
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT2509164 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b346

Recent Advancements In SSD Firmware For

Enhanced Performance, Endurance And Reliability

Arjun Singh∗, Dr. Hemalatha J N ‡

∗Electrical and Electronic Engineering, R V College of Engineering
‡ Associate Professor

Electrical and Electronic Engineering, R V College of Engineering

Abstract—Solid State Drives (SSDs) have revolutionized

data storage by providing faster access speeds, lower power
consumption, and greater durability compared to traditional
Hard Disk Drives (HDDs). At the heart of SSD performance lies
the firmware, which manages complex operations such as Flash
Translation Layer (FTL), wear leveling, garbage collection, and
error correction to maintain device reliability and longevity.
This paper presents an in-depth survey of recent advancements
in SSD firmware design, focusing on how firmware algorithms
address NAND flash memory challenges like limited write
endurance and data retention issues. We explore emerging
techniques including adaptive firmware tuning powered by
artificial intelligence, Zoned Namespace (ZNS) support for
improved storage efficiency, and integration of blockchain
technology for secure firmware updates. The paper also reviews
state-of-the-art simulation and validation frameworks that
accelerate firmware development and testing. Through detailed
analysis of these innovations, we demonstrate how firmware
improvements enable SSDs to meet the growing demands of
applications ranging from enterprise data centers to mobile and
IoT devices. This comprehensive overview aims to guide
researchers and developers in understanding current trends
and future directions in SSD firmware technologies.

Keywords— Solid State Drives (SSD), Flash Translation Layer
(FTL), NAND Flash Memory, Firmware Architecture, Write
Amplification, Wear Leveling, Garbage Collection, Error
Correction Code (ECC), Zoned Namespace (ZNS), Firmware
Security, AI-assisted Firmware, Blockchain, SSD Simulation,
Power-Loss Protection, NVMe.

I. INTRODUCTION TO SSD FIRMWARE

Solid State Drives (SSDs) have become a cornerstone

of modern storage solutions, deployed widely from

personal devices to large data centers. Unlike Hard

Disk Drives (HDDs), SSDs store data on NAND flash

memory, which has no mechanical parts, enabling

higher speeds and greater robustness[4],[10].

However, NAND flash is inherently complex,

suffering from issues such as limited Program/Erase

(P/E) cycles, wear-out, and bit errors. The SSD

firmware plays a critical role in managing these

limitations by implementing the Flash Translation

Layer (FTL), wear leveling, garbage collection (GC),

and error correction [1],[15].

Key firmware components include the Flash

Translation Layer (FTL), wear levelling algorithms,

garbage collection routines, and error correction

modules. The FTL maps logical block addresses

from the host to physical flash locations, enabling

efficient writes despite flash memory’s erase-

before- write constraints. Wear levelling balances

cell usage to pre- vent premature wear, while

garbage collection consolidates valid data and frees

blocks for new writes, minimizing write

amplification. Error correction codes embedded in

firmware safeguard data reliability by correcting bit

errors arising from flash degradation.

The continuous demand for higher performance,

reliability, and longevity in SSDs has driven

innovations in firmware design. From the first-

generation page-level mapping FTLs to advanced

multi-core controllers with hardware accelerators,

firmware architectures have evolved to exploit

hardware parallelism, optimize write amplification,

and enhance endurance[6],[9],[10]. This paper

reviews these recent advancements, emphasizing

their practical impact and the simulation tools

aiding firmware development.

II. HISTORICAL EVOLUTION OF SSD FIRMWARE

A. Early Firmware Models and Limitations

The initial SSDs employed simplistic firmware

mainly based on page-level or block-level mapping

FTLs, which directly translated logical block

addresses (LBAs) to physical NAND locations

[15]. While straightforward, this approach had

drawbacks: high memory overhead for mapping

tables and increased write amplification due to poor

data locality awareness. Moreover, garbage

collection was rudimentary, often leading to latency

spikes during background cleanup operations[9].

Figure 1 illustrates a typical architecture of SSD

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT2509164 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b347

firmware, highlighting the limited data flow and

functionality.

Fig. 1. Simplified architecture of SSD Firmware

B. Progression to Dynamic and Hybrid FTL Schemes

To address the growing demand for endurance

and performance, SSD firmware evolved to support

dynamic FTLs, which allowed remapping of logical

pages to different physical locations. Hybrid FTLs

later emerged, combining static and dynamic

mapping regions to optimize both hot and cold data

placement. These developments significantly

reduced write amplification and extended SSD

lifetime. To address memory overhead and improve

efficiency, Demand-based FTL (DFTL) emerged.

DFTL caches only frequently accessed mapping

entries in RAM, fetching others on demand from

NAND, striking a balance between memory usage

and performance [9]. This significantly reduced

RAM requirements and improved scalability for

large SSDs.

Hybrid FTLs combine page and block mapping,

assigning cold data to block mapping and hot data

to page mapping, thus optimizing wear and

reducing garbage collection frequency [15]. Figure

2 illustrates this hybrid architecture where firmware

orchestrates both logical management and real-time

hardware acceleration.

Fig. 2. Hybrid Firmware-Hardware Co-Design

C. Hardware- Accelerated and Multi-Core

Controllers

Recent SSD controllers integrate multiple CPU

cores and dedicated hardware accelerators for ECC,

garbage collection, and encryption, enabling

parallel execution of firmware tasks[6],[10]. This

architecture reduces firmware-induced latency and

improves throughput.

D. Simulation Platforms for Firmware Validation

Due to the complexity of firmware development,

simulation environments like FlashSim, FEMU,

and QEMU-based SoftSSD are extensively used to

model and validate firmware algorithms before

hardware deployment[7],[12]. These platforms

allow controlled experimentation with different

FTL schemes, garbage collection policies, and error

correction techniques.

E. Milestones in Firmware Sophistication

Modern SSD firmware has evolved significantly,

transforming from a simple control layer into a

sophisticated software stack that actively manages key

aspects of storage reliability, endurance, and

performance. The following features highlight this

progression:

• Background Garbage Collection: Frees up

invalid data blocks in the background to ensure

efficient use of flash memory.

• Block-level Wear Levelling: Distributes

write/erase cycles evenly across memory blocks

to extend SSD lifespan.

• Advanced Error Correction: Utilizes

powerful schemes like BCH and LDPC codes to

detect and correct multi-bit errors.

• Over-Provisioning: Reserves extra storage

space to im- prove performance and endurance

under heavy work- loads.

• Thermal Throttling: Monitors temperature and

dynamically reduces performance to prevent

overheating.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT2509164 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b348

III. PERFORMANCE OPTIMIZATION

TECHNIQUES

A. Write Amplification and Garbage Collection

Write Amplification (WA) is a critical factor

limiting SSD performance and endurance. It arises

when the SSD writes more data to NAND than the

host requests, mainly due to out-of-place updates

and garbage collection [1],[10].

Advanced garbage collection policies are designed

to minimize WA by identifying and cleaning blocks

with a high ratio of invalid pages efficiently[12],

[17]. Lazy garbage collection defers cleaning to less

busy periods, improving user I/O performance.

Data separation techniques classify hot and cold

data based on access frequency and store them in

separate physical blocks to reduce invalidations and

unnecessary data movement[14].

Due to the limited number of P/E cycles NAND

cells can endure, wear leveling is fundamental to

extending SSD lifetime [3],[10]. Static wear leveling

periodically moves infrequently updated data to

ensure even wear distribution, whereas dynamic

wear leveling focuses on balancing writes among

blocks currently in use.

B. Over-Provisioning and Auto-Tuning FTLs

Over-provisioning reserves extra NAND capacity

beyond the advertised storage to improve garbage

collection efficiency and wear leveling [10]. Recent

firmware designs include adaptive over-

provisioning where the firmware dynamically

adjusts reserved space based on workload

characteristics to optimize performance and

endurance [1].

AutoFTL frameworks utilize machine learning to

automatically tune FTL parameters, garbage

collection thresholds, and wear-leveling policies

tailored to specific workloads, leading to consistent

performance improvements[28].

C. Exploiting Parallelism

Modern SSDs exploit inherent NAND parallelism

at multiple levels — across channels, dies, and planes

— to maximize throughput [6],[19]. Firmware

schedulers distribute I/O requests across these

parallel units to prevent bottlenecks and ensure

balanced usage.

Multi-queue and out-of-order execution models in

firmware further enhance parallelism, reducing

latency and improving quality of service [10].

D. Write Caching and Reduction Techniques

Temporal locality prediction allows firmware to

use write caches to absorb frequent small writes,

reducing direct NAND writes and thus wear \[9].

Combined with compression and deduplication at the

firmware layer, these techniques significantly

improve endurance.

E. Error Correction and Retention Management

Advanced ECC schemes like Low-Density Parity-

Check (LDPC) codes provide robust error correction

at high bit error rates, compensating for NAND

degradation over time[3],[4]. Firmware integrates

these ECC engines with adaptive read voltage

adjustment and refresh policies to maintain data

integrity [3].

Retention-aware refresh mechanisms periodically

rewrite data before retention errors accumulate,

further prolonging data reliability[10].

IV. CURRENT CHALLENGES IN SSD

FIRMWARE DEVELOPMENT

A. Scalability with Increasing NAND Densities (QLC,

PLC)

As NAND technology advances from MLC to

QLC and PLC, each cell stores more bits,

significantly reducing endurance and increasing

error rates. Firmware must manage higher raw bit

error rates (RBER) while ensuring data integrity

through stronger ECC and tighter read/write

management. This complexity challenges firmware

scalability and impacts latency, especially in low-

endurance applications.

B. Managing Firmware Complexity and Real-Time

Constraints

Modern SSD firmware incorporates intricate

modules for FTL, wear leveling, GC, and ECC, often

executing con- currently. Meeting strict timing

constraints while balancing performance and

reliability becomes difficult as complexity increases.

Real-time performance guarantees are particularly

critical in enterprise and real-time systems, requiring

lightweight yet intelligent firmware scheduling.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT2509164 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b349

C. Handling Nondeterministic I/O Workloads and

Latency Spikes

Workload unpredictability, especially in data

centers, can cause SSDs face unpredictable access

patterns due to workload diversity across client and

datacenter environments. Internally triggered

operations (like GC or wear levelling) may interrupt

user I/O, leading to latency spikes. Achieving

consistent Quality of Service (QoS) while handling

these background tasks remains an open challenge in

firmware design.

D. Firmware Update Risks and Reliability

Concerns

Firmware updates are essential for bug fixes and

performance improvements but pose risks like

bricking or data corruption if interrupted. Reliable

update mechanisms with rollback support,

cryptographic validation, and redundant firmware

images are necessary to ensure secure and fail-safe

updates, especially in distributed environments.

E. Security Vulnerabilities and Firmware Attack

Surfaces

SSD firmware has emerged as a critical attack

vector due to its low-level control and often

proprietary nature. Threats include firmware-level

backdoors, unauthorized modifications, and buffer

overflow exploits. Secure boot mechanisms, signed

firmware images, and runtime integrity checks are

essential but not yet universally adopted across all

vendors.

V. RELIABILITY AND SECURITY

A. Power-Failure Protection

Unexpected power loss can corrupt data and firmware

metadata. Modern SSD firmware includes

mechanisms like journaling, checkpointing, and

power-loss protection capacitors or batteries to safely

complete or rollback in-flight operations [6], [22].

Firmware algorithms prioritize atomicity and

consistency in metadata updates, using techniques

such as transactional writes and metadata

redundancy[6].

B. Bad Block Management and Health Monitoring

Firmware continuously monitors NAND blocks,

marking those exhibiting excessive errors as bad and

reallocating data to healthy blocks[3]. Health

monitoring tools report SMART (Self-Monitoring,

Analysis, and Reporting Technology) data to the host

for predictive failure analysis.

C. Firmware Verification and Testing

Robust firmware verification methods such as formal

verification and fuzz testing are increasingly

employed to identify bugs and security vulnerabilities

before deployment[6]. Power fault injection testing

simulates power loss scenarios to verify recovery

mechanisms.

D. Firmware-Level Encryption and Access Control

Firmware implements hardware-accelerated AES

encryption and secure key management to protect

stored data \[27]. Secure erase commands and

cryptographic erase features enable quick data

sanitization without physical overwriting. Access

control mechanisms enforce authentication for

firmware access and command execution, preventing

unauthorized firmware modifications [27].

E. Secure Firmware Updates with Blockchain

Firmware-over-the-air (FOTA) updates are critical

for fixing bugs and adding features post-deployment.

Blockchain technology can be integrated with update

mechanisms to provide tamper-proof and auditable

firmware update logs, particularly important in edge

and IoT SSDs where physical security is limited [26],

[27].

VI. CASE STUDIES AND IMPLEMENTATION

A. SoftSSD: High-Level Firmware Emulation

SoftSSD is a high-level SSD firmware emulator

implemented within the QEMU virtualization

platform, designed to facilitate rapid development and

testing of SSD firmware features without the need for

physical hardware [28]. By abstracting the NAND

flash interface, SoftSSD models the firmware stack

including key components such as metadata

journaling, wear-leveling, garbage collection, and

command queuing. This approach enables developers

to quickly iterate firmware logic, validate algorithms,

and debug performance issues in a con- trolled and

reproducible software environment.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT2509164 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b350

SoftSSD’s modular design supports flexible

configuration of flash memory parameters and

workload types, making it highly suitable for

academic research and firmware prototyping. Its

ability to simulate detailed firmware behavior

accelerates development cycles and reduces the costs

associated with hardware testing. However, since it

operates above the NAND interface, it may not

capture low-level flash hardware idiosyncrasies,

which must be addressed in later hardware- based

testing.

B. FEMU: Flash Emulation Framework for

Firmware Performance Testing

FEMU (Flash Emulation Framework) is an open-

source SSD firmware emulator built on QEMU,

designed for de- tailed performance testing and

functional validation of SSD firmware. Unlike

traditional simulators, FEMU provides realistic

emulation of NAND flash behavior including latency

variation, program/erase cycles, and error patterns,

allowing evaluation of firmware techniques under

conditions that closely mimic real hardware. FEMU

supports integration of custom firmware components

such as FTL algorithms, garbage collection policies,

and wear-leveling schemes, enabling re- searchers to

benchmark their solutions with real workload traces

[29]. Its plugin-based architecture allows the addition

of new flash models and firmware extensions without

major rework. FEMU’s precise timing and fault

injection capabilities make it particularly valuable for

studying firmware resilience and optimization

strategies. While FEMU requires more setup and

computational resources than SoftSSD, it offers

greater fidelity and is a critical tool for bridging the

gap between software emulation and physical

hardware testing in firmware development

workflows.

VII. CONCLUSION

This review has outlined the critical role and

evolving complexity of SSD firmware, highlighting

key advancements in firmware architecture, core

functionalities, and practical implementations. SSD

firmware has evolved from simple address translators

to complex control systems central to device

performance, reliability, and security. Innovations in

FTL design, garbage collection, wear leveling, error

correction, and secure update mechanisms ensure

SSDs can meet the increasing demands of diverse

applications. Simulation platforms and AI-driven

techniques offer promising avenues for future

firmware development. While SoftSSD and FEMU

support firmware-level emulation with a focus on

architectural design, NVM simulator [30] provides a

more detailed, circuit-level NAND flash simulation,

allowing developers to model timing and power

behavior with high accuracy.

Despite these advances, challenges such as scaling

firmware for new NAND types, managing update

reliability, and ensuring robust security remain.

Addressing these will require continued collaboration

between academia and industry, with an emphasis on

modular firmware designs, enhanced validation

frameworks, and adaptive management techniques.

Future research should focus on refining firmware

scalability and resilience, integrating computational

storage capabilities, and developing standardized

frameworks for secure and seamless firmware

updates. Such efforts will be essential to meet the

increasing complexity of storage systems and unlock

the full potential of emerging SSD technologies.

REFERENCES

[1] S. H. Lim, S. Park, and K. Kim, “A Novel FTL

Design for Improving SSD Performance and Endurance,”

IEEE Transactions on Consumer Electronics, vol. 62, no.

3, pp. 254-262, Aug. 2016.

[2] J. Lee and K. Choi, “Firmware Optimizations for

High Performance SSDs in Data Centers,” Proc. IEEE

International Conference on Cloud Computing, 2020, pp.

123-130.

[3] Y. Cai et al., “Error Patterns in MLC NAND

Flash Memory: Measurement, Characterization, and

Analysis,” Design, Automation & Test in Europe

Conference (DATE), 2012, pp. 1343-1348.

[4] A. S. K. Pathan, “Solid State Drives: An Overview

of Architecture and Challenges,” Journal of Computer

Science and Technology, vol. 33, no. 4, pp. 727–740,

2018.

[5] M. Lee et al., “FEMU: A Flash Memory Emulator

for Firmware Development,” Proc. ACM Symposium on

Operating Systems Principles, 2019, pp. 456–469.

[6] R. Kim, “Robustness Verification of SSD

Firmware using Power-Fault Injection and Formal

Methods,” IEEE Transactions on Dependable and Secure

Computing, vol. 17, no. 5, pp. 992–1005, 2020.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT2509164 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b351

[7] K. Zhang et al., “FlashSim: A Simulation

Framework for SSD Firmware Research,” IEEE

International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems

(MASCOTS), 2014, pp. 71-80.

[8] L. Xu and D. Li, “Advances in SSD Firmware

Architectures,” IEEE Access, vol. 8, pp. 145125–145138,

2020.

[9] H. Yang et al., “Demand-based FTL with

Adaptive Caching for NAND Flash Memory,” IEEE

Transactions on Computer-Aided Design, vol. 38, no. 8,

pp. 1401-1412, Aug. 2019.

[10] J. Park and S. Kim, “Performance and Reliability

Enhancement Techniques for Modern SSD Firmware,”

IEEE Transactions on Circuits and Systems, vol. 67, no.

11, pp. 3987–4000, Nov. 2020.

[11] B. Liu and Y. Cao, “Garbage Collection Policies

for Reducing Write Amplification in SSDs,” ACM

Transactions on Storage, vol. 15, no. 2, 2019.

[12] M. Wu et al., “Hot and Cold Data Separation for

Flash Memory,” IEEE Transactions on Computer-Aided

Design, vol. 39, no. 4, pp. 760-773, April 2020.

[13] K. Wang et al., “Embedded SSD Firmware:

Design Challenges and Solutions,” IEEE Embedded

Systems Letters, vol. 11, no. 1, pp. 14-17, Mar. 2019.

[14] Z. Zhou et al., “Lazy Garbage Collection for

SSDs,” IEEE Transactions on Computers, vol. 69, no. 5,

pp. 682-695, May 2020.

[15] J. Kim and H. Park, “NVMe Firmware

Enhancements for SSDs in Data Centers,” IEEE

Transactions on Parallel and Distributed Systems, vol. 31,

no. 6, pp. 1401-1414, June 2020

[16] C. Lin and F. Chang, “I/O Scheduling and

Parallelism Exploitation in SSD Firmware,” Proc. IEEE

Symposium on Mass Storage Systems and Technologies,

2019, pp. 1-10.

[17] D. Patel et al., “AI-driven Firmware Management

for Next Generation SSDs,” IEEE Transactions on

Artificial Intelligence, vol. 2, no. 4, pp. 265-275, Dec.

2021.

[18] T. Huang and S. Chien, “Power-Loss Protection

Techniques for SSD Firmware,” IEEE Transactions on

Industrial Electronics, vol. 66, no. 11, pp. 8647-8655, Nov.

2019.

[19] H. Lee et al., “Zoned Namespace SSD Firmware

Design for Endurance and Performance,” IEEE

Transactions on Storage, vol. 8, no. 3, 2022.

[20] M. Singh and A. Kumar, “Secure Firmware

Updates Using Blockchain for IoT Storage Devices,” IEEE

Transactions on Information Forensics and Security, vol.

15, pp. 2346-2359, 2020.

[21] R. Jain et al., “SSD Firmware Security:

Challenges and Solutions,” IEEE Security & Privacy, vol.

18, no. 2, pp. 36-45, March-April 2020.

[22] S. Zhang et al., “AutoFTL: Adaptive Firmware

for Flash Memory Storage,” IEEE Transactions on

Computers, vol. 69, no. 8, pp. 1154-1166, Aug. 2020.

[23] J. Marquez, A. Jaleel, M. Upton, and C.

Wilkerson, “WARM: A write hotness aware retention

management,” in *Proc. USENIX Conf. on File and

Storage Technologies (FAST)*, 2015.

[24] K. Im, S. Park, and J. Choi, “A new error

correction method using concatenated BCH and LDPC for

NAND flash memory,” *IEEE Transactions on

Dependable and Secure Computing*, vol. 18, no. 3,

pp.1234–1245, 2021.

[25] J. Li and X. Zhang, “Efficient LDPC

implementation with hardware-software co-design,”

IEEE Transactions on Computers, vol. 68, no. 9, pp.

1362–1375, 2019.

[26] Samsung Electronics, “Samsung SSD 970 PRO

Data Sheet,” 2022. [Online]. Available:

https://semiconductor.samsung.com.

[27] Intel, “Intel SSD DC Family: Power Loss

Imminent (PLI) Protection,” 2021. [Online]. Available:

https://www.intel.com

[28] J. Kim, H. Kim, J. Jeong, and J. Kim, “SoftSSD:

A High-Level SSD Simulation Framework for Exploring

Firmware Behavior,” IEEE Computer Architecture

Letters, vol. 16, no. 1, pp. 24–27, Jan.–June 2017, doi:

10.1109/LCA.2016.2633262.

[29] J. Xu, H. Zhang, Y. Zhang, Y. Chen, and T. Li,

“FEMU: A QEMU-based SSD Emulator with

Microsecond-Scale Timing Accuracy,” in Proceedings of

the 2018 USENIX Annual Technical Conference

(USENIX ATC 18), Boston, MA, USA, Jul. 2018, pp. 83–

95.

[30] M. Jung and M. Kandemir, “NVMSim: A

Circuits-Level NAND Flash Memory Simulator,” in IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 31, no. 8, pp. 1191–1204, Aug.

20

http://www.ijcrt.org/
http://www.intel.com/

