of this OKSMOTE method is that all these procedures, such as automatic tuning, clustering, 

oversampling, and validation, are combined into one automated process, which is rare for predicting 

cardiovascular disease. Although K-Means, SMOTE and hyperparameter optimisation are better known 

individually, our hybrid approach, which modifies both clustering and balancing hyperparameters within the 

same optimisation process under the guidance of feedback from the classifier, is better. This combined 

optimisation technique enhances the performance of classification using unbalanced data sets, as it helps 

search through data to find the most suitable balancing technique. 

 

6. Cluster-Weighted Mutual Information - Genetic Algorithm (CWMI-GA) Feature Selection: 

In this research, Mutual information, K-Means clustering, and the genetic algorithm are used to 

determine the most important features to detect CVD. Figure 7 shows the workflow of the CWMI-GA 

technique.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Workflow of CWMI-GA 

 

MI finds the most informative features on the label of the classes. The clustering of the data is done 

by the K-means according to similarities. Genetic Algorithm is a genetically inspired search and optimization 

algorithm inspired by natural evolution. The process of choosing the best features that can enhance the 

performance of a model is done using GA. 
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CWMI-GA Pseudocode: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Working Steps of CWMI-GA: 

Step 1: Setup and Data Preparation: 

The importation of the necessary libraries and loading of the data are carried out first. 

Step 2: Global Mutual Information (MI) Scoring: 
Calculating the Mutual Information of each feature Xi with the target Y: 

𝑀𝐼(𝑋𝑖, 𝑌) = ∑ ∑ 𝑝(𝑥𝑖, 𝑦)𝑙𝑜𝑔
𝑃(𝑥𝑖, 𝑦)

𝑝(𝑥𝑖)𝑝(𝑦)
𝑦∈𝑌

𝑥𝑖∈𝑋𝑖

 

Where: 

 The marginal probability of the feature Xi is represented by p(xi).  

 The marginal probability of the target Y is represented by p(y). 

The variables were ranked through Mutual Information on the significance they contribute to the target 

prediction. Then, the most suitable n features were determined by the MI score. 

Step 3: Cluster Generation: 

The K-means clustering was then used to cluster the samples together based on these chosen 

characteristics. 

Step 4: Cluster-Specific MI Scoring: 

Mutual information scores were recalculated, and the most relevant characteristics specific to each 

cluster Cj were identified. 

 

 

 

𝑀𝐼𝑐𝑗(𝑋𝑖, 𝑌) = ∑ 𝑃𝐶𝑗(𝑥𝑖, 𝑦) 𝑙𝑜𝑔
𝑃𝐶𝑗(𝑥𝑖, 𝑦)

𝑃𝐶𝑗(𝑥𝑖)𝑃𝐶𝑗(𝑦)
𝑥𝑖,𝑦

 

Input: A Dataset with all features. 

Output: Selected Features. 

Step 1:  Setup and Data Preparation 

 Import libraries and load the data. 

Step 2:  Global MI Scoring 

 Calculate MI Scores for all features. 

 Select top ‘n’ highest-scoring features. 

Step 3:  Cluster Generation 

 Takes the top ‘n’ features from Step 2. 

 Applies K-means clustering to group similar samples. 

Step 4:  Cluster-Specific Scoring 

 For each Cluster: 

 Recalculate MI Scores. 

 Store Cluster-adjusted importance. 

Step 5:  Cluster-Weighted MI Scores 

 Combine MI scores from all clusters into a single importance score. 

Step 6:  GA Optimization  

 Initialize random feature sets using the features obtained from step 5. 

 Evaluate using: 

 Prediction accuracy. 

 Avg weighted Score. 

 Evolve via crossover/mutation. 

 Return the best subset across all generations. 

Step 7: Result 

 Print and plot the final results. 

 

http://www.ijcrt.org/


www.ijcrt.org                                                © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882 

IJCRT2509623 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f470 
 

 

Where: 

 𝑃𝐶𝑗(𝑥𝑖): The probability of the value 𝑥𝑖  𝑓𝑜𝑟 given feature 𝑋𝑖, considering only the samples in cluster 

Cj. 

 𝑃𝐶𝑗(𝑦): Within cluster Cj, the probability of the desired value y. 

 𝑃𝐶𝑗(𝑥𝑖 , 𝑦): The joint likelihood that goal Y = y and feature Xi = xi occur simultaneously within 

cluster Cj. 

  

Step 5: Cluster-Weighted MI Scores: 

For every feature Xi, aggregate the MI scores from every cluster into a single score that is weighted 

by the size or significance of the clusters: 

𝑀𝐼𝑤ⅇ𝑖𝑔ℎ𝑡ⅇⅆ(𝑋𝑖) = ∑ 𝑤𝑗

𝑘

𝑗=1

× 𝑀𝐼𝐶𝑗(𝑋𝑖, 𝑌) 

Where wj is the cluster Cj's weight. 

 

Step 6: Genetic Algorithm Optimisation: 

A genetic algorithm was used to find the optimal feature subset. Before selecting the best-performing 

subset, random feature sets have to be initialised, evaluated using importance and prediction accuracy scores, 

and then iteratively improved through crossover and mutation procedures across many generations.  

Step 7: Result: 

To obtain a detailed visualisation, the obtained results, containing the feature mutual information 

scores, clusters obtained, and the final set of selected features, were plotted. 

The combination of global and cluster-specific mutual information scoring, followed by genetic 

algorithm optimisation across many generations, is novel since this multi-stage pipeline that combines global 

and local feature relevance with evolutionary search has not been used in prior investigations. 

 

7.  Classification: 

7.1 Traditional Models: 

Random Forest (RF) and Extreme Gradient Boosting (XGBoost) were the standard machine learning 

methods involved in the diagnosis of cardiovascular disease. Hyperparameter optimization was conducted 

using Optuna to optimize the performance of the model. 

Traditional Model (ORF and OXGBoost) working steps: 

The initial stage entailed the establishment and preparation of the data to an extent that the model 

could be analyzed and trained with the right data and environment. Subsequently, an objective function was 

defined using Optuna along with K-Fold CV to train the model, evaluate the accuracy of the model, select 

hyperparameters based on a dynamically chosen set, and get the optimisation results. Optuna used several 

experiments to determine the most suitable hyperparameters and get improved results using the model. The 

best was then printed, and a plot was produced to indicate the accuracy of all the trials run. 

 

7.2 Optimised Bagging-Boosting Stacked Ensemble (OBBSE):  

Optimised Bagging-Boosting Stacked Ensemble is an advanced ensemble learning algorithm, which 

fuses the benefits of boosting as well as bagging together in a stacked format. This method optimises overall 

predictive performance by using the Extra Trees (ET) and LightGBM models.  The optuna will optimise both 

models' hyperparameters. 

 

Working Steps of OBBSE: 

After the data was prepared, the ET and LightGBM models were created and trained and set to be used 

in prediction. The likelihoods of prediction generated through the training of ET by K-Fold cross-validation 

were attached to the original data to produce new training and test sets. LightGBM was trained on this enriched 

data, and it acted as a meta-model. Optuna was used to test different hyperparameters to identify the best ones 

in both models. After selecting the most optimal hyperparameters, the models have been retrained and tested 

on the test set with the most optimal hyperparameters, and the results have been shown. 
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7.3 Optimised Heterogeneous Soft Voting Ensemble (OHSVE): 

An Optimised Heterogeneous Soft Voting Ensemble is a prediction method based on a set of various 

machine learning models, each of which is optimised to work well. The soft voting is used to come up with 

the final decision. In this approach, several optimised models are summed up to augment the total forecast. 

This paper employed the Gaussian Naive Bayes (GNB), Logistic Regression (LR), Support Vector Machine 

(SVM), and CatBoost as tools to implement OHSVE. They also get optimized to the best performance by 

optimization of their hyperparameters using Optuna. 

Working Steps of OHSVE: 

After data preparation and the division into the training and test sets, four models were created: GNB, 

LR, SVM and CatBoost classifiers and integrated into a soft voting ensemble. K-fold cross-validation has 

been used to predict and test the soft voting classifier using the training set, and average measurements were 

calculated. Optuna was applied to optimise the hyperparameters by using a trial. Once the optimal 

hyperparameters were identified, the best hyperparameters were then utilized to retrain the final soft voting 

model on the entire training set, test on the test set and present the performance results. This approach will 

guarantee that the model is modified and analysed. Each trial was then plotted using the results of the 

experiment. 

 

7.4 Optimised Feature-Augmented Heterogeneous Stacking (OFAHS): 

Unlike traditional stacking, feature-augmented stacking combines both original predictor variables and 

prediction probabilities of the first-level models as inputs to the meta-learner to produce a richer and more 

informative feature space. This process combines the advantages of several machine learning models by 

stacking them. Here, LR, ET, SVM, and KNN are base models. The meta-model (XGBoost) derives 

knowledge from the forecasts made by base models to provide improved outcomes. To improve accuracy and 

dependability for challenging detection jobs, Optuna ensures that all models are optimised for optimal 

performance. 

Working Steps of OFAHS: 

The data was pre-prepared, and four base models, namely LR, ET, SVM, and KNN, and XGBoost as 

the meta-model, were deployed. The base models were trained on K-fold cross-validation to get prediction 

probabilities. They were then combined with original features to produce new datasets. A series of trials on 

the latest sets of data using Optuna was performed to determine the optimal hyperparameters to use with each 

model. After the optimal parameters were chosen, the models were retrained and tested on the test set with 

the optimal parameters and the outcomes were presented. The process helped refine and test the models. 

 

7.5 Optimised Heterogeneous Bootstrap-Ensemble (OHBE): 

The Optimised Heterogeneous Bootstrap-Ensemble uses hyperparameter optimisation with a number 

of heterogeneous machine learning models, which are trained on various bootstrapped subsets of the training 

data. This method improves the predictive performance as well as model resilience. In this case, QDA, SVM, 

KNN, and RF are applied. 

Working Steps of OHBE: 

In the case of QDA and both SVM and KNN, bagging models were created, and an RF classifier was 

directly added due to the bagging mechanism inherent in it. These models were combined to create a soft 

voting ensemble. The hyperparameters of the model were automatically optimized with the help of Optuna, 

after which the accuracy of the ensemble was compared with the help of K-fold cross-validation. The final 

model was then trained using the entire training set and evaluated using the test set. The plots were then drawn 

to determine the performance of the ensemble technique. 

 

7.6 Optimised Heterogeneous Sequential Boosting (OHSB): 

Sequential boosting tries to improve the performance of the model and also reduce bias through 

successive training of the models, whereby each new model tries to address the mistakes that the previous 

model made. In this study, LR, DT, SVM, and XGBoost models are used in sequential boosting. 
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Working Steps of OHSB: 

For Optuna, an objective function is developed that recommends model settings. K-fold cross-

validation is performed in this operation, with models being trained sequentially with sample weights that are 

adjusted by error. The validation fold takes the available predictions of the models and evaluates them. Based 

on many trials, Optuna gets the best settings by averaging the accuracy of all folds. The last model is retrained 

using all the training data and assessed using the test set after the best hyperparameters are identified. Finally, 

there are graphs that are presented to show the performance of the model. 

 

8. Implementation on Real-Time Dataset: 

8.1 Imputation: 

SHAP importance scores are shown in Figure 8. Then these features are used in the imputation process.  

 

            
 

Figure 8: SHAPE Score 
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The missing values before and after imputation using the MF, heuristic rules and SHAP combination 

are displayed in Figure 9. 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 9: Imputation on Real-time Data 

8.2 Handling Outliers: 

The dataset's outliers are highlighted in Figure 10. 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 10: Outliers of Real-time Data 

 

Figure 11 illustrates how the combination of IF, LOF and MMOD successfully handles the outliers. 

 

 

 

 

 

 

 

 
 

 

 

Figure 11: Outliers Handled on Real-Time Data 

 

 

 

 

 

 

 
a) Before Imputation                                                    b) After Imputation 
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8.3 Class Balancing: 

Figure 12 displays the optimal parameters and scores for the K-Means and SMOTE in class balancing 

across several trials. The 28th trial achieved the maximum score of 0.906 with the optimal parameters as 

follows: For K-Means, n_cluster =3, init = k-means++, max_iter =350, and n_init =12; For SMOTE, 

sampling_strategy =1, n_neighbors = 6 and random_state =42. 

 

 

 

 
 

 

 

 

 

 

 

Figure 12: Optimisation Result for Class Balancing on Real-Time Data 

Figure 13 shows the class distribution before and after balancing using K-Means and SMOTE. Before 

balancing, Class 1 accounts for 36%, and Class 0 accounts for 64%. After balancing, both classes have an 

equal distribution of 50% each. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 13: Class Distribution on Real-time Data 
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8.4 Feature Selection: 

Figure 14 displays the top n features that were chosen based on the MI scores, clustering outcomes, 

mutual information scores for every cluster, cluster-weighted MI scores, and the final feature subset. 

 

 

 

 

 

 
           

Figure 14: Feature Selection via Mutual Information, Clustering and GA 

 

Figure 15 illustrates the evolution of the feature subsets chosen at each generation throughout 30 

generations. It shows how the feature sets are tuned and eventually stabilised with progression in the approach 

with each generation, reflecting the iterative nature behind the selection process. This shows how the chosen 

qualities were cultivated and how they were transformed over time. 
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Figure 15: Evolution of Features Subset Across Generation 

8.5 Classification: 

8.5.1 Optimised Random Forest: 

Optimised random forest achieved the highest level of accuracy of 0.912 on trial 31, with n_estimators 

= 290, max depth = 10, min samples split =5, min samples leaf =2, bootstrap=True, max features= sqrt, and 

criterion= gini parameters (Figure 16). 

 

 

 

 

 

 

 

 
 

 

 

Figure 16: ORF Result on Real-time Data 
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8.5.2 Optimised XGBoost: 

Figure 17 displays the best parameters and accuracy of the optimised XGBoost in several trials. 

  

 

 

 

 

 

 

 

 

Figure 17: OXGB Result on Real-time Data 

The highest accuracy of 0.94 was obtained at the 23rd attempt with the best parameters being as shown 

below: max depth = 6, learning rate = 0.03, nestimators = 300, subsamples = 0.86, minchildweight = 2, etc. 

5.3.3 Optimised Bagging-Boosting Stacked Ensemble (OBBSE):  

Figure 18 displays the ideal parameters and scores for the OBBSE over several trials. At the 27th trial, 

ET produced the best accuracy of 0.925, and at the 45th trial, LightGBM produced the highest accuracy of 

0.93. Finally, after using these optimised parameters, OBBSE reached 0.95 accuracy. 

 

 

 

 

 

 

 

 
 

Figure 18: OBBSE Result on Real-time Data 
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8.5.4 Optimised Heterogeneous Soft Voting Ensemble (OHSVE): 

Figure 19 provides the optimal parameters and accuracy of OHSVE at multiple trials. The GNB was 

the most accurate with trial 2, with an accuracy of 0.90; the LR was the most accurate at 26, with 0.91; the 

SVM model was the most accurate at trial 9, with 0.925; and the CatBoost was the most accurate at trial 30, 

with 0.94. The models were retrained and estimated on the test set with the optimum parameters, and the 

ultimate soft-voting accuracy was obtained as 0.971. 

 

 

 

 

 

 

 

Figure 19: OHSVE Result on Real-time Data 
 

8.5.5 Optimised Feature-Augmented Heterogeneous Stacking (OFAHS): 

Figure 20 represents the optimal parameters and classification accuracy of the LR, ET, SVM, KNN, 

and XGBoost using a series of trials. The ET model achieved its maximum accuracy in the 19th trial of 0.9303, 

and the LR model achieved the maximum accuracy in the 26th trial of 0.9187. The SVM model achieved its 

maximum accuracy of 0.926 in the 14th trial, and the KNN model achieved its maximum accuracy of 0.9202 

in the 35th trial. The XGBoost model reached a peak accuracy of 0.9455 in the 37th trial. Once the models had 

been retrained and tested on the test set using their respective optimal parameters, their stacking accuracy was 

0.991. The XGBoost will act as the meta-learner in this case. 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 20: OFAHS Result on Real-time Data 
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The plot of the stacking result is shown in Figure 21. 

 

 
 

Figure 21: Plot of OFAHS Result on Real-Time Data 

 

8.5.6 Optimised Heterogeneous Bootstrap-Ensemble (OHBE): 

The ideal parameters and classification accuracy attained by combining QDA, KNN, SVM, and RF 

over several trials are shown in Figure 22. In the 25th trial, the QDA bagging model achieved its best accuracy 

of 0.916, whereas in the 17th trial, the SVM bagging model achieved its highest accuracy of 0.92. In the 21st 

attempt, the KNN achieved its highest accuracy of 0.928, while the RF reached its highest accuracy of 0.917 

at the 41st trial. The final soft voting accuracy was 0.96 when the models were retrained and assessed on the 

test set using their optimal settings. 

 
 

 

    
 

Figure 22: OHBE Result on Real-time Data 

 

8.5.7 Optimised Heterogeneous Sequential Boosting (OHSB): 

The best parameters and the classification accuracy of the DT, LR, SVM and XGBoost achieved after 

several trials are presented in Figure 23. The highest accuracy of the DT model was 0.9161 in the 21st trial, 

and the LR model had the highest accuracy of 0.9174 in the 9th trial. The SVM model achieved its best 

accuracy of 0.9204 during the 28th trial, and the XGBoost model achieved its best accuracy of 0.9474 during 

the 30th trial (22). The last sequence with the highest rate of detection was 0.972 during retraining of the 

models, which was tested on the test set using the models' respective optimal parameters. 
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Figure 23: OHSB -Result on Real-time Data 

 

9. Threshold Optimisation for Reducing Type 2 Errors: 

A type II error or a false negative in medical diagnostics is a failure to identify a disease or other 

medical condition. It gives the patients the feeling that they are healthy. Therefore, this makes them continue 

with bad habits such as eating junk food, failing to exercise, smoking, taking alcohol, failing to receive prompt 

treatment, living in a lot of stress and failing to receive the help they require. It is possible to unknowingly 

relax, and the disease will spread without anyone noticing. This may contribute to the aggravation of the 

condition, the loss of early treatment and in extreme cases, avoidable death. Therefore, Type 2 mistakes are 

more problematic than Type 1 mistakes in the healthcare industry; thus, it is essential to minimize them. The 

reduction of type 2 mistakes can be achieved by reducing the threshold, and the optimal approach towards 

this is optimisation. The optimal threshold value is obtained with the help of Optuna in this case.    

 

 

 

Figure 24: Threshold Optimisation 

An LR is utilised to determine the ideal threshold value (Figure 24). With the default threshold value, 

the accuracy is 89%, the type 1 error rate is 0.11, and the type 2 error rate is 0.11. The type 1 error rating 

increased from 0.11 to 0.12, the type 2 error rating dropped from 0.11 to 0.06, and the accuracy increased 

from 0.89 to 0.90 at the ideal threshold value of 0.47.  
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10. Result Comparison:  

10.1 Result Comparison on Real-Time Data: 

 All the pre-processing and classification processes were done on real-time information. Eight out of 

fifteen traits were selected for detection. Figure 25 depicts the performance of each model at the default 

threshold value. It indicates that Type II error was steadily declining in all models, as required to minimise 

the quantity of false negatives. 

           
Figure 25: Performance Metrics Using Default Threshold Value on Real-time Data 

Figure 26 demonstrates the performance metrics of each model using the optimal threshold value. 

         
Figure 26: Performance Metrics Using Optimal Threshold Value on Real-time Data 

Figure 27 illustrates the differences in performance metrics between the default and ideal threshold 

values for the models. 

         
Figure 27: Performance Metrics Differences Between the Default and Ideal Threshold Values 

 

Though Type I error rates grew to a slight extent in two of the models (ORF and OBBSE), this is a 

justifiable and expected cost, because reducing Type II error rates (false negatives) is more crucial to patient 

safety. Comprehensively, the accuracy remained the same or improved, which proves the usefulness of 

adjusting the threshold to detect actual positive cases more efficiently. 

All methods are compared using the optimal threshold value on real-time data in terms of accuracy, 

precision, recall, F1 score and Type 1 error and Type 2 error (Figure 28). OFAHS proved to be better than 

any other model, with an accuracy of 99.4. 
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Figure 28: Result Comparison on Real-time Data 
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 Figure 29 compares the confusion matrices of all models using real-time data. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 29: Confusion matrices of real-time data 

10.2 Result Comparison on Benchmark Data: 

All the pre-processing steps and classification were done on benchmark data. Eight characteristics out of 

eleven were selected for detection. Figure 30 compares the accuracy, precision, recall, F1 score, Type 1 error, 

and Type 2 error of all models that apply the baseline decision boundary to the benchmark data.  

         
Figure 30: Performance Metrics Using Default Threshold Value on Benchmark Data 

Figure 31 illustrates the performance metrics of all models using the optimal decision boundary on the 

benchmark data.  

          
Figure 31: Performance Metrics Using Optimal Threshold Value on Benchmark Data 

The differences in the models' performance metrics between the default and ideal threshold values are 

displayed in Figure 32. All models showed a decrease in Type II error. Accuracy improved for all models, 

except two (ORF, OXGB). It is acceptable that just two models displayed a minor rise in Type I error because, 

in this case, minimising Type II mistakes is more important. 

          
Figure 32: Benchmark Data Performance Differences at Default and Ideal Thresholds 
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Figure 33 compares the accuracy, precision, recall, F1 score, and types of mistakes (Type 1 and Type 

2) using the ideal threshold value for each model on the benchmark data. OFAHS fared better than any other 

model, with an accuracy of 98.5%.  

 

         
 

 

Figure 33: Result Comparison on Benchmark Data 
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Using benchmark data, Figure 34 compares the confusion matrices of each model. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 34: Confusion matrices of Benchmark Data 

 

11. CVD Predictive System: 

The cardiovascular disease detection system has been developed using the Python programming language. 

A desktop application was developed that uses Tkinter, which comes as part of the Python standard library, 

to increase the usability of the system by making it a graphical user interface (GUI) application. It does not 

require any technical expertise, making it easier to interact with the system. It does not need an internet 

connection as it is fully offline, and is applicable in places with low connectivity. Also, data privacy is 

enhanced by the fact that the local storage of patient data boosts privacy. The system has low hardware 

requirements, enabling it to run on PCs due to its lightweight and easy maintenance. Its modularity further 

gives it the opportunity to be enhanced in the future, such as providing more advanced preprocessing and 

feature selection methods, or re-training the predictive model using larger data sets. The combination of the 

ease of use, offline functionality, and secure local data handling of the system makes it a feasible decision-

support tool for the identification of cardiovascular disease. The solution is particularly beneficial to urban 

clinics and the local hospitals since it presents a cost-effective, easily implemented, and readily available 

technology to assist in patient management and early diagnosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: CVD Predictive System on the Real-time Dataset 
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The OFAHS model used in our predictive system uses the selected traits that are incorporated to detect 

individuals at risk of cardiovascular disease. Figure 35 indicates that the patient with age (60), cholesterol 

(300), blood pressure (190), hypertension (1), pulse rate (130), obesity (1), glucose (180), and complains of 

"chest Pain, Breathing Difficulty" is positively diagnosed with cardiovascular disease. 

 

12. Accuracy Compared with other studies: 

Our innovative methods obtained the highest accuracy on both datasets compared to prior relevant studies. 

Among our methods, OFAHS reached the maximum accuracy (Table 2). 

 

Table 2: Accuracy Comparison with Related Studies 

S. No Author Pre-processing 

 

Classification Best Accuracy 

1 Jingyi Zhang et 

al.,2021 [11] 

DR: 

PCA 

 

Stacking Using Many 

Classifiers 

87.7 

 

2 K. Senthamarai 

Kannan et al., 2024 

[14] 

Outlier Handling: 

k-NN, 

LOF 

NB, SVM 

 

83.1% (LOF, 

NB, HND2) 

 

3 Bilal Ahmad et al., 

2025 [15] 

Feature Selection: MI, 

ANOVA F-test, Chi-

Square test 

NN, LR, RF, GBoost, 

AdaBoost, DT, LDA, 

SVM, Nu-SVC, k-

NN, NB 

82.3 (MI with 

NN) 

4 Ghalia A. Alshehri 

et al., 2023 [17] 

Normalisation: 

MinMaxScaler, 

Balancing: SMOTE,  

FS: forward / backward 

AdaBoost, 

SVM (Linear Kernel), 

DT, RF, 

Ensemble (ELA)-

Adaptive boosting, 

SVM, DT, and RF 

Z-Alizadeh 

Sani: 91% 

(ELA) 

StatLog: 83% 

(ELA) 

CVD: 73% 

(ELA) 

5 Vaishali M 

Deshmukh 2019 

[19] 

Normalisation: 

MinMaxScaler, 

Standardization:  

StandardScaler 

Feature selection: ET 

Ensemble Methods: 

Majority Voting with 

Bagging (DT, LR, 

ANN, KNN, NB) 

87.78 

 

6  

 

 

 

 

 

Novel Work 

Imputation: HSAMF 

Outlier Handling: 

HGLS-OD 

Encoding: Target 

Encoding 

Balancing: 

OKSMOTE 

Normalisation: 

MinMax 

FS: CWMI-GA 

Real-Time Data 

OBBSE 

OHBE 

OHSVE 

OHSB 

OFAHS 

Benchmark Data 

OBBSE 

OHBE 

OHSVE 

OHSB 

OFAHS 

 

94.2 

96.8 

97.6 

97.9 

99.4 

92.1 

94 

95.1 

96.7 

98.5 
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13. Conclusion and Future Enhancements: 

The system implements a number of strategies to improve the process of CVD detection, such as advanced 

data pre-treatment methods, which guarantee the consistency and quality of the data, such as hybrid 

imputation, outlier management, class balancing, and feature selection, for both datasets. To be classified, 

ORF, OXGB, OBBSE, OHSVE, OFAHS, OHBE, and OHSB were taken. Optuna helps to define the best 

parameters used to implement a classification job successfully. The most precise classification models on the 

two data sets were OFAHS. By implementing the best threshold value, the percentage of type 2 errors has 

been reduced. With the optimal threshold value, the accuracy of real-time data increased to 99.4% and 

benchmark data had an increase of 98.5%. It was revealed through threshold tuning that the framework was 

robust and could classify well by enhancing prediction reliability, especially by minimizing Type II errors. 

The model will be improved using advanced AI techniques to make it more scalable and adaptable in a broad 

range of areas. 
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