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Abstract 

Eco-epidemiological models are critical for understanding the intricate interplay between ecological and 

epidemiological processes in ecosystems. This study focuses on a prey-predator model that includes a 

prey species and the susceptible-exposed-infected-recovered (SEIR) epidemiological framework. 

Integrating these processes provides insight into how disease transmission affects population stability and 

predator-prey communications. We use mathematical and computational tools to analyze the model and 

find important thresholds and conditions that result in diverse environmental and epidemiological effects. 

Our findings emphasize the relevance of disease control and ecological conservation techniques in 

preserving ecosystem equilibrium. 
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1. Introduction  

   Eco-epidemiology, a subject that combines environmental and epidemiology, investigates how 

infectious illnesses interact with and are affected by the environment. Prey-predator models are important 

tools in ecological research, with a typical focus on the dynamics of predator populations and prey. 

However, adding epidemiological processes into these models introduces new complexity due to disease 

dynamics. 

This study presents a model that combines prey-predator communications with a susceptible-exposed-

infected-recovered (SEIR) framework to investigate these combined effects. In many ecosystems, prey 

species may encounter each other due to a variety of environmental and biological constraints, and when 

these species are susceptible to infectious diseases, the movement of the entire system can change 

significantly. 

The SEIR model is a typical epidemiological framework that categorizes the population into four 

groups: susceptible (S), exposed (E), infected (I), and recovered. This model depicts how humans go 

through the stages of disease, from susceptibility to exposure, infection, and eventual recovery. 

Integrating this paradigm into prey-predator models enables a more accurate description of disease 

dynamics within environmental systems. 

 

The aim of this process is to investigate the dynamics of a prey-predator model with limited prey species 

expansion, as well as the epidemiological structure of SEIR. We want to know how the transmission of 

disease affects population stability and predator-prey communications. Using mathematical and 

computational tools, we analyze the model to discover crucial thresholds and parameters that influence 

various ecological and epidemiological outcomes. 

 

Our findings help to broaden our understanding of how disease affects ecological systems and provide 

suggestions for designing disease management techniques that also protect biodiversity. This study 

emphasizes the significance of incorporating both ecological and epidemiological elements when 

investigating natural populations and ecosystems. 

 

2. MATHEMATICAL MODEL FORMATION  

Consider using the susceptible-exposed-infected-recovered (SEIR) [17] paradigm to discuss the present 

pandemic. The SEIR model of disease Propagation [17] is predicated on three significant assumptions. 

At every given time t, the population (N) is classified into 4 classes: susceptible (S), exposed (E), infected 

(I), and recovered (R).[17] 

           So, we have 

                          d N (t) = dS (t) + dE (t) +d I (t) + dR(t) 

                      
𝑑𝑆

𝑑𝑡
= 𝜙 − 𝜒𝑆𝐼 − 𝛼𝑆 

                      
𝑑𝐸

𝑑𝑡
= 𝜒𝑆𝐼 − (𝛼 + 𝑚)𝐸 

                      
𝑑𝐼

𝑑𝑡
 = mE- (𝛼 + 𝛽)𝐼 

                       
𝑑𝑅

𝑑𝑡
=  𝛽𝐼 − 𝛼𝑅……………………………………………..(2.1) 

With initial condition S (0) = 𝑆0 >0, E (0) = 𝐸0 >0, I (0) =𝐼0 >0, R(0) = 𝑅0 >0 [18] 
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To formulate the mathematical model assumption, we make the following assumptions. 

               𝜒 ⟶ effective contact rate  

               ϕ ⟶ Birth rate of Susceptible  

               α ⟶ mortality rate  

               m ⟶ progression rate exposed to infected  

               β ⟶ recovery rate  

               S⟶ Susceptible prey  

               E⟶ Exposed prey  

               I ⟶ Infected prey  

               R⟶ Recovered predator  

3. Positivity and boundedness of solutions 

     Theorem 1 

            All factors are non-negative for everyone t >0, the closed region [17] 

                       Ω = { (𝑆, 𝐸, 𝐼, 𝑅)𝜖𝑅4 ∶ 0 < 𝑁 <
𝜙

𝛼
 } 

  Is positively invariant for the entire system (2.1) proving from the equation , we obtain [17] 

                
𝑑𝑆

𝑑𝑡
= 𝜙 − 𝜒𝑆𝐼 − 𝛼𝑆 ≥ −(𝜒𝐼 + 𝛼)𝑆 

       We have  

              S(t) ≥ 𝑆 (0)𝑒𝑥𝑝𝑡 (−∫ (𝜒𝐼 + 𝛼)𝑑𝑝) > 0
𝑡

0
 

      Now 

             
𝑑𝐸

𝑑𝑡
= 𝜒𝑆𝐼 − (𝛼 + 𝑚)𝐸 ≥ −(𝛼 + 𝑚)𝐸 

       We have  

              S(t) ≥ 𝑆 (0)𝑒𝑥𝑝𝑡 (−∫ (𝜒𝐼 + 𝛼)𝑑𝑝) > 0
𝑡

0
 

      Now 

             
𝑑𝐸

𝑑𝑡
= 𝜒𝑆𝐼 − (𝛼 + 𝑚)𝐸 ≥ −(𝛼 + 𝑚)𝐸 

    We have  

            E(t) ≥ 𝐸 (0)𝑒𝑥𝑝𝑡 (−∫ (𝛼 + 𝑚)𝐸 𝑑𝑝) > 0
𝑡

0
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 Also, 

             
𝑑𝐼

𝑑𝑡
 = m E-(𝛼 + 𝛽)𝐼 ≥ −(𝛼 + 𝛽)𝐼 

 We have  

             I(t) ≥ 𝐼 (0)𝑒𝑥𝑝𝑡 (−∫ (𝛼 + 𝛽)𝐼𝑑𝑝) > 0
𝑡

0
 

 Also, 

           
𝑑𝑅

𝑑𝑡
=  𝛽𝐼 − 𝛼𝑅  

We have  

            R(t) ≥ 𝑅 (0)𝑒𝑥𝑝𝑡 (−∫ 𝛼 𝑑𝑝) > 0
𝑡

0
 

Again  

   
𝑑( 𝑆 + 𝐸 + 𝐼 + 𝑅)

𝑑𝑡
=  𝜙 − 𝛼(𝑆 + 𝐸 + 𝐼 + 𝑅) 

Therefore, 

        
𝑑𝑁

𝑑𝑡
=  𝜙 − 𝛼𝑁………………..(2.2) 

If 𝜙 − 𝛼𝑁 <0 then 
𝑑𝑁

𝑑𝑡
< 0 

         Therefore, expression (2.2) is limited by 
𝜙

𝛼
 

After that, we obtain S, E, I, and R as positive functional.[18] 

Basic reproductive number, disease-free steady state, and pandemic steady state.[18] 

       The asymptomatic point of equilibrium is locally asymptotically [17] stable. 𝑅0<1 the disease 

disappears. The disease-free equilibrium point is unstable when  𝑅0>1, i.e. The disease spreads 

throughout the population, resulting in a pandemic. Given that the model under consideration is disease-

free, equilibrium [18] at( 
𝜙

𝛼
,0,0,0), The fundamental reproductive number can be determined 

analytically.[18] 

       The fundamental reproduction number (𝑅0) the particular model can be purchased from the.  

Lead eigenvalue of the matrix,[18] where:       
 

    F=[
𝜒𝜙

𝛼
0

0 0
]    and V= [

0 𝑚 + 𝛼
𝛽 + 𝛼 −𝑚

] 

Therefore, the reproduction number 

        R0= 
𝑚𝜒𝜙

𝛼(𝑚+𝛼)(𝛽+𝛼)
 …………………(2.3) 
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4. Stability Analyses 

   To establish the equilibrium positions, put the right-hand side of the equation in the system (2.1) to 

zero.[17] 

 

                    
𝑑𝑠

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡 
 =0 

. 

A system has two equilibrium[19] points: E0= ( 
𝜙

𝛼
, 0, 0, 0) for disease-free equilibrium and E1 = (S*, E*, 

I*, R*) for the Particular pandemic point[17] 

  

Here,  

                  S* = 
𝜙−(𝛼+𝑚)𝐸

𝛼
 

                  E* = 
{ 𝛼(𝛼+𝑚)(𝛼+𝛽)}(𝑅0−1)

𝜒𝑚(𝛼+𝑚)
 

                  I*= 
𝑚𝐸

(𝛼+𝛽)
 

                    R∗=
𝜙𝑚𝐸

𝛼(𝛼+𝛽)
 

Equation (2.3) gives 𝑅0 In the case of an pandemic, E* Exists only at that point  

𝑅0 is greater than one. 

Theorem 1.0.0: 

      The free of illness equilibrium in the system is locally unsteady if R0>1 and stable if R0<1. [17] 

Proof: 

From the expression (2.1), that we consider.  

            𝜙 − 𝜒𝑆𝐼 − 𝛼𝑆 = 𝐹1 

         𝜒𝑆𝐼 − (𝛼 + 𝑚)𝐸 = 𝐹2 

        m E-(𝛼 + 𝛽)𝐼 =  𝐹3 

        𝛽𝐼 − 𝛼𝑅 =  𝐹4 

The Jacobian matrix is  

 J= [

−𝜒𝐼 − 𝛼 0 −𝜒𝑆 0
𝜒𝐼 −(𝛼 + 𝑚) 𝜒𝑆 0
0 𝑚 −(𝛼 + 𝛽) 0
0 0 0 −𝛼

] 

At equilibrium point E0= (
𝜙

𝛼
, 0, 0, 0) 𝑡ℎ𝑒 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 
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J(E0) = 

[
 
 
 
 −𝛼 0

−𝜒𝜙

𝛼

0 −(𝛼 + 𝑚)
𝜒𝜙

𝛼

0 𝑚 −(𝛼 + 𝛽)
0 0 0

  

0
0
0

−𝛼

  

     ]
 
 
 
 

 

 

Therefore, its characteristic equation is  

            
|
|

−𝛼 0
−𝜒𝜙

𝛼

0 −(𝛼 + 𝑚)
𝜒𝜙

𝛼

0 𝑚 −(𝛼 + 𝛽)
0 0 0

  

0
0
0

−𝛼

|
|
=0 

The characteristic roots are -𝛼,−𝛼,−(𝛼 + 𝛽)𝑎𝑛𝑑 (𝛼 + 𝑚)(𝑅0 − 1). 

  The typical roots include -𝛼,−𝛼,−(𝛼 + 𝛽), (𝛼 + 𝑚)(𝑅0 − 1). 

The first 3 roots are negative, while the last one is negative. if 𝑅0 < 1 and positive if 𝑅0 > 1. 

Hence, the equilibrium point E0 is locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.[17] 

 

Theorem 2.0: 

     If R0>1, The state of equilibrium[17] E1 is local asymptotically steady 

Proof: 

      Let evaluate the expression as follows. 

 

𝜙 − 𝜒𝑆𝐼 − 𝛼𝑆 = 𝐹1 

                                                        𝜒𝑆𝐼 − (𝛼 + 𝑚)𝐸 = 𝐹2 

                                                          m E-(𝛼 + 𝛽)𝐼 =  𝐹3 

                                                                       𝛽𝐼 − 𝛼𝑅 = 𝐹4 

The Jacobian matrix [17] is  

 J= [

−𝜒𝐼 − 𝛼 0 −𝜒𝑆 0
𝜒𝐼 −(𝛼 + 𝑚) 𝜒𝑆 0
0 𝑚 −(𝛼 + 𝛽) 0
0 0 0 −𝛼

  

     

] 

At the point of equilibrium point E1 = (S*,E*, I*, R*) the Jacobian matrix becomes[17] 

J(E1) = [

  
−𝜒𝐼 ∗ −𝛼 0 −𝜒𝑆 ∗ 0

𝜒𝐼 ∗ −(𝛼 + 𝑚) 𝜒𝑆 ∗ 0
0 𝑚 −(𝛼 + 𝛽) 0
0 0 0 −𝛼

] 
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Therefore, its characteristic equation is  

            |

−𝜒𝐼 ∗ −𝛼 − 𝑥 0 −𝜒𝑆 ∗ 0

𝜒𝐼 ∗ −(𝛼 + 𝑚) − 𝑥 𝜒𝑆 ∗ 0

0 𝑚 −(𝛼 + 𝛽) − 𝑥 0
0 0 0 −𝛼 − 𝑥

|=0 

(or) (-𝛼 − 𝑥)(𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐) = 0 

Where, 

     a= 𝜒𝐼 ∗ +3𝛼 + 𝑚 + 𝛽 

     b= (𝜒𝐼∗ + 𝛼)(2𝛼 + 𝑚 + 𝛽) + (𝛼 + 𝑚)(𝛼 + 𝛽) 

     c= (𝜒𝐼∗ + 𝛼) ∗ 𝛼 + 𝑚)(𝛼 + 𝛽) − 𝛼𝛽𝑚𝑆 ∗ 

use Routh Hurwitz criterion,[17] the system (2.1) is locally asymptotically steady if a >0, b>0, ab>c. 

Thus E1 is a local asymptotically steady point of   equilibrium [17]. 

 

 

Theorem 3.0 

 The free of disease equilibrium of the system (2.1) is globally asymptotically [17] steady if R0<1. 

Proof: 

    Consider the following linear Lyapunov function:  

           L= B1E+B2I 

  Using Lyapunov function derivative (where a dot signifies differentiating regarding time) [17] 

         𝐿̇ = 𝐵1𝐸̇ + 𝐵2𝐼 ̇

Substitute the equation for 𝐸 ̇ 𝑎𝑛𝑑 𝐼 ̇𝑓𝑜𝑟 (2.1) 𝑤𝑒 ℎ𝑎𝑣𝑒 [17] 

        
𝑑𝐿

𝑑𝑡
= 𝐵1[𝜒𝑆𝐼 − (𝛼 + 𝑚)𝐸] + 𝐵2[𝑚 𝐸 − (𝛼 + 𝛽)𝐼] ………..(2.4) 

A small change from equation (2.4) to reproduction number (2.3) yields 

       B1=𝛼𝑚 ,B2 = 𝛼(𝛼 + 𝑚)…………… . (2.5) 

Substituting the equation of B1, B2 obtained from equation[17] (2.5)  has: 

      
𝑑𝐿

𝑑𝑡
=  𝜒𝑆𝐼 𝑚 − (𝛼 + 𝛽)𝛼(𝛼 + 𝑚)𝐼 = 𝐼̇  

  [ 𝜒𝑆𝐼 𝑚 − (𝛼 + 𝛽)𝛼(𝛼 + 𝑚)] = 𝐼 

[
(𝛼+𝛽)𝛼(𝛼+𝑚)

(𝛼+𝛽)𝛼(𝛼+𝑚)
] – 1  
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Since S= 
𝜙

𝛼
≤ 𝑁 , 𝑖𝑡𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 [17] 

𝑑𝐿

𝑑𝑡
≤ 𝐼[ (𝛼 + 𝛽)𝛼(𝛼 + 𝑚)] 

                                               [
𝜒𝜙𝑚

(𝛼+𝛽)𝛼(𝛼+𝑚)
] – 1 

                                                [
𝜒𝜙𝑚

(𝛼+𝛽)𝛼(𝛼+𝑚)
− 1] 

                  
𝑑𝐿

𝑑𝑡
≤ 𝐼[(𝛼 + 𝛽)𝛼(𝛼 + 𝑚)][𝑅0 − 1] 

Hence if R0 < 1, then 
𝑑𝐿

𝑑𝑡
< 0. According to Lasalle's extension of Lyapunov's principle, if the disease-

free equilibrium point is globally stable asymptotically.[17]  

Theorem 4.0: 

If R0 is greater than one, then the pandemic equilibrium E1 is globally stable[17] asymptotically . 

Proof:  

With model (2.1) and R0 > 1, the pandemic equilibrium [17] E1 model exists. 

We look at the following non-linear Lyapunov function [17] of the Goh Volterra type: 

V=(S-S*-log 
𝑠

𝑠∗
) + (𝐸 − 𝐸∗ − log

𝐸

𝐸∗
) + 𝑄(𝐼 − 𝐼∗ − 𝑙𝑜𝑔

𝐼

𝐼∗
) 

Using the Lyapunov derivative [17] 

  𝑉̇ = (𝑆 −
𝑆∗𝑠̇

𝑠
) + (𝐸 −

𝐸∗𝐸̇

𝐸
) + (𝐼 −

𝐼∗𝐼̇

𝐼
)……… . (2.6) 

Substituting the values of S ̇, E ̇, and I ̇[17] from (2.1) into (2.4) yields 

𝑉̇ = (𝜙 − 𝜒𝑆𝐼 − 𝛼𝑆 −
𝑆∗(𝜙−𝜒𝑆𝐼−𝛼𝑆)

𝑆
+((𝜒𝑆𝐼 − (𝛼 + 𝑚)𝐸 −

𝐸∗(𝜒𝑆𝐼−(𝛼+𝑚)𝐸

𝐸
 +  𝑄((𝑚 𝐸 − (𝛼 + 𝛽)𝐼 −

𝐼
∗(𝑚 𝐸−(𝛼+𝛽)𝐼

𝐼
))……………………..(2.7) 

At the constant state form equation (2.1) we have: 

𝜙 = 𝜒𝑆∗𝐼∗ − 𝛼𝑠∗ ……………(2.8) 

Substituting equations[17] (2.8) into (2.7) 

𝑉̇ = (𝜒𝑠∗𝐼∗ − 𝛼𝑠∗ −
𝜒𝑆𝐼−𝛼𝑆−𝑆∗(𝜒𝑆∗𝐼∗−𝛼𝑆∗−𝜒𝑆𝐼−𝛼𝑆)

𝑆
 + ((𝜒𝑆𝐼 − (𝛼 + 𝑚)𝐸 −

𝐸∗(𝜒𝑆𝐼−(𝛼+𝑚)𝐸

𝐸
) + 

(m E-(𝛼 + 𝛽)𝐼 − 𝐼 ∗ (
𝑚 𝐸−(𝛼+𝛽)𝐼

𝐼
) )……………….(2.9) 

Further simplification gives: 

   𝑉̇ = (𝜒𝑠∗𝐼∗ − 𝛼𝑆∗ − 𝛼𝑆 −
𝑆∗(𝜒𝑆∗𝐼∗−𝛼𝑆∗−𝜒𝑆𝐼−𝛼𝑆)

𝑆
 ) + ((−((𝛼 + 𝑚)𝐸 −

𝐸∗(𝜒𝑆𝐼−(𝛼+𝑚)𝐸

𝐸
) +Q(m E-(𝛼 +

𝛽)𝐼 − 𝐼 ∗ (
𝑚 𝐸−(𝛼+𝛽)𝐼

𝐼
))………………… . (2.10) 
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Gathering all infected classes[17] without a single star (*) from (2.10) and equating to zero: 

 𝑆∗𝜒𝐼 − (𝛼 + 𝑚)𝐸) + 𝑄(𝑚 𝐸 − (𝛼 + 𝑚)𝐼 = 0…………(2.11) 

A small change of steady state [17] from (2.1) and (2.9) resulted into  

Q= 
𝑠∗𝜒

(𝛼+𝛽)
 ,     (𝛼 + 𝑚) =

𝐼∗𝑆∗𝜒

𝐸∗
, 𝐾 =

(𝛼+𝛽)𝐼∗

𝐸∗
…………………(2.12) 

Substituting [17] the expression from (2.12) into (2.10) gives 

𝑉̇ = (𝜒𝑠∗𝐼∗ + 𝛼𝑠∗ − 𝛼𝑆 −
𝑆∗(𝜒𝑆∗𝐼∗+𝛼𝑆∗−𝛼𝑆)

𝑆
 + ((

𝐸∗𝜒𝑆𝐼

𝐸
+ 𝐼∗𝑆∗𝜒) + 

(
−𝐼∗𝑆∗𝐸𝜒𝐼∗

𝐼𝐸∗ +  𝜒𝑆∗𝐼∗)…………………(2.13)  

Lastly, since the arithmetic mean[17] is higher than the geometric mean, we obtain  

(2-
𝑆

𝑆∗
−

𝑆∗

𝑆
) ≤ 0 

. (3-
𝑆∗

𝑆
−

𝐼∗𝐸

𝐼𝐸∗ −
𝑆𝐸∗𝐼

𝐸
) ≤ 0 

Therefore, 𝑉̇ ≤ 0 𝑓𝑜𝑟 𝑅0 > 1. 

Therefore, V is a Lyapunov function by Lasalle’s Invariance principle, and the pandemic equilibrium 

𝐸1 𝑖𝑠 globally stable asymptotically . 

5. Numerical stimulation  

            In this phase, we have completed the numerical answers, they are just as vital as the analytical 

findings, to verify them. We provide simulations of possible solutions to the system's nonlinear 

differential equation. 

 To begin, define the system parameters as 𝜌1 =(𝜙 = 0.1,𝑚 = 0.02, 𝛽 = 0.01, 𝛼 = 0.03, 𝜒 = 0.05. 

Then the beginning condition Satisfied S(0)= 0, E(0)=0, I(0) = 0, R(0)=0  is a susceptible prey population 

with a periodic point of one. 

i) If we take the system parameter as 𝜌1. Then the initial condition satisfied S(0)= 0, E(0)=0, 

I(0) = 1, R(0)=0 is the infected prey population (see figure 1). 

ii)  Assume the system's parameter is 𝜌1. Then the starting condition satisfied S(0)= 0, E(0)=1, 

I(0)=0, and R(0)=0 is the exposed prey population (see figure 2) 

iii)  Assume the system's parameter is 𝜌1. The starting condition satisfied S(0)=1, E(0)=0, 

I(0)=0, R(0)=0 is the susceptible  prey population (see figure 3) 

iv)  Assume the system's parameter is 𝜌1. The starting condition satisfied S(0)= 0, E(0)=0, I(0) 

= 0, R(0)=1) is the recovered predator population (see figure 4) 

v) Assume the system's parameter is 𝜌1. The starting condition satisfied S(0)= 0, E(0)=0, I(0) 

= 0, R(0)=0.5) is the recovered  predator population at periodic.(see figure 5) 

vi) Assume the system's parameter is 𝜌1. The starting condition satisfied S(0)= 0, E(0)=0, I(0) 

= 0.5, R(0)=0) is the infected prey population at periodic  (see figure 6,7,8) 

vii) Assume the system's parameter is 𝜌1. The starting condition satisfied S(0)= 0, E(0)=0.5, I(0) 

= 0, R(0)=0) is exposed prey population at periodic  (see figure 9) 

viii) Assume the system's parameter is 𝜌1. The starting condition satisfied S(0)= 0.5, E(0)=0, I(0) 

= 0, R(0)=0) is the Susceptible prey population at periodic  (see figure 10) 
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ix) Assume the system's parameter is 𝜌1. The starting condition satisfied S(0)= 5, E(0)=0, I(0) 

= 5, R(0)=0)[19] is the susceptible and infected prey population  (see figure 11) 

x) Assume the system's parameter is 𝜌1. The starting condition satisfied S(0)= 5, E(0)=5, I(0) 

= 0, R(0)=0) [19]is the susceptible and exposed prey population  (see figure 12) 

xi) Assume the system's parameter is 𝜌1. The starting condition satisfied S(0)= 5, E(0)=5, I(0) 

= 0, R(0)=0)[19]  is the susceptible prey and recovered  predator population  (see figure 13) 

xii) Assume the system's parameter is 𝜌1. The starting condition satisfied S(0)= 0, E(0)=5, I(0) 

= 0, R(0)=5)[19] is the Exposed prey and recovered  predator population  (see figure 14) 

xiii) Assume the system's parameter is 𝜌1. The starting condition satisfied S(0)= 0, E(0)=0, I(0) 

= 2, R(0)=1)[19] is the Infected prey and recovered  predator population  (see figure 15) 

xiv) Assume the system's parameter is 𝜌1. The starting condition satisfied S(0)= 1, E(0)=0, I(0) 

= 0, R(0)=0.5)[19] are the susceptible prey and recovered  predator population  (see figure 

16) 

 

6. Conclusion  

     The SEIR (Susceptible, Exposed, Infectious, and Recovered) model is an important epidemiological 

tool for analyzing infectious disease dynamics. Here are some crucial considerations to consider when 

concluding from the SEIR model. The SEIR model efficiently reflects the evolution of infectious diseases 

by including an exposed stage, which is critical for infections that require an incubation period. This makes 

it more realistic than simpler models like the SIR (susceptible, infectious, recovered) model. The SEIR 

model, which simulates the transmission of an infection over time, aids in the prediction of future 

outbreaks and the impact of interventions. It offers vital insights into public health planning and response 

tactics. The paradigm emphasizes the value of early detection and intervention. 

Model simulations show that measures like quarantine, vaccination, and social separation can have a 

significant impact on the course of an pandemic. The SEIR model accuracy is strongly dependent on 

parameter estimates such as transmission rate, incubation period, and recovery rate. Small adjustments 

to these parameters can provide different results, emphasizing the importance of exact data. While the 

SEIR model provides a solid framework, it assumes population homogeneity and constant parameters, 

which may not accurately reflect real-world complexities. Model extensions, such as age-structured or 

spatial models, can help to overcome these restrictions. The SEIR model is a crucial epidemiological 

tool that helps us understand infectious illness patterns. Its ability to model diverse scenarios and inform 

public health decisions makes it crucial, but ongoing refinement and correct parameter estimation are 

required for maximum performance. 
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7. Figures 

 

Figure 1 The Infected prey population 

 

Figure 2 The Exposed prey population 

 

Figure 3 The susceptible prey population 
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Figure 4 The Recovered predator population 

 

Figure 5 Infected prey at periodic 

 

Figure 6 Exposed prey at periodic 
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Figure 7 Susceptible prey at periodic 

 

Figure 8 The communication of Susceptible prey and Infected Prey population 

 

Figure 9 The communication of Susceptible prey, Exposed Prey and     Infected Prey population 
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Figure 10 The communication of Susceptible predator and recovered Predator population 

 

Figure 11 The communication of Susceptible prey and recovered predator population 

 

Figure 12  The communication of Exposed prey and recovered predator population 
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Figure 13 The communication of Infected prey and recovered predator population 

 

 

Figure 14  The communication of  infected prey and recovered predator population 

 

Figure 15 The communication of Exposed prey and recovered predator population 
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Figure 16 The communication of susceptible prey and recovered predator  population 
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