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Abstract: 

If the arrival of quantity of an item is not certain when some quantity is ordered and this quantity is needed 

to give some time for service to all arrived items in inventory before allowing it for sell and it spends time in 

the inventory besides the starting time of depleting it from the inventory up to the zero level of inventory. 

This service time is cost of holding on all received items in the inventory. The optimal order quantity depends 

only on the mean and standard deviation of the amount arrived and if we can reduce the service time by 

increasing service persons or facilities the total cost goes near to cost of EOQ model with uncertain arrival 

of quantity. 

 

Key words Inventory system, Demand rate, Service rate, Replenishment rate, Lead time, Queuing system 

Service time, re-order point. 

 

1. Introduction 

The classical inventory management model also known as Wilson EOQ model is used to determine the 

optimal order quantity which minimizes total inventory cost by balancing ordering cost and holding cost. In 

Wilson’s model it is assumed that the demand is constant, replenishment is instantaneous and no shortage 

occurs. Also, it is assumed that the received quantity matches the quantity requisitioned. However, in the 

real-world situations, replenishment is often uncertain due to variable lead time or fluctuating demand. Tis 

leads to the inventory model with uncertain replenishment of items, which extends the classical model by 

arrival of items in random with fixed order quantity.  

It is obvious that when people are going to by any item, demand is there and as demand is there queue is 

there. If people arrive too frequently and because of finite capacity of server customer have to wait until they 

are served. Which makes a queue. Including all such terms we have a new term which is known as “Queuing 

system”. If it is known, how many customers can be served at a time, we can specify the distribution of 

service time. In the most situation the service time is random variable and having the distribution for all 

arrivals. If the average number of arrivals exceeds the maximum average service rate of the system, as time 

goes customers will not be served any how at some time point and hence to get steady state condition we 

must have, 𝜆 < 𝜇 for one server in the system and 𝜆 < 𝑐𝜇  for c servers in the system 

 

2. Literature review 

Edward A. Silver (1976) worked on the quantity received from a supplier may not match the quantity 

ordered—due to defects, shortages, shipping issues, etc. Silver's extended Economic Order Quantity (EOQ) 

model tackles this by considering that only the mean and standard deviation of the received amount matter 

in determining the optimal order quantity. Traditional models generally assume one-sided randomness but A. 

Hamid Noori and Gerald Keller ((1986)) extended the classic continuous-review (Q, r) inventory model to 
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account for uncertainty in both demand during lead time and supply availability. Chirag Trivedi, Y.K. Shan, 

Nita H. Shah. (1994), present an EOQ model in which a temporary price discount is offered, but the supply 

received is random rather than equal to the order. Nita H. Shah, Chirag J. Trivedi (1996), extended the classic 

Economic Order Quantity (EOQ) model is by considering both random lead times and random demand 

instead of fixed values. Karush (1957) showed that inventory with random demand and lead times can be 

modelled as a queuing system. Berman O. Kaplan E.H., and Shimshak D.G. (1993) considered the inventory 

during the provision of service and inventory depleted according to the demand rate when there are no 

customers waiting in the queue and when customers are waiting in a queue it is depleted according to service 

rate. Ha (1997) worked on single-item make-to-stock production system and considered poison demand and 

exponential production times and used  an M/M/1/S queuing system for modeling the system. Arda and 

Hennet (2006) analyzed inventory control of a multi-supplier strategy in a two-level supply chain with 

random arrival for customers and random delivery time for suppliers, the system was represented as a 

queuing network. Jung Woo Baek and Seung Ki Moon (2014), provides a queueing-theoretic model for 

production-inventory systems with lost sales, develops exact analytical results for performance evaluation, 

and offers managerial insights into balancing production, inventory levels, and customer service. 

Seyedhoseini et al. (2015) applied queuing theory to propose a mathematical model for inventory systems 

with substitute flexibility.  

 

When the depletion of item does not start immediately and it reaches the service station for service, the 

waiting time of item increases and hence it increases the total cost. It is interesting to check the total cost 

when arrival of items is uncertain and service time of any number of items is less than the capacity of the 

Wherehouse before the items are sold. Therefore, we have assumed that in which the item is served before 

the customer arrives and the customer has to wait at the place, the queue gradually builds up. Thus, the model 

has been designed to study what could be the optimal quantity of the item when the queue is formed during 

uncertain quantity. And a hypothetical situation has also been considered to check its effectiveness and 

sensitivity of the model. 

 

3. Notations and Assumptions for the model:  

The model is developed under the very stringent assumption and the notations used for the derivation are 

as under:  

 q = the order quantity 

 q* = Economic order quantity to be determined. 

 C3 = Replenishment cost per order which is known and constant 

 C1 = Holding cost per unit per unit time which is known and constant 

 L = Lead time which is zero.  

 The stockout cost is zero.  

 b = the bias factor 

 𝜆 =  Demand rate is constant and known 

 
1

𝜇
 = Total Service time to serve q items. 

 T = Total Cycle time. 

 𝐸𝑂𝑄 = √
2𝜆𝐶3

𝐶1
= The economic quantity in units. 

 𝐸(𝑦|𝑞) = 𝑏𝑞 

 𝐸𝐶𝑃𝑈𝑇(𝑞) = Expected costs per unit time if a requisition quantity q is used 

 𝐸𝐶𝑊𝑆(𝑄) = Expected cost without service 

 The time horizon if infinite. 

 𝑇𝐶(𝑞) = Average total cost per cycle 

 The replenishment rate is infinite  
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Consider the following figure. Where inventory has taken time 
1

𝜇
 for the process to be done on all items 

before it starts for depletion. After the time 
1

𝜇
 items are depleted at the rate of 𝜆 and the inventory becomes 

zero at time T. 



1

tq 

T

 
4. The Mathematical Model:  

For developing the expected costs per unit time, we consider the time as being made up of cycles and the 

new cycle begins each time when the q quantity is ordered. As the lead time is zero the order will be placed 

when the inventory level drops to zero. 

Suppose that the quantity y is received instead of q. That is y is a random variable and its maximum value 

is q. Because when the quantity y arrives, it stays for some time duration in the inventory for service before 

the selling. This stay is delayed by the service time  
1

𝜇
, which affects the inventory depletion rate. Therefore, 

the Inventory level at any time 𝑡, 0 ≤ 𝑡 ≤ 𝑇 will be, 

 

𝐼(𝑡) =

{
 

 𝑦 𝑖𝑓 0 ≤ 𝑡 ≤
1

𝜇

𝑦 − 𝜆 (𝑡 −
1

𝜇
) 𝑖𝑓 

1

𝜇
< 𝑡 ≤ 𝑇

              

 

The cycle time T depends on the quantity y and hence the time T is a function of.  As it is assumed that 

up to maximum inventory level the service time is constant and does not depend up on the quantity y, the 

total cycle time is, 

𝑇(𝑦) =
1

𝜇
+
𝑦

𝜆
 

The expected value of T(y) is given by  

𝐸(𝑇|𝑞) =
1

𝜇
+
𝐸(𝑦|𝑞)

𝜆
=
1

𝜇
+
𝑏𝑞

𝜆
 

 

Let C(y) be the costs in the current cycle. And hence it will be, 

𝐶(𝑦) = 𝐶1∫ 𝐼(𝑡)𝑑𝑡

𝑇

0

+ 𝐶3 

 

= ∫ 𝑦 𝑑𝑡

1 𝜇⁄

0

+ ∫ [𝑦 − 𝜆 (𝑡 −
1

𝜇
)]  𝑑𝑡

𝑇

1 𝜇⁄

+ 𝐶3 

Letting (𝑡 −
1

𝜇
) = 𝑢 we have  

= ∫ 𝑦 𝑑𝑡

1 𝜇⁄

0

+ ∫ [𝑞 − 𝜆𝑢] 𝑑𝑢 

𝑦 𝜆⁄

0

+ 𝐶3 

Thus, we have, 

𝐶(𝑦) =
𝑦

𝜇
+
𝑦2

2𝜆
+ 𝐶3 
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The expected value of C(y) is given by  

𝐸(𝐶|𝑞) = 𝐶1 ∙ (
𝐸(𝑦|𝑞)

𝜇
+
1

2𝜆
𝐸(𝑦2|𝑞)) + 𝐶3 

 

As 𝐸(𝑦|𝑞) = 𝑏𝑞 and 𝐸(𝑦2|𝑞) =  𝜎𝑦|𝑞
2 + [𝐸(𝑦|𝑞)]2 

 

𝐸(𝐶|𝑞) = 𝐶1 ∙ [
𝑏𝑞

𝜇
+
1

2𝜆
(𝜎𝑦|𝑞

2 + (𝑏𝑞)2)] + 𝐶3 

 

By the result of Renewal Reward Process, if a cycle is completed every time a renewal occurs and the 

long-run average reward per unit time is equal to the expected reward earned during a cycle divided by the 

expected length of a cycle. Thus, we have, the expected cots per unit time are 

𝐸𝐶𝑃𝑈𝑇(𝑞) =
𝐸(𝐶|𝑞)

𝐸(𝑇|𝑞)
 

Substituting values of 𝐸(𝐶|𝑞) and 𝐸(𝑇|𝑞) in the above equation we have, 

 

𝐸𝐶𝑃𝑈𝑇(𝑞) =
𝐶1 ∙ [

𝑏𝑞
𝜇 +

1
2𝜆
(𝜎𝑦|𝑞

2 + (𝑏𝑞)2)] + 𝐶3

1
𝜇 +

𝑏𝑞
𝜆

 

 

𝐸𝐶𝑃𝑈𝑇(𝑞) =
2𝜆𝐶1𝑏𝑞 + 𝜇𝐶1𝜎𝑦|𝑞

2 + 𝜇𝐶1𝑏
2𝑞2 + 2𝜆𝜇𝐶3

2(𝜆 + 𝜇𝑏𝑞)
 

 

 

𝐸𝐶𝑃𝑈𝑇(𝑞)  will be minimum if  
𝑑(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞
= 0 and its solution  

𝑑2(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞2
> 0 

Let  
𝑑(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞
= 0, then we have, 

 

(2𝜆 + 2𝜇𝑏𝑞)[2𝜆𝐶1𝑏 + 2𝜇𝐶1𝑏
2𝑞] − 2𝜇𝑏(2𝜆𝐶1𝑏𝑞 + 𝜇𝐶1𝜎𝑦|𝑞

2 + 𝜇𝐶1𝑏
2𝑞2 + 2𝜆𝜇𝐶3)

4(𝜆 + 𝜇𝑏𝑞)2
= 0 

 

(2𝜆 + 2𝜇𝑏𝑞)[2𝜆𝐶1𝑏 + 2𝜇𝐶1𝑏
2𝑞] = 2𝜇𝑏(2𝜆𝐶1𝑏𝑞 + 𝜇𝐶1𝜎𝑦|𝑞

2 + 𝜇𝐶1𝑏
2𝑞2 + 2𝜆𝜇𝐶3) 

 

(𝜆 + 𝜇𝑏𝑞)[2𝜆𝐶1𝑏 + 2𝜇𝐶1𝑏
2𝑞] = 𝜇𝑏(2𝜆𝐶1𝑏𝑞 + 𝜇𝐶1𝜎𝑦|𝑞

2 + 𝜇𝐶1𝑏
2𝑞2 + 2𝜆𝜇𝐶3) 

 

 

𝜇2𝐶1𝑏
3𝑞2 + 2𝜆𝜇𝐶1𝑏

2𝑞 + 𝑏(2𝜆2𝐶1 − 𝜇
2𝐶1𝜎𝑦|𝑞

2 − 2𝜆𝜇2𝐶3) = 0 

 

It is the quadratic equation in q. That is, 𝐴𝑞2 + 𝐵𝑞 + 𝐶 = 0 

       𝐴 = 𝜇2𝐶1𝑏
3 

𝐵 = 2𝜆𝜇𝐶1𝑏
2 

       𝐶 = 𝑏(2𝜆2𝐶1 − 𝜇
2𝐶1𝜎𝑦|𝑞

2 − 2𝜆𝜇2𝐶3) 

Solving this quadratic equation we have, 

 

∆= 4𝑏4𝜇4 [
𝜆2𝐶1

2

𝜇2
− 𝐶1 (

2𝜆2𝐶1
𝜇2

− 𝐶1𝜎𝑦|𝑞
2 − 2𝜆𝐶3)] 

 

Let ∆0=
𝜆2𝐶1

2

𝜇2
− 𝐶1 (

2𝜆2𝐶1

𝜇2
− 𝐶1𝜎𝑦|𝑞

2 − 2𝜆𝐶3) and hence we have ∆= 4𝑏4𝜇4∆0 

Thus, we have 

𝑞 =
−2𝜆𝜇𝐶1𝑏

2 + √∆

2𝜇2𝐶1𝑏3  
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𝑞 =
−2𝜆𝜇𝐶1𝑏

2 + 2𝑏2𝜇2√∆0
2𝜇2𝐶1𝑏3  

 

 

𝑞 =
2𝑏2𝜇2 (−

𝜆𝐶1
𝜇 + √∆0)

2𝑏2𝜇2𝐶1𝑏  

 

 

𝑞 =
1

𝑏
(
−
𝜆𝐶1
𝜇 + √∆0

𝐶1  

) 

Provided 𝑏 ≠ 0, 𝐶1 ≠ 0. 

Which is the cost minimum value of q because it can be shown that 
𝑑2(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞2
> 0 

𝑞∗ =
1

𝑏
(
−
𝜆𝐶1
𝜇
+ √∆0

𝐶1
)

  

 

Provided 𝑏 ≠ 0, 𝐶1 ≠ 0. 

 

If the service time is taken zero, we have the model of EOQ model with uncertain arrival y our to ordered 

quantity Q and hence we have, 

𝑇(𝑦) =
1

𝜇
+
𝑦

𝜆
 and 𝐸(𝐶|𝑞) =

𝐶1

2𝜆
∙ (𝜎𝑦|𝑄

2 + 𝑏2𝑞2) + 𝐶3 

And expected cost without service will be, 

𝐸𝐶𝑊𝑆(𝑄) =
𝐸(𝐶|𝑄)

𝐸(𝑇|𝑄)
=
𝐶1𝜎𝑦|𝑄

2

2𝑏𝑞
+
𝐶1𝑏𝑞

2
+
𝜆𝐶3
𝑏𝑞

 

𝐸𝐶𝑊𝑆(𝑞)  will be minimum if  
𝑑(𝐸𝐶𝑊𝑆(𝑞))

𝑑𝑞
= 0 and its solution  

𝑑2(𝐸𝐶𝑊𝑆(𝑄))

𝑑𝑞2
> 0 

Let  
𝑑(𝐸𝐶𝑊𝑆(𝑄))

𝑑𝑞
= 0, then we have, 

𝑄∗ =
1

𝑏
√
𝐶1𝜎𝑦|𝑄

2 + 2𝜆𝐶3

𝐶1
 

=
1

𝑏
√𝜎𝑦|𝑄2 +

2𝜆𝐶3
𝐶1

 

=
1

𝑏
√𝜎𝑦|𝑄2 + 𝐸𝑂𝑄2

 

 

 

Which is the cost minimum value of q because it can be shown that 
𝑑2(𝐸𝐶𝑊𝑆(𝑄))

𝑑𝑞2
> 0 

It should be noted that the quantity q is same as quantity Q but for uncertain arrival with service and for 

uncertain arrival without service the optimal quantities are different and they are q* and Q* respectively. But 

the standard deviation 𝜎𝑦|𝑄
 = 𝜎𝑦|𝑄

 . 

 

 

5. Sensitive Analysis 

To check the effectiveness and utility of the current model along with the theoretical theory when we take 

the ratio of the quantity obtained by the current model to the quantity obtained by EOQ/b it tends to 1 as the 

service time tends to zero. That is, if we ignore the service time, it becomes the EOQ mode with uncertain 

arrival of y quantity when order of Q quantity placed. 

 

when 
1

𝜇
⟶ 0, ∆0⟶√𝐶1

2𝜎𝑦|𝑄2 + 2𝜆𝐶1𝐶3 and 𝑞∗ =
1

𝑏
√𝜎𝑦|𝑄2 + 𝐸𝑂𝑄2

 

  

 

lim
1
𝜇
→0

𝑞∗

𝑄∗
= 1 
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Inventory with service will have mor total variable cost than the total variable cost in classical inventory 

because of service time and hence holding cost. If we reduce the service time by increasing service persons 

or facilities, we will have no difference between our model and classical inventory model. 

 

Case 1: Let 𝜎𝑦|𝑞 = 𝜎: If the standard deviation of the quantity received is independent of the quantity 

requisitioned: 

Thus, we have 

𝐸𝐶𝑃𝑈𝑇(𝑞) =
2𝜆𝐶1𝑏𝑞 + 𝜇𝐶1𝜎

2 + 𝜇𝐶1𝑏
2𝑞2 + 2𝜆𝜇𝐶3

2(𝜆 + 𝜇𝑏𝑞)
 

If 𝜎 = 0, received quantity will be certain, 𝐸(𝑦|𝑞) = 𝑏𝑞 = 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 and we have 

 

That is the quantity actually received will be the EOQ. 

And  

𝑞∗ =
1

𝑏
(
−
𝜆𝐶1
𝜇 + √∆0

𝐶1
)

  

 

With ∆0=
𝜆2𝐶1

2

𝜇2
− 𝐶1 (

2𝜆2𝐶1

𝜇2
− 2𝜆𝐶3) 

 

when 
1

𝜇
⟶ 0, 

∆0= 2𝜆𝐶1𝐶3 
 

𝑞∗ =
1

𝑏
√
2𝜆𝐶3
𝐶1

 

=
𝐸𝑂𝑄

𝑏
  

Which is the optimal quantity when arrival is random and standard deviation of quantity arrived is 

independent of the quantity Q requisitioned. That is 𝜎𝑦|𝑞 = 𝜎. 

𝑄∗ =
𝐸𝑂𝑄

𝑏
 

 

Case 2: Let 𝜎𝑦|𝑞 = 𝜎1𝑞: If the standard deviation of the quantity received is proportional to the quantity 

requisitioned: 

Thus, we have 

𝐸𝐶𝑃𝑈𝑇(𝑞) =
2𝜆𝐶1𝑏𝑞 + 𝜇𝐶1𝜎1

2𝑞2 + 𝜇𝐶1𝑏
2𝑞2 + 2𝜆𝜇𝐶3

2(𝜆 + 𝜇𝑏𝑞)
 

 

𝐸𝐶𝑃𝑈𝑇(𝑞)  will be minimum if  
𝑑(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞
= 0 and its solution  

𝑑2(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞2
> 0 

Let  
𝑑(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞
= 0, then we have, 

 

(2𝜆 + 2𝜇𝑏𝑞)[2𝜆𝐶1𝑏 + 2𝜇𝐶1𝜎1
2𝑞 + 2𝜇𝐶1𝑏

2𝑞] − 2𝜇𝑏(2𝜆𝐶1𝑏𝑞 + 𝜇𝐶1𝜎1
2𝑞2 + 𝜇𝐶1𝑏

2𝑞2 + 2𝜆𝜇𝐶3)

4(𝜆 + 𝜇𝑏𝑞)2
= 0 

 

4𝜆2𝐶1𝑏 + 4𝜆𝜇𝐶1𝜎1
2𝑞 + 4𝜆𝜇𝐶1𝑏

2𝑞 + 2𝜇2𝐶1𝜎1
2𝑏𝑞2 + 2𝜇2𝐶1𝑏

3𝑞2 − 4𝜆𝜇2𝐶3𝑏 = 0 
 

2𝜇2𝐶1𝑏(𝜎1
2 + 𝑏2)𝑞2 + 4𝜆𝜇𝐶1(𝜎1

2 + 𝑏2)𝑞 + 4𝜆𝑏(𝜆𝐶1 − 𝜇
2𝐶3) = 0 

 

It is the quadratic equation in q. Then we have, 

 

∆= 16𝜇4𝑏2(𝜎1
2 + 𝑏2)2 [

𝜆2𝐶1
2

𝜇2𝑏2
−

2𝜆𝐶1
(𝜎12 + 𝑏2)

(
𝜆𝐶1
𝜇2

− 𝐶3)] 
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Let ∆0=
𝜆2𝐶1

2

𝜇2𝑏2
−

2𝜆𝐶1

(𝜎12+𝑏2)
(
𝜆𝐶1

𝜇2
− 𝐶3) then, ∆= 16𝑏2𝜇4(𝜎1

2 + 𝑏2)2 ∆0 

Thus, we have 

𝑞 =
−4𝜆𝜇𝐶1(𝜎1

2 + 𝑏2) + 4𝜇2𝑏(𝜎1
2 + 𝑏2)√∆0

4𝜇2𝐶1𝑏(𝜎12 + 𝑏2)  

 

 

𝑞 =
−
𝜆𝐶1
𝜇𝑏

+ √∆0

𝐶1  

 

Provided 𝑏 ≠ 0, 𝐶1 ≠ 0. 

Which is the cost minimum value of q because it can be shown that 
𝑑2(𝐸𝐶𝑃𝑈𝑇(𝑞))

𝑑𝑞2
> 0 

𝑞∗ =
−
𝜆𝐶1
𝜇𝑏

+ √∆0

𝐶1  

 

when 
1

𝜇
⟶ 0, 

∆0=
2𝜆𝐶1𝐶3
𝜎12 + 𝑏2

 

And hence, 

𝑞∗ = √ 
2𝜆𝐶3
𝐶1

×
1

𝜎12 + 𝑏2
 

 

𝑞∗

𝐸𝑂𝑄
= √ 

1

𝜎12 + 𝑏2
 

 

Which is the optimal quantity when arrival is random and the standard deviation is proportional to the Q 

amount requisitioned. That is 𝜎𝑦|𝑞 = 𝜎1𝑄. 

𝑄∗

𝐸𝑂𝑄
= √ 

1

𝜎12 + 𝑏2
 

 

 

6. Hypothetical Numerical Example: 

Consider the following example: 

Annual demand D = 120000 

Ordering Cost per order = 1000 

Holding cost per item per unit time =1000 

The demand rate per month will be R= 10000 

 

𝐸𝑂𝑄 = √
2𝑅𝐶3
𝐶1

= 141.421 𝑢𝑛𝑖𝑡𝑠 𝑝𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 

 

𝑄∗ =
𝐸𝑂𝑄

𝑏
=
141.421 

𝑏
 

 

Case 1: Let 𝜎𝑦|𝑞 = 𝜎 = 0 and for b =0.6, 0.8, 1, 1.2, 1.4, 1.6 

 

For b= 0.6, 𝑄∗ =
𝐸𝑂𝑄

𝑏
=

141.421 

0.6
= 235.702  For b= 0.8, 𝑄∗ =

𝐸𝑂𝑄

𝑏
=

141.421 

0.8
= 176.777 
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  q* q*/Q* 

10000 1 175.2098 0.991136 

20000 0.5 175.9943 0.995574 

30000 0.333333 176.2554 0.997051 

40000 0.25 176.3858 0.997789 

50000 0.2 176.464 0.998231 

60000 0.166667 176.5162 0.998526 

70000 0.142857 176.5534 0.998737 

80000 0.125 176.5813 0.998895 

90000 0.111111 176.603 0.999018 

100000 0.1 176.6204 0.999116 
 

For b= 1, 𝑄∗ =
𝐸𝑂𝑄

𝑏
=

141.421 

1
= 141.421   For b= 1.2, 𝑄∗ =

𝐸𝑂𝑄

𝑏
=

141.421 

1.2
= 117.851 

 

  q* q*/Q* 

10000 1 117.1537 0.994082 

20000 0.5 117.5032 0.997047 

30000 0.333333 117.6193 0.998033 

40000 0.25 117.6773 0.998525 

50000 0.2 117.7121 0.99882 

60000 0.166667 117.7353 0.999017 

70000 0.142857 117.7519 0.999158 

80000 0.125 117.7643 0.999263 

90000 0.111111 117.7739 0.999345 

100000 0.1 117.7817 0.99941 
 

 

 

 

  q* q*/Q* 

10000 1 232.9186 0.98819 

20000 0.5 234.3119 0.994101 

30000 0.333333 234.7757 0.996069 

40000 0.25 235.0074 0.997052 

50000 0.2 235.1465 0.997642 

60000 0.166667 235.2391 0.998035 

70000 0.142857 235.3053 0.998316 

80000 0.125 235.3549 0.998526 

90000 0.111111 235.3935 0.99869 

100000 0.1 235.4244 0.998821 

  q* q*/Q* 

10000 1 140.4178 0.992904 

20000 0.5 140.9205 0.996458 

30000 0.333333 141.0876 0.99764 

40000 0.25 141.1711 0.998231 

50000 0.2 141.2212 0.998585 

60000 0.166667 141.2546 0.998821 

70000 0.142857 141.2784 0.998989 

80000 0.125 141.2963 0.999116 

90000 0.111111 141.3102 0.999214 

100000 0.1 141.3213 0.999293 
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For b= 1.4, 𝑄∗ =
𝐸𝑂𝑄

𝑏
=

141.421 

1.4
= 101.015  For b= 1.6, 𝑄∗ =

𝐸𝑂𝑄

𝑏
=

141.421 

1.6
= 88.388 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the above table it can be seen that the optimal quantity q* with service time tends to the optimal 

quantity Q* without service time when arrival is uncertain and standard deviation of quantity arrived is 

independent of the quantity Q requisitioned when the service time tends to zero. 

 

Case 2: Let 𝜎𝑦|𝑞 = 𝜎1 ∙ 𝐸𝑂𝑄 and for b =0.6, 0.8, 1, 1.2, 1.4, 1.6 

Assume that y follows uniform distribution with q=EOQ and the y is in the range from 0.9EOQ to 

1.1EOQ. That is  

𝑦~𝑈(0.9𝐸𝑂𝑄, 1.1𝐸𝑂𝑄) and 𝜎𝑦|𝑞 =
1.1𝐸𝑂𝑄−0.9𝐸𝑂𝑄

√12
= 0.0577 × 𝐸𝑂𝑄 and hence 𝜎1 = 0.0577 

For above example, 

𝜎𝑦|𝑞 = 0.0577 × 141.421 = 8.1600 

 

𝑄∗ =
𝐸𝑂𝑄

√𝜎12 + 𝑏2 

=
141.421

√0.00333 + 𝑏2
 

 

For b= 0.6, 𝑄∗ =
𝐸𝑂𝑄

√𝜎12+𝑏2
= 234.619   For b= 0.8, 𝑄∗ =

𝐸𝑂𝑄

√𝜎12+𝑏2
= 176.318 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For b= 1, 𝑄∗ =
𝐸𝑂𝑄

√𝜎12+𝑏2
= 141.186   For b= 1.2, 𝑄∗ =

𝐸𝑂𝑄

√𝜎12+𝑏2
= 117.715 

 

 

 

 

 

 

 

  q* q*/Q* 

10000 1 87.99551 0.995556 

20000 0.5 88.19248 0.997784 

30000 0.333333 88.25789 0.998524 

40000 0.25 88.29055 0.998894 

50000 0.2 88.31013 0.999115 

60000 0.166667 88.32318 0.999263 

70000 0.142857 88.3325 0.999368 

80000 0.125 88.33948 0.999447 

90000 0.111111 88.34492 0.999509 

100000 0.1 88.34926 0.999558 

  q* q*/Q* 

10000 1 100.5025 0.994924 

20000 0.5 100.7595 0.997468 

30000 0.333333 100.8449 0.998314 

40000 0.25 100.8875 0.998736 

50000 0.2 100.9131 0.998989 

60000 0.166667 100.9302 0.999158 

70000 0.142857 100.9423 0.999278 

80000 0.125 100.9514 0.999368 

90000 0.111111 100.9585 0.999438 

100000 0.1 100.9642 0.999495 

  q* q*/Q* 

10000 1 232.9474 0.992872 

20000 0.5 233.7851 0.996442 

30000 0.333333 234.0637 0.997629 

40000 0.25 234.2028 0.998223 

50000 0.2 234.2863 0.998578 

60000 0.166667 234.3419 0.998815 

70000 0.142857 234.3817 0.998985 

80000 0.125 234.4114 0.999112 

90000 0.111111 234.4346 0.99921 

100000 0.1 234.4531 0.999289 

  q* q*/Q* 

10000 1 175.0643 0.992886 

20000 0.5 175.6926 0.996449 

30000 0.333333 175.9015 0.997634 

40000 0.25 176.0059 0.998226 

50000 0.2 176.0685 0.998581 

60000 0.166667 176.1102 0.998818 

70000 0.142857 176.14 0.998987 

80000 0.125 176.1624 0.999113 

90000 0.111111 176.1797 0.999212 

100000 0.1 176.1936 0.999291 
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For b= 1.4, 𝑄∗ =
𝐸𝑂𝑄

√𝜎12+𝑏2
= 100.929   For b= 1.6, 𝑄∗ =

𝐸𝑂𝑄

√𝜎12+𝑏2
= 88.3309 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the above table it can be seen that the optimal quantity q* with service time tends to the optimal 

quantity Q* without service time when arrival is uncertain and the standard deviation is proportional to the 

Q amount requisitioned when the service time tends to zero. 

 

 

7. Conclusion 

When the arrival of quantities is uncertain, the best order quantity depends on the mean and standard 

deviation of the amount actually received. In the situation, when the replenished items cannot be sold 

immediately, and they must undergo a processing stage the processing time increases the average customer 

waiting time and therefore raises the holding cost of all items in the system. Two cases of supply uncertainty 

are considered: (i) when the standard deviation of the received quantity is independent of the ordered amount, 

and (ii) when the standard deviation is proportional to the ordered amount. If we can reduce the process time 

on the product — that is, decrease the waiting time as much as possible — the new model simplifies to the 

classical case where there is no service time and the arrival of quantity is uncertain. 
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