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Abstract—Solid State Drives (SSDs) have revolutionized 

data storage by providing faster access speeds, lower power 
consumption, and greater durability compared to traditional 
Hard Disk Drives (HDDs). At the heart of SSD performance lies 
the firmware, which manages complex operations such as Flash 
Translation Layer (FTL), wear leveling, garbage collection, and 
error correction to maintain device reliability and longevity. 
This paper presents an in-depth survey of recent advancements 
in SSD firmware design, focusing on how firmware algorithms 
address NAND flash memory challenges like limited write 
endurance and data retention issues. We explore emerging 
techniques including adaptive firmware tuning powered by 
artificial intelligence, Zoned Namespace (ZNS) support for 
improved storage efficiency, and integration of blockchain 
technology for secure firmware updates. The paper also reviews 
state-of-the-art simulation and validation frameworks that 
accelerate firmware development and testing. Through detailed 
analysis of these innovations, we demonstrate how firmware 
improvements enable SSDs to meet the growing demands of 
applications ranging from enterprise data centers to mobile and 
IoT devices. This comprehensive overview aims to guide 
researchers and developers in understanding current trends 
and future directions in SSD firmware technologies. 
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I. INTRODUCTION TO SSD FIRMWARE 

Solid State Drives (SSDs) have become a cornerstone 

of modern storage solutions, deployed widely from 

personal devices to large data centers. Unlike Hard 

Disk Drives (HDDs), SSDs store data on NAND flash 

memory, which has no mechanical parts, enabling 

higher speeds and greater robustness[4],[10]. 

However, NAND flash is inherently complex, 

suffering from issues such as limited Program/Erase 

(P/E) cycles, wear-out, and bit errors. The SSD 

firmware plays a critical role in managing these 

limitations by implementing the Flash Translation 

Layer (FTL), wear leveling, garbage collection (GC), 

and error correction [1],[15]. 

Key firmware components include the Flash 

Translation Layer (FTL), wear levelling algorithms, 

garbage collection routines, and error correction 

modules. The FTL maps logical block addresses 

from the host to physical flash locations, enabling 

efficient writes despite flash memory’s erase- 

before- write constraints. Wear levelling balances 

cell usage to pre- vent premature wear, while 

garbage collection consolidates valid data and frees 

blocks for new writes, minimizing write 

amplification. Error correction codes embedded in 

firmware safeguard data reliability by correcting bit 

errors arising from flash degradation. 

The continuous demand for higher performance, 

reliability, and longevity in SSDs has driven 

innovations in firmware design. From the first- 

generation page-level mapping FTLs to advanced 

multi-core controllers with hardware accelerators, 

firmware architectures have evolved to exploit 

hardware parallelism, optimize write amplification, 

and enhance endurance[6],[9],[10]. This paper 

reviews these recent advancements, emphasizing 

their practical impact and the simulation tools 

aiding firmware development. 

 

II. HISTORICAL EVOLUTION OF SSD FIRMWARE 

A. Early Firmware Models and Limitations 

The initial SSDs employed simplistic firmware 

mainly based on page-level or block-level mapping 

FTLs, which directly translated logical block 

addresses (LBAs) to physical NAND locations 

[15]. While straightforward, this approach had 

drawbacks: high memory overhead for mapping 

tables and increased write amplification due to poor 

data locality awareness. Moreover, garbage 

collection was rudimentary, often leading to latency 

spikes during background cleanup operations[9]. 

Figure 1 illustrates a typical architecture of SSD 
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firmware, highlighting the limited data flow and 

functionality. 
 

Fig. 1. Simplified architecture of SSD Firmware 

B. Progression to Dynamic and Hybrid FTL Schemes 

To address the growing demand for endurance 

and performance, SSD firmware evolved to support 

dynamic FTLs, which allowed remapping of logical 

pages to different physical locations. Hybrid FTLs 

later emerged, combining static and dynamic 

mapping regions to optimize both hot and cold data 

placement. These developments significantly 

reduced write amplification and extended SSD 

lifetime. To address memory overhead and improve 

efficiency, Demand-based FTL (DFTL) emerged. 

DFTL caches only frequently accessed mapping 

entries in RAM, fetching others on demand from 

NAND, striking a balance between memory usage 

and performance [9]. This significantly reduced 

RAM requirements and improved scalability for 

large SSDs. 

Hybrid FTLs combine page and block mapping, 

assigning cold data to block mapping and hot data 

to page mapping, thus optimizing wear and 

reducing garbage collection frequency [15]. Figure 

2 illustrates this hybrid architecture where firmware 

orchestrates both logical management and real-time 

hardware acceleration. 

 

Fig. 2. Hybrid Firmware-Hardware Co-Design 

C. Hardware- Accelerated and Multi-Core 

Controllers 

Recent SSD controllers integrate multiple CPU 

cores and dedicated hardware accelerators for ECC, 

garbage collection, and encryption, enabling 

parallel execution of firmware tasks[6],[10]. This 

architecture reduces firmware-induced latency and 

improves throughput. 

D. Simulation Platforms for Firmware Validation 

Due to the complexity of firmware development, 

simulation environments like FlashSim, FEMU, 

and QEMU-based SoftSSD are extensively used to 

model and validate firmware algorithms before 

hardware deployment[7],[12]. These platforms 

allow controlled experimentation with different 

FTL schemes, garbage collection policies, and error 

correction techniques. 

 

E. Milestones in Firmware Sophistication 

Modern SSD firmware has evolved significantly, 

transforming from a simple control layer into a 

sophisticated software stack that actively manages key 

aspects of storage reliability, endurance, and 

performance. The following features highlight this 

progression: 

• Background Garbage Collection: Frees up 

invalid data blocks in the background to ensure 

efficient use of flash memory. 

• Block-level Wear Levelling: Distributes 

write/erase cycles evenly across memory blocks 

to extend SSD lifespan. 

• Advanced Error Correction: Utilizes 

powerful schemes like BCH and LDPC codes to 

detect and correct multi-bit errors. 

• Over-Provisioning: Reserves extra storage 

space to im- prove performance and endurance 

under heavy work- loads. 

• Thermal Throttling: Monitors temperature and 

dynamically reduces performance to prevent 

overheating. 
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III. PERFORMANCE OPTIMIZATION 

TECHNIQUES 

A. Write Amplification and Garbage Collection 

Write Amplification (WA) is a critical factor 

limiting SSD performance and endurance. It arises 

when the SSD writes more data to NAND than the 

host requests, mainly due to out-of-place updates 

and garbage collection [1],[10]. 

Advanced garbage collection policies are designed 

to minimize WA by identifying and cleaning blocks 

with a high ratio of invalid pages efficiently[12], 

[17]. Lazy garbage collection defers cleaning to less 

busy periods, improving user I/O performance. 

Data separation techniques classify hot and cold 

data based on access frequency and store them in 

separate physical blocks to reduce invalidations and 

unnecessary data movement[14]. 

Due to the limited number of P/E cycles NAND 

cells can endure, wear leveling is fundamental to 

extending SSD lifetime [3],[10]. Static wear leveling 

periodically moves infrequently updated data to 

ensure even wear distribution, whereas dynamic 

wear leveling focuses on balancing writes among 

blocks currently in use. 

B. Over-Provisioning and Auto-Tuning FTLs 

Over-provisioning reserves extra NAND capacity 

beyond the advertised storage to improve garbage 

collection efficiency and wear leveling [10]. Recent 

firmware designs include adaptive over- 

provisioning where the firmware dynamically 

adjusts reserved space based on workload 

characteristics to optimize performance and 

endurance [1]. 

AutoFTL frameworks utilize machine learning to 

automatically tune FTL parameters, garbage 

collection thresholds, and wear-leveling policies 

tailored to specific workloads, leading to consistent 

performance improvements[28]. 

 

C. Exploiting Parallelism 

Modern SSDs exploit inherent NAND parallelism 

at multiple levels — across channels, dies, and planes 

— to maximize throughput [6],[19]. Firmware 

schedulers distribute I/O requests across these 

parallel units to prevent bottlenecks and ensure 

balanced usage. 

Multi-queue and out-of-order execution models in 

firmware further enhance parallelism, reducing 

latency and improving quality of service [10]. 

D. Write Caching and Reduction Techniques 

Temporal locality prediction allows firmware to 

use write caches to absorb frequent small writes, 

reducing direct NAND writes and thus wear \[9]. 

Combined with compression and deduplication at the 

firmware layer, these techniques significantly 

improve endurance. 

E. Error Correction and Retention Management 

Advanced ECC schemes like Low-Density Parity- 

Check (LDPC) codes provide robust error correction 

at high bit error rates, compensating for NAND 

degradation over time[3],[4]. Firmware integrates 

these ECC engines with adaptive read voltage 

adjustment and refresh policies to maintain data 

integrity [3]. 

Retention-aware refresh mechanisms periodically 

rewrite data before retention errors accumulate, 

further prolonging data reliability[10]. 

 

IV. CURRENT CHALLENGES IN SSD 

FIRMWARE DEVELOPMENT 

 

A. Scalability with Increasing NAND Densities (QLC, 

PLC) 

As NAND technology advances from MLC to 

QLC and PLC, each cell stores more bits, 

significantly reducing endurance and increasing 

error rates. Firmware must manage higher raw bit 

error rates (RBER) while ensuring data integrity 

through stronger ECC and tighter read/write 

management. This complexity challenges firmware 

scalability and impacts latency, especially in low- 

endurance applications. 

 

B. Managing Firmware Complexity and Real-Time 

Constraints 

Modern SSD firmware incorporates intricate 

modules for FTL, wear leveling, GC, and ECC, often 

executing con- currently. Meeting strict timing 

constraints while balancing performance and 

reliability becomes difficult as complexity increases. 

Real-time performance guarantees are particularly 

critical in enterprise and real-time systems, requiring 

lightweight yet intelligent firmware scheduling. 
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C. Handling Nondeterministic I/O Workloads and 

Latency Spikes 

Workload unpredictability, especially in data 

centers, can cause SSDs face unpredictable access 

patterns due to workload diversity across client and 

datacenter environments. Internally triggered 

operations (like GC or wear levelling) may interrupt 

user I/O, leading to latency spikes. Achieving 

consistent Quality of Service (QoS) while handling 

these background tasks remains an open challenge in 

firmware design. 

D. Firmware Update Risks and Reliability 

Concerns 

Firmware updates are essential for bug fixes and 

performance improvements but pose risks like 

bricking or data corruption if interrupted. Reliable 

update mechanisms with rollback support, 

cryptographic validation, and redundant firmware 

images are necessary to ensure secure and fail-safe 

updates, especially in distributed environments. 

E. Security Vulnerabilities and Firmware Attack 

Surfaces 

SSD firmware has emerged as a critical attack 

vector due to its low-level control and often 

proprietary nature. Threats include firmware-level 

backdoors, unauthorized modifications, and buffer 

overflow exploits. Secure boot mechanisms, signed 

firmware images, and runtime integrity checks are 

essential but not yet universally adopted across all 

vendors. 

 

V. RELIABILITY AND SECURITY 

 

A. Power-Failure Protection 

Unexpected power loss can corrupt data and firmware 

metadata. Modern SSD firmware includes 

mechanisms like journaling, checkpointing, and 

power-loss protection capacitors or batteries to safely 

complete or rollback in-flight operations [6], [22]. 

Firmware algorithms prioritize atomicity and 

consistency in metadata updates, using techniques 

such as transactional writes and metadata 

redundancy[6]. 

B. Bad Block Management and Health Monitoring 

Firmware continuously monitors NAND blocks, 

marking those exhibiting excessive errors as bad and 

reallocating data to healthy blocks[3]. Health 

monitoring tools report SMART (Self-Monitoring, 

Analysis, and Reporting Technology) data to the host 

for predictive failure analysis. 

C. Firmware Verification and Testing 

Robust firmware verification methods such as formal 

verification and fuzz testing are increasingly 

employed to identify bugs and security vulnerabilities 

before deployment[6]. Power fault injection testing 

simulates power loss scenarios to verify recovery 

mechanisms. 

D. Firmware-Level Encryption and Access Control 

Firmware implements hardware-accelerated AES 

encryption and secure key management to protect 

stored data \[27]. Secure erase commands and 

cryptographic erase features enable quick data 

sanitization without physical overwriting. Access 

control mechanisms enforce authentication for 

firmware access and command execution, preventing 

unauthorized firmware modifications [27]. 

E. Secure Firmware Updates with Blockchain 

Firmware-over-the-air (FOTA) updates are critical 

for fixing bugs and adding features post-deployment. 

Blockchain technology can be integrated with update 

mechanisms to provide tamper-proof and auditable 

firmware update logs, particularly important in edge 

and IoT SSDs where physical security is limited [26], 

[27]. 

 

VI. CASE STUDIES AND IMPLEMENTATION 

A. SoftSSD: High-Level Firmware Emulation 

SoftSSD is a high-level SSD firmware emulator 

implemented within the QEMU virtualization 

platform, designed to facilitate rapid development and 

testing of SSD firmware features without the need for 

physical hardware [28]. By abstracting the NAND 

flash interface, SoftSSD models the firmware stack 

including key components such as metadata 

journaling, wear-leveling, garbage collection, and 

command queuing. This approach enables developers 

to quickly iterate firmware logic, validate algorithms, 

and debug performance issues in a con- trolled and 

reproducible software environment. 
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SoftSSD’s modular design supports flexible 

configuration of flash memory parameters and 

workload types, making it highly suitable for 

academic research and firmware prototyping. Its 

ability to simulate detailed firmware behavior 

accelerates development cycles and reduces the costs 

associated with hardware testing. However, since it 

operates above the NAND interface, it may not 

capture low-level flash hardware idiosyncrasies, 

which must be addressed in later hardware- based 

testing. 

B. FEMU: Flash Emulation Framework for 

Firmware Performance Testing 

FEMU (Flash Emulation Framework) is an open- 

source SSD firmware emulator built on QEMU, 

designed for de- tailed performance testing and 

functional validation of SSD firmware. Unlike 

traditional simulators, FEMU provides realistic 

emulation of NAND flash behavior including latency 

variation, program/erase cycles, and error patterns, 

allowing evaluation of firmware techniques under 

conditions that closely mimic real hardware. FEMU 

supports integration of custom firmware components 

such as FTL algorithms, garbage collection policies, 

and wear-leveling schemes, enabling re- searchers to 

benchmark their solutions with real workload traces 

[29]. Its plugin-based architecture allows the addition 

of new flash models and firmware extensions without 

major rework. FEMU’s precise timing and fault 

injection capabilities make it particularly valuable for 

studying firmware resilience and optimization 

strategies. While FEMU requires more setup and 

computational resources than SoftSSD, it offers 

greater fidelity and is a critical tool for bridging the 

gap between software emulation and physical 

hardware testing in firmware development 

workflows. 

 

VII. CONCLUSION 

This review has outlined the critical role and 

evolving complexity of SSD firmware, highlighting 

key advancements in firmware architecture, core 

functionalities, and practical implementations. SSD 

firmware has evolved from simple address translators 

to complex control systems central to device 

performance, reliability, and security. Innovations in 

FTL design, garbage collection, wear leveling, error 

correction, and secure update mechanisms ensure 

SSDs can meet the increasing demands of diverse 

applications. Simulation platforms and AI-driven 

techniques offer promising avenues for future 

firmware development. While SoftSSD and FEMU 

support firmware-level emulation with a focus on 

architectural design, NVM simulator [30] provides a 

more detailed, circuit-level NAND flash simulation, 

allowing developers to model timing and power 

behavior with high accuracy. 

Despite these advances, challenges such as scaling 

firmware for new NAND types, managing update 

reliability, and ensuring robust security remain. 

Addressing these will require continued collaboration 

between academia and industry, with an emphasis on 

modular firmware designs, enhanced validation 

frameworks, and adaptive management techniques. 

Future research should focus on refining firmware 

scalability and resilience, integrating computational 

storage capabilities, and developing standardized 

frameworks for secure and seamless firmware 

updates. Such efforts will be essential to meet the 

increasing complexity of storage systems and unlock 

the full potential of emerging SSD technologies. 
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