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Abstract:  Accurate classification of petrological samples is fundamental to geological investigations and 

resource exploration. Traditional methods relying on manual lithographic analysis are time-consuming and 

subject to expert bias. This study presents a novel deep learning framework for automated classification of 

Lithographical thin-section images. Utilizing convolutional neural networks (CNNs), the model was trained 

on a curated dataset encompassing diverse rock types, including igneous, sedimentary, and metamorphic 

classes. Data augmentation and transfer learning techniques enhanced model generalizability and 

performance. The proposed system achieved an overall classification accuracy exceeding 90%, outperforming 

conventional machine learning baselines. The results highlight the potential of deep learning to streamline 

petrological workflows, reduce human error, and enable large-scale geological mapping. Future work aims to 

integrate geochemical data and expand the model's applicability to field-acquired samples 

 

Index Terms - Accuracy, Convolution, Deep Learning, Image, Lithography, Neural Network. 

I. INTRODUCTION 

The classification of petrological images plays a crucial role in the field of geology, enabling the identification 

and analysis of rock types and their mineral compositions. Traditional methods of petrological classification 

often rely on expert interpretation, which can be time-consuming and subject to human error. With the 

advancement of machine learning, particularly deep learning techniques, automated image classification has 

gained significant attention. Convolutional Neural Networks (CNNs), a type of deep learning model designed 

to process and analyze visual data, have demonstrated remarkable success in various image recognition tasks. 

Applying CNNs to petrological image classification offers a promising approach to enhance accuracy, 

efficiency, and consistency in identifying rock textures and mineralogical features. This integration of 

petrology and artificial intelligence aims to support geologists in faster and more reliable analysis, 

contributing to improved geological mapping, resource exploration, and academic research. 

II. REVIEW OF LITERATURE  

Deep learning techniques, particularly convolutional neural networks (CNNs), have revolutionized the 

classification of petrological samples, offering a powerful alternative to traditional manual methods. 

Petrological classification traditionally involves detailed microscopic examination of thin-section images 

under plane-polarized and cross-polarized light, a process that is both time-consuming and subject to expert 

bias. Recent advancements in computer vision have facilitated the automation of this task, significantly 

enhancing both efficiency and accuracy. Su et al. [1] introduced a concatenated CNN (Con-CNN) model that 

simultaneously processes plane-polarized and cross-polarized images of petrographic thin sections. This dual-

channel input enables the network to extract richer textural and mineralogical features, achieving a notable 
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accuracy of 89.97%. In a subsequent journal version [2], the authors incorporated a statistical revision 

mechanism to correct misclassifications at the image patch level, further improving robustness. Sarmad et al. 

[3] extended the deep learning paradigm into core-scale reservoir characterization by employing a UNet 

architecture. Their model classifies petrological samples based on pore geometry and mineralogy from micro-

CT images, automating expert-driven tasks in the petroleum industry and exemplifying the scalability of such 

approaches. Patch-based classification has also gained traction as a strategy to capture local mineral spatial 

arrangements. Wan and Yun [4] trained a CNN on such patches, achieving over 90% accuracy in classifying 

six igneous rock types, underlining the effectiveness of spatial segmentation. Further innovation was 

presented by Dell’Aversana [5], who utilized deep convolutional residual networks (ResNets). The study 

demonstrated that ResNets outperform fully connected networks in mineral classification, primarily due to 

their ability to maintain performance in deeper architectures. Remote sensing integration was explored by El-

Desoky et al. [6], who utilized an AlexNet-based CNN alongside Landsat-9 imagery and field validation for 

classifying Neoproterozoic basement rocks, reaching an accuracy of 95.27%. This multidisciplinary method 

bridges petrology and geospatial analysis. Real-time classification potential was showcased by Pascual [7], 

who developed a CNN model achieving 99.60% accuracy, markedly outperforming classical methods such 

as support vector machines (SVMs). This highlights the operational readiness of CNNs for field deployment. 

In data-constrained environments, Hao et al. \[8] emphasized the importance of data augmentation and 

training optimization. Their CNN model, trained on 350 images, achieved 82.86% accuracy, illustrating that 

methodological rigor can compensate for limited datasets. Mineral-specific classification was pushed further 

by Cifuentes et al. [9], who combined CNNs with short-wave infrared (SWIR) hyperspectral imaging. Their 

model effectively identified nine mineral types, demonstrating the benefit of integrating spectral data with 

deep learning. Lastly, Marathe et al. [10] addressed intra-category classification by differentiating volcanic 

from plutonic igneous rocks using grain size and texture. Their work reinforces the importance of domain-

specific features in improving classification granularity. These studies collectively underscore the 

transformative impact of deep learning in petrology. By leveraging sophisticated architectures such as Con-

CNN, UNet, ResNet, and AlexNet, researchers have significantly advanced the automation of rock and 

mineral classification. While challenges remain, particularly in dataset availability and model generalization, 

the trajectory of current research suggests that CNN-based frameworks will become integral to both academic 

geology and industrial applications. 

III. DATASET  

For this study secondary data has been collected by researchers inspired by the perseverance rover of NASA. 

The rock classification dataset in Fig. 1. used in this study was obtained from Hossain et al. [11] for the purpose 

of research of similar rocks identification in a mars-like surface. Collection methodology was using web 

scraping. A rock classification dataset typically contains images or spectral data of different rock types, 

categorized into 7 classes i.e. “Basalt”, “Coal”, “Limestone”, “Marble”, “Quartzite”, and “Sandstone.  The 

Number of image samples used in the present work are indicated by the Fig. 2. These datasets are used for 

training machine learning models to automate rock classification, which is important in geology, mining, and 

other fields. 

 

 

Fig. 1. The lithographic classification dataset 
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Table 1. Sample wise distribution of lithographic rock samples  

 
 

The Table 1 and pie chart (Fig. 2.)  represents the class distribution of lithographic rock samples in the 

dataset, consisting of a total of 2,274 image samples. 

  

Fig. 2. Class distribution of lithographic rock samples 

This visualization is crucial in understanding the balance of the dataset, which directly impacts the design 

and training efficiency of the deep learning model.Among the seven lithographic classes, Quartzite holds the 

highest proportion, comprising approximately 20.9% of the total data. This is followed by Marble, which 

constitutes 17.0%, and Coal, accounting for 16.2%. These three categories collectively dominate the dataset, 

making up over half of the total samples. Limestone (14.8%) and Sandstone (14.2%) also have substantial 

representation, while Granite and Basalt are relatively underrepresented, making up only 9.2% and 7.6%, 

respectively.This class imbalance is a critical factor in model development, as deep learning algorithms are 

often sensitive to skewed class distributions. Models trained on such datasets may become biased towards 

majority classes, leading to poor generalization on minority classes such as Granite and Basalt. Therefore, 

during model training and evaluation, techniques such as data augmentation, class weighting, or synthetic 

oversampling (e.g., SMOTE) may be essential to ensure fair representation and balanced learning across all 

lithographic classes. 

 

IV. METHODOLOGY AND EXPERIMENTAL SETUP 

A.  Model Establishment 

 

Fig. 3. Sequential Convolution Neural Network Model 

In a proposed research work, an attempt is made to solve, image classification problem by using transfer 

learning technique through deep learning approach. Convolution Head is designed with five feature maps , 

each consisting two dimensional convolution layer followed by Max pooling layer (could include layers like 

Normalization layers (regularization), Padding layers, etc.) to extract the most prominent features of the raw 

image.  
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B.  Convolution Head 

The model under consideration is a Sequential Convolutional Neural Network (CNN) designed for image 

classification, where the input images are presumably of size 224 × 224 × 3 (height × width × channels). The 

network consists of multiple convolutional and pooling layers followed by fully connected (dense) layers. The 

first layer is a Conv2D layer with 16 filters and a kernel size of 3×3. This layer extracts low-level features such 

as edges and textures from the input images. The output shape of this layer is (222, 222, 16), indicating that 

after applying the convolution operation, the spatial dimensions are slightly reduced due to the kernel size, 

while the depth corresponds to the number of filters. This layer contains 448 learnable parameters, including 

the weights of the filters and biases. Following the first convolution, a MaxPooling2D layer is applied to reduce 

the spatial dimensions by a factor of 2, resulting in an output shape of (111, 111, 16). Pooling helps in reducing 

computation, controlling overfitting, and providing translation invariance by retaining the most prominent 

features in each region. The network then applies a second convolutional layer, Conv2D with 32 filters, 

producing an output of shape (109, 109, 32). This layer captures more complex patterns in the image, 

combining features learned from the previous layer. Its parameter count is 4,640, reflecting the increased 

number of filters. Another MaxPooling2D layer reduces the feature map dimensions to (54, 54, 32).The third 

convolutional layer, Conv2D with 64 filters, further extracts higher-level representations, producing an output 

of (52, 52, 64) with 18,496 parameters. Subsequent MaxPooling2D reduces this to (26, 26, 64).The fourth 

convolutional layer uses 128 filters, resulting in an output of (24, 24, 128) and 73,856 parameters. A 

corresponding max pooling reduces the spatial size to (12, 12, 128).The fifth convolutional layer expands the 

depth to 256 filters, producing (10, 10, 256) and 295,168 parameters. After pooling, the feature maps are 

reduced to (5, 5, 256). At this stage, the network has successfully encoded the hierarchical features of the 

images, from simple edges to complex shapes and textures, while drastically reducing spatial dimensions. 

 

 

C.  Convolution Base 

The Convolution Base is used to classify the image by passing the sample images through the Convolutional 

layer using Flattening Layer which converts the 3D feature maps into a 1D vector of size 6400, making it 

suitable for fully connected layers., deals with an array of values. The first fully connected layer (Dense layer) 

has 512 neurons with 3,277,312 parameters, allowing the network to learn non-linear combinations of the 

extracted features and perform complex decision-making. The final dense layer has 6 neurons, corresponding 

to the number of target classes in the classification task, with 3,078 parameters. This layer produces the raw 

output logits that are typically fed into a  dense Layer with sigmoid function (categorical classification) with 

the output size = six classes (i.e. “Basalt”, “Coal” , “Limestone”, “ Marble”, “Quartzite”, “Sandstone). 

 

 

D. Model Evaluation 

Let the dataset be 

 

𝐷 =  {(𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), … … … … (𝑥𝑖, 𝑦𝑖)}      (1) 

 

In k-fold cross validation, D is split into disjoint subset folds (k) 

 

𝐷 =  𝐷1 ∪ 𝐷2 ∪ 𝐷3 ∪ … … … ∪ 𝐷𝑘 , 𝐷𝑖 ∩ 𝐷𝑗 = 0  𝑓𝑜𝑟 𝑖 ≠ 𝑗     (2) 

 

For ith fold      

𝐷𝑇𝑟𝑎𝑖𝑛
(𝑖)

= 𝐷\𝐷𝑖 ,      𝐷𝑣𝑎𝑙 = 𝐷𝑖          (3) 

 

Let the model trained in the i-th fold produce a performance metric is the average (accuracy and loss etc.) M 

(i). Then, after training and evaluating across all k folds, the overall l-fold performance is computed as the 

average: 

 

𝑀̅ =
1

𝑘
∑ 𝑀(𝑖)𝑘

𝑖=1           (4) 
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This equation formalizes that the final performance metric is the average of the metric from all k folds, 

providing a robust estimate of the models generalization 

 

Let 𝑦̂𝑗
(𝑖)

 denotes the predicted label for sample xj in fold i, and yi the true label. Then accuracy for fold i is: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑖) =
1

𝑘
∑ 1

(𝑥,𝑦)∈𝐷𝑣𝑎𝑙
(𝑖) (𝑦̂𝑗

(𝑖)
= 𝑦𝑗)       (5) 

 

Where 1 is an indicator function that equals 1 of the condition is true, and 0 otherwise. 

The overall k-fold accuracy is the average of the accuracy across folds: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐶𝑉 =
1

𝑘
∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑖)𝑘

𝑖=1        (6) 

 

If  𝑃̂𝑗
(𝑖)

= [𝑝̂𝑗,1
(𝑖)

, 𝑝̂𝑗,2
(𝑖)

, … … , 𝑝̂𝑗,𝐶
(𝑖)

] is the predicted probability distribution over C classes for sample in 𝑥𝑗 fold 𝑖, 

and  𝑦𝑗is the true class label (one-hot encoded as 𝑦𝑗 ), the cross-entropy loss  for fold 𝑖 is:  

 

𝐶𝐸(𝑖) = −
1

|𝐷𝑣𝑎𝑙
(𝑖)

|
∑ ∑ 𝑗𝑗,𝐶

𝐶
𝐶=1 𝑙𝑜𝑔𝑃̂𝑗,𝐶

(𝑖)

(𝑥𝑗,𝑦𝑗)∈𝐷𝑣𝑎𝑙
(𝑖)       (7) 

 

The overall k-fold cross-entropy loss is the average over folds: 

 

𝐶𝐸𝐶𝑉 =
1

𝑘
∑ 𝐶𝐸(𝑖)𝑘

𝑖=1          (8) 

 

V. EXPERIMENTAL RESULTS AND COMPARATIVE ANALYSIS 

  

Fig.4 (a) average accuracy on training dataset (b) average accuracy on testing dataset (c) average 

loss on training dataset (d) average loss on testing dataset. 
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The performance evaluation of the proposed custom sequential convolutional neural network (CNN) 

model for petrological image classification is illustrated in above figure 4, training and testing metrics 

plotted across 200 epochs. The model was trained on a labeled dataset of petrological images, and its 

performance was measured using both accuracy and binary cross-entropy loss (log loss), which is 

appropriate for multi-class problems converted via one-hot encoding or binary labels per class. The 

training accuracy curve demonstrates a steady and consistent rise over the epochs, starting from a 

lower baseline and gradually converging towards a plateau around 85% in the final stages of training. 

This indicates that the model progressively learned the underlying features of the training data. The 

average training accuracy achieved across all epochs is approximately 70.44%, highlighting a 

moderate but stable learning pattern during the training phase. 

In contrast, the testing accuracy shows a rapid improvement within the first 25–50 epochs and 

subsequently stabilizes at a high value close to 95%. The average testing accuracy, computed over 

the entire training cycle, is remarkably high at 90.33%. This superior performance on the validation 

set suggests that the model generalizes well to unseen data, effectively capturing critical features in 

petrological images necessary for accurate classification. The absence of major dips or oscillations in 

the testing accuracy curve further confirms the stability and reliability of the trained model. Analysing 

the loss metrics, the training loss begins at a higher value and steadily declines throughout the training 

period, indicating effective minimization of error through backpropagation. The average training loss 

is around 0.7813, which, while higher than the testing loss, reflects the inherent variability or possible 

noise in the training set. The corresponding testing loss curve follows a downward trend initially and 

flattens out at lower values, with occasional spikes observed around epochs 100 and 160. These minor 

fluctuations may be attributed to random batch effects or overconfidence in predictions for certain 

image samples. Nonetheless, the average testing loss remains low at 0.28126, reinforcing the model's 

robustness and minimal overfitting. 

 

VI. CONCLUSION  

Deep learning, particularly CNN-based architectures, has proven highly effective in classifying petrological 

thin-section images. Strategies such as dual-polarization input, patch-level learning, and integration of 

spectral data significantly improve accuracy and generalizability. The field is moving towards real-time, 

domain-adaptable systems, but further progress depends on robust datasets and interdisciplinary integration 

of geoscientific insights with AI innovations. 
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