IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

ON s(gg)*- CLOSED SETS IN TOPOLOGICAL SPACES

¹I. Christal Bai, ² M. Balkees. ¹Assistant Professor, ²Assistant Professor ¹Department of Mathematics,

¹Muslim Arts College, Thiruvithancode, Tamil Nadu, India ²Department of Mathematics,

² St. Jeromes College, Anandhanadarkudy, Tamil Nadu, India

Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012, TamilNadu, India.

Abstract: In this paper, we introduce a new class of closed sets called semi generalization of generalized star closed (briefly s(gg)* - closed) sets in Topological Spaces. We study the relation of this set with some other closed sets and some of the properties have been investigated.

Key words: $s(gg)^*$ - closed set, $(gg)^*$ - open

AMS classification 2010: 54A05.

I. Introduction

The concept of generalized closed sets [1] in Topological spaces was introduced by N. Levine in 1970. D. E. Cameron and M. Stone introduced regular semi open sets [2] and regular open sets [7] respectively. In 2018, T. Shyla Isac Mary and I.Christal Bai introduced $(gg)^*$ - closed sets [7] in Topological spaces. In this paper we introduce a new class of closed set called $s(gg)^*$ - closed sets in Topological spaces. In section 2, we recall some of the existing closed and open sets. In section 3, the concept of $s(gg)^*$ - closed set is introduced. In section 4, some of the properties of $s(gg)^*$ - closed sets are studied and the references are given at the end of the paper.

II. PRELIMINARIES

Throughout this paper (X, τ) represent nonempty topological spaces on which no separation axioms are assumed unless

otherwise mentioned. For a subset A of X, the closure of A and interior of A are denoted by cl (A) and int (A) respectively.

Definition 2.1 A subset A of a topological space (X, τ) is called a

- (1) semi open set [2] if $A \subseteq cl$ (int(A)) and a semi closed set if int(cl(A)) $\subseteq A$.
- (2) α open set[10] if A \subset int (cl(int(A))) and α -closed set if cl(int(cl(A))) \subset A.
- (3) regular open set [9] if A = int(cl(A)) and a regular closed set if cl(int(A)) = A.

Definition 2.2 A subset A of a topological space X is called a

- (1) generalized closed set (briefly g closed) [1] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (2) generalized pre regular closed set (briefly gpr closed)[8] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- (3) generalized semi pre regular closed set (briefly gspr closed) [9] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- (4) regular semi open[5] if there is a regular open set U such that $U \subseteq A \subseteq cl(U)$
- (5) $(gg)^*$ closed[7] if $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is gg open.

The complements of the above closed sets are their open sets and vice versa.

3. s(gg)*- CLOSED SETS

Definition 3.1 A subset A of a topological space (X, τ) is called $s(gg)^*$ - closed if $scl(A) \subseteq U$

whenever $A \subseteq U$ and U is $(gg)^*$ - open.

Example 3.2 Let
$$X = \{a, b, c, d\}$$
, and $\tau = \{\varphi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, X\}$ (gg)* - closed = $\{\varphi, \{a, b\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$ s(gg)*-closed= $\{\varphi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}, \{b, c, d\}, X\}$

Theorem 3.3

Every semi closed set is $s(qq)^*$ - closed.

Proof:

Let A be a semi closed set in X such that $A \subseteq U$ and U is $(gg)^*$ -open.

Then $scl(A) = A \subseteq U$ and U is $(gg)^*$ -open.

Hence $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(gg)^*$ -open.

Hence *A* is $s(gg)^*$ - closed.

Remark 3.5

The Converse of the above theorem need not be true as shown in the following example.

Example 3.6

Let
$$X = \{a, b, c, d\}, \ \tau = \{\emptyset, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, X\}$$

$$s(gg)^* - \text{closed} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}, \{b, c, d\}, X\}$$

Semi-closed =
$$\{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\}$$

The set $\{a, c, d\}$ is $s(gg)^*$ - closed but not semi-closed.

Theorem 3.7 Every closed set is $s(gg)^*$ - closed.

Proof:

Let A be a closed set in X such that $A \subseteq U$ and U is $(gg)^*$ -open.

Since A is closed, $cl(A) = A \in U$ and we have $scl(A) \subseteq cl(A)scl(A) \subseteq cl(A) \subseteq U$

i.e, $scl(A) \subseteq U$. Therefore, $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $(gg)^*$ -open.

Hence A is a s(gg) * - closed.

Remark 3.8 The Converse of the above theorem need not be true as given in the following example.

Example 3.9
$$X = \{a, b, c, d\}, \tau = \{\emptyset, \{c\}, \{d\}, \{c, d, \}, X\}, \tau_c = \{\emptyset, \{a, b, d\}, \{a, b, c\}, \{a, b\}, X\}, \tau_c = \{\emptyset, \{a, b, d\}, \{a, b, c\}, \{a, b\}, X\}, \tau_c = \{\emptyset, \{a, b, d\}, \{a, b, c\}, \{a, b\}, X\}, \tau_c = \{\emptyset, \{a, b, d\}, \{a, b, c\}, \{a, b\}, X\}, \tau_c = \{\emptyset, \{a, b, d\}, \{$$

$$s(gg)^*$$
 - closed = $\{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b\}, \{a,$

$${a, c, d}, {a, b, d}, {b, c, d}, X$$

The set $\{a\}$ is $s(gg)^*$ - closed but not closed.

Theorem 3.10

Every regular closed set is $s(gg)^*$ - closed.

Proof:

Let A be a regular closed set in X such that $A \subseteq U$ and U is $(gg)^*$ -open.

Since A is regular closed $rcl(A) = A \subseteq U$

But $scl(A) \subseteq rcl(A)$

Therefore, $scl(A) \subseteq U$ and U is $(gg)^*$ -open.

Therefore, A is $s(gg)^*$ - closed.

Remark 3.11 The Converse of the above theorem need not be true as shown in the following example.

Example 3.12

Let
$$X = \{a, b, c, d\}, \quad \tau = \{\emptyset, \{c\}, \{d\}, \{c, d\}, X\}$$

$$s(gg)^*$$
-closed ={ \emptyset , { a }, { b }, { c }, { d }, { a , b }, { a , c }, { a , d }, { a , b , d }, { a , c , d }, { b , c , d }, X }

regular closed =
$$\{\emptyset, X, \{a, b, c\}, \{a, b, d\}\}$$

The set $\{a, c, d\}$ is $s(gg)^*$ -closed but not closed.

Theorem 3.13 Every α -closed set is $s(gg)^*$ - closed.

Proof:

Let A be a α -closed set in X such that $A \subseteq U$ and U is $(gg)^*$ -open.

Since A is α -closed $\alpha cl(A) = A \subseteq U$

But $scl(A) \subseteq \alpha cl(A)$

Therefore, $scl(A) \subseteq U$, whenever $A \subseteq U$ and U is $(gg)^*$ -open.

Therefore, A is $s(gg)^*$ - closed.

Remark 3.14

The Converse of the above theorem need not be true.

Example 3.15 Let
$$X = \{a, b, c, d\}, \tau = \{\emptyset, \{c\}, \{d\}, \{c, d\}, X\}$$

$$s(gg)^*$$
-closed ={ \emptyset , { a }, { b }, { c }, { d }, { a , b }, { a , c }, { a , d }, { a , b , c }, { a , b , d }, { a , c , d }, { b , c , d }, X }

 α - closed = { \emptyset , { α }, {b}, { α , b}, { α , b, c}, { α , b, d}, X}

Then $\{b, c, d\}$ is $s(gg)^*$ -closed but not α - closed.

Theorem 3.16

Every $s(gg)^*$ - closed set is gspr-closed.

Proof:

Let A be a $s(gg)^*$ - closed set in X.

Let *U* be a regular open set in *X* such that $A \subseteq U$

Since every regular open set is $(gg)^*$ -open and A is $s(gg)^*$ - closed, $scl(A) \subseteq U$

But $spcl(A) \subseteq scl(A) \subseteq U$.

This implies $spcl(A) \subseteq U$

Therefore, A is gspr-closed.

Remark 3.17

The Converse of the above theorem need not be true as shown in the following example.

Example 5.17

Let
$$X = \{a, b, c, d\}$$
, $\tau = \{\emptyset, \{a\}, \{c, d\}, \{a, c, d\}, X\}$
 $(gg)^*$ - closed = $\{\emptyset, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$
 $(gg)^*$ - open = $\{\emptyset, \{a, c, d\}, \{c, d\}, \{d\}, \{c\}, \{a\}, X\}$
 $s(gg)^*$ - closed = $\{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, X\}$
 $gspr$ -closed-
 $\{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}, \{b, c, d\}, X\}$
The set $\{c\}$ is $gspr$ -closed but not $s(gg)^*$ - closed other.

4. Characteristics of $s(qq)^*$ - closed sets

Theorem 4.1

Union of any two $s(gg)^*$ -closed sets of X is $s(gg)^*$ -closed.

Proof:

Let A and B be $s(gg)^*$ - closed sets in X.

Let *U* be a $(gg)^*$ - open set in *X* such that $A \cup B \subseteq U$.

Then $A \subseteq U$ and $B \subseteq U$.

Since A and B are $s(gg)^*$ - closed sets in X, $scl(A) \subseteq U$ and $scl(B) \subseteq U$

We have $scl(A \cup B) = scl(A) \cup scl(B) \subseteq U$.

This implies $scl(A \cup B) \subseteq U$

Hence $A \cup B$ is $s(gg)^*$ -closed.

Theorem 4.2 A subset A of X is $s(gg)^*$ - closed set in X if and only if scl(A) - A contains no non-empty $(gg)^*$ - closed set.

Proof:

Let F be a non-empty $(gg)^*$ -closed set in X such that $F \subseteq scl(A) - A$.

That is $F \subseteq scl(A) \cap A^C$

Therefore $F \subseteq scl(A)$ and $F \subseteq A^{C}$ and so $A \subseteq F^{C}$.

Now since A is $s(gg)^*$ -closed, and F^C is $(gg)^*$ -open, $scl(A) \subseteq F^C$.

This implies $F \subseteq [scl(A)]^C$. Also we have $F \subseteq scl(A)$.

Therefore $F \subseteq scl(A) \cap [scl(A)]^C = \emptyset$.

This is a contradiction.

Therefore scl(A) - A contains no non-empty $(gg)^*$ -closed set.

Conversely, suppose that scl(A) - A contains no non-empty $(gg)^*$ -- closed set.

Suppose scl(A) is not contained in U.

Let *U* be a $(gg)^*$ -open set in *X* such that $A \subseteq U$.

Then $scl(A) \cap U^{c}$ is a non - empty $(gg)^*$ -closed set contained in scl(A) - A.

Which is a contradiction.

Hence A is a $s(gg)^*$ -closed set.

Theorem 4.3

Let $A \subseteq B \subseteq scl(A)$ and A is $s(gg)^*$ -closed set in X, then B is also $s(gg)^*$ -closed.

Proof:

Let *U* be a $(gg)^*$ -open set in *X* such that $A \subseteq U$.

Now if $A \subseteq B \subseteq scl(A)$, then $scl(A) \subseteq scl(B) \subseteq scl(A)$.

Therefore scl(B) = scl(A). Since A is $s(gg)^*$ -closed, $scl(A) \subseteq U$.

Therefore $scl(B) = scl(A) \subseteq U$.

Hence B is $s(gg)^*$ -closed.

Theorem 4.4

If A is $(gg)^*$ -open subset of X and $s(gg)^*$ -closed set in X. Then A is a semi closed set in X.

Proof:

Let A be a $(gg)^*$ -open subset of X and a $s(gg)^*$ -closed set in X.

Since A is $s(gg)^*$ -closed, $scl(A) \subseteq A$.

But $A \subseteq scl(A)$.

Therefore A = scl(A).

Hence A is semi closed.

Theorem 4.5

Let $A \subseteq B \subseteq X$, where B is $(gg)^*$ -open and $s(gg)^*$ -closed in X. If A is $s(gg)^*$ -closed in B. Then A is $s(gg)^*$ -closed in X.

Proof:

Let *U* be a $(gg)^*$ -open set in *X* such that $A \subseteq U$.

Since $A \subseteq U \cap B$, $U \cap B$ is $(gg)^*$ -open in B and A is $s(gg)^*$ -closed in B, $scl(A) \subseteq U \cap B$.

Now $scl(A) \cap B \subseteq U \cap B$. Since $A \subseteq B$, $scl(A) \subseteq scl(B)$.

Since B is $(gg)^*$ -open and $s(gg)^*$ - closed in X, by theorem 4.4, B is semi closed. Therefore scl(B) = B.

This implies $scl(A) \subseteq B$.

Thus $scl(A) = scl(A) \cap B \subseteq U \cap B \subseteq U$.

Hence *A* is $s(gg)^*$ -closed in *X*.

Theorem 4.6

For every point x of the space X the set $X - \{x\}$ is either $s(gg)^*$ -closed (or) $(gg)^*$ -open.

Proof:

Suppose that $X - \{x\}$ is not $(gg)^*$ -open .Then X is the only $(gg)^*$ -open set containing $X - \{x\}$.

That is $X - \{x\} \subseteq X$.

This implies $scl(X - \{x\}) \subseteq scl(X) \subseteq X$.

Therefore $X - \{x\}$ is a $s(gg)^*$ -closed set in X.

Theorem 4.7

A subset A of a space X is $s(gg)^*$ -closed if and only if for each $A \subseteq F$ and F is $(gg)^*$ -open, there exists a semi-closed set G such that $A \subseteq G \subseteq F$.

Proof:

Suppose A is a $s(gg)^*$ -closed set and $A \subseteq F$ and F is $(gg)^*$ -open.

Then $scl(A) \subseteq F$.

If G = scl(A), then G is semi-closed set and $A \subseteq G \subseteq F$.

Conversely, assume that F is a $(gg)^*$ -open set containing A. Then there exists a

semi-closed set M such that $A \subseteq G \subseteq F$.

Since scl(A) is the smallest semi-closed set containing A, we have $A \subseteq scl(A) \subseteq G$.

Also, since $G \subseteq F$, $scl(A) \subseteq F$.

Hence A is a $s(gg)^*$ -closed set in X.

Theorem 4.8 If A is semi-closed and B is $s(gg)^*$ -closed subset of a space X then $A \cup B$ is $s(gg)^*$ -closed.

Proof:

Let *F* be a $(gg)^*$ -open set containing $A \cup B$.

Then $A \subseteq F$ and $B \subseteq F$. Since B is $s(gg)^*$ -closed and $B \subseteq F$,

we have $scl(B) \subseteq F$.

Then $A \cup B \subseteq A \cup (scl(B)) \subseteq F$.

Since A is s-closed, we have $A \cup (scl(B))$ is s-closed.

Hence there exist a s-closed set $A \cup (scl(B))$ such that $A \cup B \subseteq A \cup (scl(B)) \subseteq F$. Therefore $A \cup B$ is $s(gg)^*$ -closed.

References:

- [1] N. Levine, Generalized Closed sets in Topology, Rend.Circ.Mat. Palermp, 2,89-96,1970.
- [2] D. E. Cameron, Properties of s-closed spaces proc, Amer. Math. Soc., 72, 581-586, 1978.
- [3] D. Andrijevic, Semi-preopen sets, Mat. Vesnik 38, 24-32, 1986.
- [4] S.P. Arya and T. M. Nour, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math.,21 (8), 717-719,1990.
- [5] Basavaraj M Ittanagi and Govardhana Reddy H G, On gg-Closed Sets in Topological Spaces, International Journal of Mathematical Archive-8(8), 126-133, 2017.
- [6] P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets in topological spaces, Indian J. Math, 29, 376-382,1987.
- [7] I . Christal Bai, T. Shyla Isac Mary, On (gg)* closed sets in topological spaces, International Journal of Scientific Research
 - in Mathematical and Statistical Sciences, Vol. 5, Issue.4, pp. 410-418, 2018
- [8] J. Dontchev, On generalizing semi-pre-open sets, Mem. Fac. Sci. Kochi Univ. ser. A. Math., 16, 35-48, 1995.
- [9] Y. Gnanambal, On generalized pre regular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28 (3),351-360,1997.
- [10] H. Maki, R. Devi and K. Balachandran, generalized α -closed sets in topology, Bull. Fukuoka Univ. Ed. Part (2), 42, 13-21, 1993.

