
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

IJCRT2507402 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d529

 Choosing Between Next.Js And React.Js: A

Developer’s Guide To Building Efficient Web

Applications

1Pramila Joshi, 2Priti Sharma, 3Seema Sharma
1Assistant Professor, 2Assistant Professor , 3 Assistant Professor

1Department Of Computer Science and Application,
1Birla Institute of Technology Mesra Ranchi, Noida Campus, India

Abstract: React.js and Next. js are two most widely used JavaScript frameworks having their own specific

advantages. This paper aims at analysing the difference between the two in today’s web development world.

It examines how each framework handles performance, scalability, architecture, and ease of use. The aim of

the paper is to assist the users in selecting the better of the two resulting in an optimal option suiting their

specific needs. The paper not only addresses technical distinctions of each framework but also provides

practical insights with regards to suitability of either framework for a particular project.

Index Terms - Next.js, React.js, JavaScript, performance, scalability.

I. INTRODUCTION

In the constantly evolving world of web development selection of the right JavaScript can impact hugely on

a project’s success. This can easily be established by studying the two projects developed by Facebook i.e.

React.js [1] and its successor Next.js [2] [4]. While React.js uses component-based design and the virtual

DOM, Next.js adds on to React’s strengths by making use of powerful tools like server-side rendering (SSR)

and static site generation (SSG). SSR and SSG are gaining importance for developers depending upon fast

loading, SEO-friendly applications[2][4].

This paper aims at a comprehensive analysis of both the frameworks with a focus on their basic features,

performance and usage, which in turn would assist the clients to make considered technological choices.

2. Literature Review

2.1 React.js Overview

First introduced in 2013 React.js revolutionised how user interfaces were designed by introducing component-

based architecture [1] [3]. This concept enabled developers to divide interfaces into reusable modules of codes.

The Virtual DOM on the other hand optimizes performance by updating those parts of the page that have been

modified instead of updating the entire page.

React also supports JSX, which blends HTML-like syntax with JavaScript, making it easier to structure

interactive user interfaces. Create React App (CRA) on the other hand enables speedy setting up of projects

with sensible defaults [5]. React’s vast community and ecosystem makes available numerous resources

permitting easier access to the developers to locate libraries and tools most suitable for their requirements [9].

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

IJCRT2507402 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d530

2.2 Next.js Introduction

 Vercel created Next.js as an advanced framework of React.js by adding features that enhance web application

performance and user experience [2] [4]. It incorporates features such as server-side rendering (SSR) and

static site generation (SSG) by default, thereby providing more flexibility to the developers as to how the

content is delivered.

File-based routing system, not only makes routing easier but also reduces the need for manual configuration.

In addition, backend API routes can be embedded directly into the project. Features such as automatic code

splitting and incremental static regeneration (ISR) are making it attractive to companies which have to

constantly deal with high traffic and fast deliveries [2][6].

Core Features

3.1 React.js

Front-end development is simplified by use of a wide variety of tools and concepts provided by React. Virtual

DOM, one key feature of React enables faster user interfaces by updating only those parts of the web page

which change, thereby enhancing the responsiveness of applications, as pages which remain unchanged are

not affected [1].

The component-based architecture followed by React allows breaking down of UIs into smaller

components that can be re used across the app. It facilitates better and easier maintenance and

organisation of the codes as individual components manage their own data and logic.

JSX on the other hand allows writing of HTML like codes inside the JavaScript. As both the structure and

logic can be seen at one place building user interfaces using JSX becomes more innovative [5] [9].

Any change in the app can be traced using tools for state management. For basic use, state can be managed

within components while libraries like Redux or React Context help manage shared data across more complex

apps.

3.2 Next.js

Next.js is the next step of React.js introducing a number of features enabling optimal, efficient and speedy

development of goal oriented websites in particular.

SSR is one of the major benefits of Next.js. It generates the HTML of a page on the server and sends it to

browser so that the page loads faster and its performance is enhanced on search engines. In addition, the

content can be viewed more quickly by the user even before the entire JavaScript is being loaded.

The other major accrued is SSG which creates HTML pages at build time instead of as and when requested

by the user. Storage on CDN ensures instant loading of the pages. SSG is ideal for content that remains

unchanged like blogs or documentation [2] [6].

Automatic code splitting ensures that it loads only that JavaScript which is required for the page being viewed

by the user as a result initial load time is reduced and performance is enhanced particularly on large sites.

API routes on the other hand enables writing back-end logic i.e. form submissions for database queries directly

inside a Next.js project. Thus, doing away with the need for a separate server thereby making development

simpler and more integrated.

Performance and Scalability

4.1 React.js

Though React builds smooth and responsive user interfaces, the performance of the interfaces however

requires additional efforts from the programmers. The app, by default makes use of client-side rendering,

where in the content is generated on the browser once the page loads. Even if fast interactions get benefitted

by this feature, viewing of content on slow networks may get delayed due to this.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

IJCRT2507402 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d531

For optimal performance developers often rely on concepts like memorization—which restricts unnecessary

re-renders—and exploits tools as React.memo, PureComponent, or shouldComponentUpdate to dictate

how components should work. React Lazy and React Suspense facilitate lazy loading ensuring parts of the

app load only when required [7].

React uses frameworks such as Next.js or custom setups with express.js making it flexible however it also

requires manual configuration [1] [3].

4.2 Next.js

Performance optimization is the biggest highlight of Next.js. While SSR allows users access to a fully

rendered page straight from the server without having to wait for the JavaScript to load before seeing the

content, thereby enhancing user experience.

SSR on the other hand enables developers to prebuild pages at deployment time itself. The load time becomes

incredibly fast as static files are delivered through CDNs. Next.js also supports Incremental Static

Regeneration (ISR), allowing specific pages to update doing away with the need to rebuild the entire site.

Automatic splitting of codes by default is another important feature. This entails that the Java Script required

for the page under consideration is only loaded thereby making the system fast even for large scale

applications. Next.js is thus an ideal choice for apps that need to scale and perform well under heavy traffic

[2] [4].

5. Development Workflow and Ease of Use

5.1 React.js

5.1.1 Using Create React App (CRA)

CRA with its preconfigured essential tools and best practices enables speedy development of applications as

the developers are relieved of the problems of setting up complex build systems. This frees them to focus on

the primary task of writing codes and building features rather than concentrating on configuration details [5].

5.1.2 Custom Configuration Flexibility

In addition to allowing developers to focus on writing codes React also offers custom configurations allowing

developers to fine tune their projects using tools like web pack and Babel adding specific plugins. The benefit

of this feature is that it provides greater control however higher technical skill is needed for optimizing the

performance [9].

5.1.3 Strong Ecosystem and Community

React’s massive interactive community provides access to numerous libraries, UI frameworks and other

resources. Whatever be the requirement in terms of components, debugging tools, performance optimization

etc, there is a high probability of these being already available in the community. This enormous support

network facilitates easier and faster access to help, learn best practices, and stay updated with the latest trends.

5.2 Next.js

5.2.1 Simple Setup with Zero Configuration

Easy start is the greatest advantage of Next.js. Built-in defaults allow developers to develop new projects

speedily without getting involved with complex configurations. This simplicity is perfect for small projects

or MVPs where time if of essence [2] [6].

5.2.2 File-Based Routing System

File-based routing system is another important feature of Next.js allowing developer to create files in the

pages directory instead of writing route definitions manually. The routes are generated automatically making

navigation intuitive. This in turn keeps the project structure organised [2].

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

IJCRT2507402 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d532

5.2.3 Extendibility with Plugins

Plugins and extensions add powerful features to a project without cluttering the core code. Any specific

requirement such as image optimization, internationalization, or advanced data handling might have a plugin

to make the process simpler. This enables scaling up the app without adding unnecessary complexity [4] [6].

5.2.4 Active Community and Learning Resources

The ever-growing user base and robust community provides plugins, tutorials, and support as well as guides,

examples and help forums allowing developers to troubleshoot problems, learn new techniques, and stay

abreast with the framework’s evolution. This vast ever evolving eco system is a major support for both new

and experienced developers.

6. Use Cases and Industry Adoption

React.js is a natural choice for applications that demand high interactivity and complex user interfaces—like

single-page apps, dashboards, and real-time platforms[1][5][9]. It's trusted by companies like Facebook,

Netflix, and Dropbox, which speaks to its maturity and adaptability [3][9].

On the other hand, Next.js is often preferred for content-rich or SEO-driven websites such as blogs, marketing

pages, and online stores. With its built-in features and support for hybrid rendering, it powers platforms like

Nike, Vercel, and GitHub[4][6].

In general, React suits highly interactive front ends, while Next.js shines when fast delivery, scalability, and

search visibility matter most.

7. Comparative Analysis

The table below outlines the key differences between React.js and Next.js across major development criteria:

Feature React.js Next.js

Rendering Primarily client-side (CSR) Supports CSR, SSR, and SSG

Routing Manual setup using

libraries like React Router

Automatic file-based

routing

SEO Needs configuration or

third-party tools for SSR

Built-in SEO support with

SSR/SSG

Performance Requires manual tuning

and optimization

Optimized out-of-the-box

for fast loading

Setup Complexity Customizable but setup-

intensive

Quick to set up with

minimal config

Ideal Use Cases SPAs, dynamic interfaces,

dashboards

Blogs, e-commerce,

content-heavy apps

Community Large, mature community

with broad support

Rapidly growing ecosystem

and support

8. Conclusion

Deciding between React.js and Next.js ultimately depends on what the project demands. React works best

when flexibility and a dynamic, interactive front-end are the top priorities. It’s ideal for single-page

applications that need real-time responsiveness and customized setups.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 7 July 2025 | ISSN: 2320-2882

IJCRT2507402 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d533

On the other hand, if you're aiming for faster page loads, better SEO, and built-in tools to manage both front-

end and back-end in one place, Next.js is a strong choice. It’s especially useful for content-rich or marketing-

focused websites.

By understanding the unique strengths of each framework, developers can make better decisions and build

web applications that are not just functional, but fast, scalable, and easy to maintain.

References

[1] React Documentation. (2022). Available at: https://reactjs.org/

[2] Next.js Documentation. (2022). Available at: https://nextjs.org/

[3] Facebook. (2022). React GitHub Repository. Available at: https://github.com/facebook/react

[4] Vercel. (2022). Next.js GitHub Repository. Available at: https://github.com/vercel/next.js

[5] Copes, F. (2022). React Tutorial: The Beginner's Guide to Learning React in 2022. Retrieved from:

https://flaviocopes.com/react/

[6] Robinson, L. (2022). Mastering Next.js - Full Course. Retrieved from: https://masteringnextjs.com/

[7] Abramov, D. (2018). Beyond React 16. Overreacted.io. Available at: https://overreacted.io/

[8] Dodds, K.C. (2022). Testing JavaScript with Kent C. Dodds. Available at: https://testingjavascript.com/

[9] Grider, S. (2022). Modern React with Redux. Udemy. Available at: https://www.udemy.com/course/react-

redux

http://www.ijcrt.org/

