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                 Abstract: Artificial Intelligence (AI) is transforming many fields, and plant digital phenomics is no 

exception. The intersection of AI and plant phenomics— the study of plant traits and their variation— is 

paving the way for significant advancements in agriculture, ecology, and plant sciences. Here's a primer on 

how AI is shaping this field, focusing on the journey from data to insights: Plant digital phenomics involves 

the collection and analysis of detailed, quantitative data on plant traits using digital tools. These traits can 

include growth rates, leaf shape, flower color, and stress responses. The goal is to understand the genetic, 

environmental, and physiological factors that influence plant development and performance. Efficient image 

recognition is important in crop and forest management. However, it faces many challenges, such as the large 

number of plant species and diseases, the variability of plant appearance, and the scarcity of labeled data for 

training. To address this issue, we modified a SOTA Cross-Domain Few-shot Learning (CDFSL) method 

based on prototypical networks and attention mechanisms. We employed attention mechanisms to perform 

feature extraction and prototype generation by focusing on the most relevant parts of the images, then used 

prototypical networks to learn the prototype of each category and classify new instances. Finally, we 

demonstrated the effectiveness of the modified CDFSL method on several plant and disease recognition 

datasets. The results showed that the modified pipeline was able to recognize several cross-domain datasets 

using generic representations, and achieved up to 97.85% and 95.06% classification accuracy on datasets with 

the same and different domains, respectively. In addition, we visualized the experimental results, 

demonstrating the model’s stable transfer capability between datasets and the model’s high visual correlation 

with plant and disease biological characteristics. Moreover, by extending the classes ofdifferent semantics 

within the training dataset, our model can be generalized to other domains, which implies broad applicability. 

Keywords: AI, image characteristics ;ML, CDFL; learning transformation; bark images database. 

1. Introduction Image recognition technology based on artificial intelligence can provide scientific 

decision-making basis and optimization solutions by analyzing and processing images. This technology is of 

great importance to crop and forest management. However, its application faces many challenges, such as 

difficulties in data collection, the large number of classes, the variability of plant appearance, the difficulty of 

lesion detection, the in invasion of new pathogens, and the impact of climate change [1]. Machine learning has 

been widely used in various agriculture and plant science domains [2], such as plant breeding [3], in vitro culture 
[4], stress phenotyping [5], stress physiology [6], plant system biology [7], plant identification [8] plant genetic 

engineering [9], and pathogen identification [10]. However, traditional machine learning methods have 
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shortcomings in feature extraction, model selection, and data processing, which make it difficult to learn high-

dimensional, non-linear, and unstructured data [11]. With the rapid development of computer science, deep 

learning began to appear. Deep learning refers to the use of deep neural networks to perform operations, such 

as automatic feature extraction and data classification, to achieve a high-level understanding and 

representation of features [12–14]. In agriculture and forestry, deep learning also provides effective technical 

methods to solve various computer visual tasks, such as plant pest and disease detection,forest inventory, plant 

classification and segmentation, and real-time monitoring of crop and forest resources, etc. On the other hand, 

the applications of FSL in forestry are fewer, and most of the studies are based on remote sensing images for 

classification, such as hyperspectral image classification of tree species . These studies demonstrate the 

effectiveness and the potential of FSL methods for plant and disease recognition. However, most previous 

research has focused on image recognition of species within a single domain. While these studies have 

contributed significantly to our understanding of specific agricultural or forestry applications, there is a 

noticeable gap in research that extends beyond these single domains. In real-world scenarios, plant and disease 

recognition often requires cross-domain adaptation, where the source domain (the labeled training set) and the 

target domain (the unlabeled test set) have different distributions. This poses a great challenge for traditional 

FSL methods, which may suffer from domain shift and over-fitting problems. Therefore, we plan to 

implement a Cross-Domain Few-shot Learning (CDFSL) image classification model for tree species 

classification and recognition of common plant and crop diseases (e.g., phytophthora, anthracnose, etc.). By 

extending our research across domains, we can obtain a more comprehensive understanding 

of the capabilities and limitations of FSL in these domains, 

ultimately providing agricultural and forestry operators with more 

functional and effective solutions. PMF pipeline achieved state-of-

the-art results on various CDFSL benchmarks, such as mini-

ImageNet and Meta-Dataset .In our study, we adapted and optimized 

the PMFeline to make it more suitable for plant and disease 

recognition. To test the performance of the tuned pipeline in 

different domains, we meta-trained and fine-tuned several models 

using BarkNetV3 and BarkVN50 datasets, respectively, and 

evaluated and visualized the effectiveness of the models on several 

datasets in the same and different domains. 

2. Materials and Methods:- AI, particularly machine learning 

(ML) and computer vision, is revolutionizing plant phenomics by 

enhancing 
data collection, analysis, and interpretation. Here's how AI fits into the process:     Figure1 

A. Data Collection 
1. High-Throughput Phenotyping: AI-powered systems can automate the collection of large volumes of plant 

data. Drones, robots, and imaging technologies capture detailed images and sensor data from crops and plant 

specimens. 

2. Image Analysis: Computer vision algorithms process images to extract features such as leaf area, color, and 

texture. This high-resolution data helps in assessing plant health, growth, and other traits. 

B. Data Analysis 

 

1. Pattern Recognition: Machine learning models identify patterns and correlations in large datasets. For 

example, AI can detect subtle differences between healthy and stressed plants or predict growth outcomes 

based on environmental conditions. 

2. Predictive Modeling: AI algorithms can predict future plant behaviors or traits based on historical data. This 

helps in forecasting crop yields, assessing plant responses to various stressors, and optimizing breeding 

programs. 
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3. Trait Mapping: AI helps in associating specific traits with genetic markers. This trait-genotype mapping 

accelerates the identification of beneficial traits for breeding programs. 

 

C. Data Interpretation 

 

1. Insights Extraction: Advanced analytics and AI-driven tools provide actionable insights from complex 

datasets. These insights can guide decisions on plant management, breeding strategies, and resource 

allocation. 

2. Visualization: AI-powered visualization tools help in interpreting and communicating data effectively. 

Interactive charts, heatmaps, and 3D models make it easier to understand complex relationships and trends. 

 

3. Key Technologies and Techniques 

 

1. Deep Learning: Neural networks, especially convolutional neural networks (CNNs), are used for 

analyzing plant images and extracting detailed features. 

2. Natural Language Processing (NLP): NLP tools can mine literature and databases for relevant 

information, aiding in the synthesis of knowledge across studies. 

3. Robotics and Automation: Robots equipped with AI can perform tasks like planting, monitoring, 

and harvesting, increasing efficiency and precision. 

4. Big Data Analytics: AI techniques handle and analyze massive datasets generated from phenotyping 

platforms, providing insights that are not apparent from smaller datasets. 

             Database The dataset for FSL is somewhat different from the common image classification task in 

deep learning. Traditional deep learning methods usually require a large amount of labeled data to train the 

model, while FSL aims to learn new categories from a few examples (usually no more than 10). Therefore, the 

datasets for FSL typically have the following characteristics: (1) the datasets contain multiple different data 

sources; (2) to simulate encountering a new classification situation in real work scenarios, there is no 

overlapping category in each subset; (3) the dataset provides test tasks of different difficulties. We show an 

example of an FSL image classification dataset, as shown in Figure 1. To test the performance of the tuned 

pipeline in different domains, we meta-trained and fine-tuned several models using BarkNetV3 and 

BarkVN50 datasets, respectively, and evaluated and visualized the effectiveness of the models on several 

datasets in the same and different domains. The research objectives include: (1) compare the performance of 

PMF of various frameworks on several novel datasets; (2) visualize the visual attractiveness of networks and 

analyze the inner workings of the mechanism; (3) analyze the generalization ability of PMF to the same and 

different domain datasets; (4) discuss the learning ability and practical application value of PMF for plant and 

disease recognition. 

Results and Analysis Meta-Train In our experiments, DINO-ViT shows the best performance when meta-

training on both bark datasets. As shown in Table 1 

Domain Dataset Collaborators Categories Images Meta-Dataset 

Tree species BarkNJ Ours 21 24,616 20 × 600 

classification BarkNetV3 Ours 41 13,681 20 × 600 

 BarkVN50 Truong Hoang 
(2017) 

51 23,000 40 × 600 

 BarkKR Tae Kyung et al. 
(2022) 

55 5578 50 × 80 

Leaf Diseases PlantVillage Hughes et al. (2015) 42 6918 25 × 50 

Crop Diseases Agricultural Diseases Xulang Guan et al. 
(2021) 

61 62,484 38 × 600 

Flower Identification Flowers 102 Nilsback et al. 
(2008) 

103 36,258 55 × 100 

mini-ImageNet mini-ImageNet Vinyals et al. (2016) 101 8189 85 × 40 

Multi-Classification Full-Dataset Hu et al. (2022) 8 datasets 60,000 100 × 600 
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In machine learning, accuracy and loss are key metrics for assessing how effectively a model makes 

predictions. When examining classification accuracy, the BarkVN50 model consistently outperforms others 

across various test datasets, both in 1-shot and 5-shot scenarios. Following closely are the mini-ImageNet and 

BarkNetV3 models, which show slightly lower accuracy—approximately 2–3% less than BarkVN50. This 

small difference suggests that these models perform comparably well when tested on related domains that 

share features and classes with their training data.Conversely, the Full-Dataset model struggles with out-of- 

domain datasets, with the exception of the Flowers dataset. This indicates that merely aggregating diverse 

source domains into one dataset does not enhance the performance of Conditional Deep Few-Shot Learning 

(CDFSL) and may even lead to degraded results due to overfitting or conflicting information.In terms of loss 

metrics, while the BarkVN50 model is well-aligned with its training data, it may struggle to generalize to 

datasets that differ significantly, particularly those outside its original domain. The mini-ImageNet and Full- 

Dataset models, though not as adept at predicting bark images, demonstrate superior performance on certain 

agricultural datasets. Notably, the BarkNetV3 model exhibits lower loss across most test datasets, indicating a 

robust fit despite varying conditions. The effectiveness of machine learning models in tackling new tasks is 

closely linked to the separation observed within the distribution of pseudo-classes. A greater distinction 

among pseudo-classes enhances the model’s adaptability to novel tasks.Results indicate that the BarkVN50 

model achieved strong classification results across most datasets, exhibiting significant segmentation between 

pseudo-classes. However, its 

performance declined on the Agricultural 

Disease dataset. In contrast, the 

BarkNetV3 model demonstrated reliability by producing robust pseudo-classification maps across various forestry datasets, both in-domain and out-of-domain. The high degree of discreteness in its pseudo-classification maps suggests that BarkNetV3 is 

more stable and adaptable in transfer 

learning compared to BarkVN50. The 

mini-ImageNet and Full-Dataset 

models performed slightly worse than 

the other two models. This may be 

attributed to their pre-training datasets, 

which likely lacked essential features 

common in agricultural and forestry 

images, leading to a weaker ability to 

distinguish between pseudo-classes. 

Consequently, their applicability in plant 

and disease recognition was somewhat 

limited. However, both models excelled 

in processing cross- domain datasets like 

PlantVillage and 

Flowers,   suggesting   they   may                           Figure2 

 be   better   suited   forfew-shot   learning   (FSL)tasks with more pronounced distinguishing 

features.To further illustrate the effectiveness of our trained models, we employed Smooth Grad CAM++ to 

visualize the recognition process, as shown in Figure 2. The visualizations revealed a strong correlation 

between areas of interest and the locations of phenotypic plant diseases, indicating that the model focused on 

regions exhibiting symptoms such as spots, lesions, discoloration, or deformation.Overall, while the 

BarkVN50 model excels in certain contexts, the BarkNetV3 model shows greater adaptability, and the mini-

ImageNet and Full-Dataset models possess strengths in cross- domain tasks despite some limitations in 

specific applications.Figure 2.We found that visual attractiveness was highly correlated with the locations of 

phenotypic plant diseases that occurred biologically, indicating that the model tended to focus more on regions 

where the plant displayed symptoms of diseases, such as spots, lesions, discoloration, or deformation.  

Task-specific Fine-tune pseudo-labeling

 c

lassification chart (5-shot). The caption on the left indicates the dataset used for training, and the caption 

above the image indicates the dataset used for testing, both using the backbone DINO-ViT. Figure 3. Task- 

specific Fine-tune pseudo-labeling classification 

chart (5-shot). The caption on the left indicates the dataset used for training, and the caption above the image 

indicates the dataset used for testing, both using the backbone DINO-ViT. In the training process of FSL 
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image classification models, the pursuit of enhanced 

accuracy often leads to various training strategies. 

However, these strategies may not always improve 

the performance of the models and may even cause 

over-training and degradation. To systematically 

evaluate the consequences of over-training on         

FSL learning models, we conducted a deliberate                                      

 

 

 

 

 

 

Figure3 

experiment by extending the training duration to 30  and 50 epochs, corresponding to episode numbers of 200 

and 500, respectively. While this extended training procedure yielded a modest increase in accuracy of about 

2.5 percent in our experiments, it also revealed a critical trade-off. Despite the numerical improvement in 

accuracy, the predictive ability of the model trained in this way showed a significant decline, as visually 

depicted in Figure 4. It provides a visual representation of the performance degradation observed in the 

BarkNetV3 and BarkVN50 models due to over-training. Notably, these t-SNE plots reveal significant 

confusion between pseudo-classes, reflecting a compromised ability of the model to discriminate between 

classes effectively. Furthermore, the loss values during over-training significantly increase, on average, about  

20 percent higher than those of standard training methods. This phenomenon highlights the importance of 

careful model training strategies to avoid over-fitting, calls for a refined approach to balancing accuracy and 

generalization in FSL  classification  tasks,  and  

demonstrates  the 

effectiveness of our parameters setting. The image to the 

right of each input image is calculated by Smooth Grad 

CAM++, with the lesion portion highlighted by a heat map. 

These images were taken from publicly available disease 

images from the Chinese Academy of Agricultural 

Research and its affiliates. Moreover, we have specially 

selected some images with more complex backgrounds to 

confirm the effectiveness of our visual recognition process. 

In the training process of FSL image classification 

models, the pursuit of enhanced              

accuracy often leads to various training strategies.                                            Figure 4 

 However, these strategies may not always improve the performance of the models and may even cause over-

training and degradation. To systematically evaluate the consequences of over-training on FSL learning 

models, we conducted a deliberate experiment by extendingthe training duration to 30 and 50 epochs, 

corresponding to episode numbers of 200 and 500, respectively. While this extended training procedure 

yielded a modest increase in accuracy of about 2.5 percent in our experiments, it also revealed a critical trade-

off. Despite the numerical improvement in accuracy, the predictive ability of the model trained in this way 

showed a significant decline, as visually depicted in Figure 5. Figure 5 provides a visual representation of the 

performance degradation observed in the BarkNetV3 and BarkVN50 models due to overtraining. Notably, 

these t-SNE plots reveal significant confusion between pseudo-classes, reflecting a compromised ability of the 

model to discriminate between classes effectively. Furthermore, the loss values during over-training 

significantly increase, on average, about 20 percent higher than those of standard training methods. This 

phenomenon highlights the importance of careful model training strategies to avoid over-fitting, calls for a 

refined approach to balancing accuracy and generalization in FSL classification tasks, and demonstrates the 

effectiveness of our parameters setting. Class activation mapping generated via Smooth Grad CAM++. The 

image to the right of each input image is calculated by Smooth Grad CAM++, with the lesion portion 

highlighted by a heat map. These images were taken from publicly available disease images from the Chinese 

Academy of Agricultural Research and its affiliates. Moreover, we have specially selected some images with 
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more complex backgrounds to confirm the effectiveness of our visual recognition process. An example of 

over-training. The dataset and corresponding classification accuracy are labeled in ―alpha (beta%)‖ format at 

the top of the images. Loss indicates the percentage increase in the loss value of the model after over- training. 

The top and bottom columns of the image show the changes in the test results of the models before and after 

over-trained on the PlantVillage and Agricultural Disease datasets, respectively. 4. Discussion In this paper, 

we demonstrated that our meta-trained model could recognize unseen tree species and achieved high accuracy 

on various plant and disease datasets after finetuning. The results showed that the modified PMF pipeline was 

able to recognize several cross-domain datasets using generic representations and demonstrated high visual 

relevance. Moreover, by extending the classes of different semantics within the training dataset, our model can 

also be generalized to other domains, which implies broad applicability. Our experiments were meta-trained 

using four backbones, in which DINO-ViT had the highest training accuracy. We speculate that it is based on 

the following reasons: (1) The structure of DINO-ViT enables it to adapt to new domains and categories with 

only a small number of labeled examples, eliminating the need for extensive retraining or domain adaptation. 

(2) Unlike traditional self-supervised learning methods that require a large memory bank to store negative 

samples, DINO-ViT uses no contrastive loss or dictionary. This reduces the dependence on large-scale labeled 

data, which is impractical for FSL scenarios. (3) DINO-ViT captures global context and long-range 

dependencies more effectively than traditional convolutional neural networks such as ResNet. The 

performance of DeiT-ViT is slightly lower than DINO-ViT. This may be because DeiT-ViT typically requires 

a large amount of labeled data and a robust CNN teacher network to achieve good results. Thus, the backbone 

of using DeiT-ViT for FSL may face the problem of attentional collapse, where the model focuses on only a 

few tokens and ignores the others, thus hindering its ability to capture the global context. In addition, although 

DINO-ResNet combines DINO and ResNet, DINO-ResNet is still inferior to DINO-ViT in most downstream 

tasks. This may be because the model is constrained by the shortcomings of ResNet, such as limited receptive 

fields, spatial resolution, etc., and thus 

is less capable than 

DINO-ViT in terms of transfer ability. 

Notably, instead of optimizing parameters 

for training accuracy, our experiments 

emphasized the model’s ability to 

generalize to both the test set and new 

datasets within the same and different 

domains. Figure 5 and Table 1 show the 

test results of the four FSL models through 

quantification and visualization, 

respectively. Since the dataset may lack 

some potential commonuse features of 

crop images, the BarkVN50 model can not 

process Agricultural Diseases efficiently, 

and 

the generated images are significantly                                      Figure 5 

      more chaotic than other types of datasets. Similarly, the mini-ImageNet and Full-Dataest models have 

poor classification capabilities for bark images due to the lack of some common- use features of tree bark.

 An example of over-training. The dataset and corresponding 

classification accuracy are labeled in ―alpha (beta%)‖ format at the top of the images. Loss indicates the 

percentage increase in the loss value of the model after over-training. The top and bottom columns of the 

image show the changes in the test results of the models before and after over-trained on the PlantVillage and 

Agricultural Disease datasets, respectively. 4. Discussion In this paper, we demonstrated that our meta-trained 

model could recognize unseen tree species and achieved high accuracy on various plant and disease datasets 

after finetuning. The results showed that the modified PMF pipeline was able to recognize several cross-

domain datasets using generic representations and demonstrated high visual relevance. Moreover, by 

extending the classes of different semantics within the training dataset, our model can also be generalized to 

other domains, which implies broad applicability. Our experiments were meta-trained using four backbones, 

in which DINO- ViT had the highest training accuracy. We speculate that it is based on the following reasons: 

Plants 2023, 12, 3280 12 of 16 (1) The structure of DINO-ViT enables it to adapt to new domains and 
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categories with only a small number of labeled examples, eliminating the need for extensive retraining or 

domain adaptation. (2) Unlike traditional self-supervised learning methods that require a large memory bank 

to store negative samples, DINO-ViT uses no contrastive loss or dictionary. This reduces the 

dependence on  

 

large-scale labeled data, which is impractical 

for FSL scenarios. (3) DINO- ViT captures 

global context and long-range dependencies 

more effectively than traditional 

convolutional neural networks such as 

ResNet. The performance of DeiT- ViT is 

slightly lower than DINO-ViT. This may be 

because DeiT-ViT typically requires a large 

amount of labeled data and a robust CNN 

teacher network to achieve good results. 

Thus, the backbone of using DeiT-ViT for 

FSL may face the problem of attentional 

collapse, where the model focuses on only a 

few tokens and ignores the others, thus 

hindering its ability to 

capture the global context. In addition, although                          Figure 6 

 DINOResNet combines DINO and ResNet, DINO-ResNet is still inferior to DINO-ViT in most downstream 

tasks. This may be because the model is constrained by the shortcomings of ResNet, such as limited receptive 

fields, spatial resolution, etc., and thus is less capable than DINO-ViT in terms of transfer ability. Notably, 

instead of optimizing parameters for training accuracy, our experiments emphasized the model’s ability to 

generalize to both the test set and new datasets within the same and different domains. Figure 7 show the test 

results of the four FSL models through quantification and

 visualization,

 respectively. 

 

Since the dataset may lack some potential common-use features 

of crop images, the BarkVN50 model can not process 

Agricultural Diseases efficiently, and the generated images are 

significantly more chaotic than other types of datasets. Similarly, 

the mini-ImageNet and Full- Dataest models have poor 

classification capabilities for bark images due to the lack of some 

common-use features of tree bark images. However, the test 

result of these two models is relatively good for recognizing 

flowers and crop diseases. This may be because these datasets 

contain some images of flowers and leaves, so 

the trained model has a specific classification ability for  

such images. It is worth mentioning that the BarkNetV3                                                      Figure 7 

               model achieves more consistent results both for predictions in the same domain (bark) and different 

domains (plants and diseases), with clear segmentation lines between the pseudo-classes. This indicates that 

the BarkNetV3 model may be more suitable for 

plant and disease recognition. Therefore, although mini-ImageNet is considered a more generalized dataset, it 

may not be as good as specialized datasets for classification in some specific domains. In particular, none of 

the four models tested well against BarkKR. This may be due to the small size of this dataset and the prevalent 

existence of images that contain some noise, such as buildings, roads, sidewalks, and cars, which causes the 

network to fail to capture the key representations. In addition, we analyzed the visual attractiveness of the 

network using Smooth Grad CAM++, and most lesion occurrence locations were highly correlated with 

hotspots. This could be because these regions have more distinctive features that can help the model 

discriminate between different classes of diseases. Alternatively, this could be because these regions have 

more salient features that can attract the model’s attention. In either case, this finding suggests that the model 
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has learned some useful information about the occurrence and distribution of plant diseases from the training 

data, and is also suitable for practical field-based disease recognition applications. We believe that the success 

of the model is due to the fact that bark images have rich texture and color features that can help the model 

learn more discriminative and generic representations of plants. Compared to previous studies [30–40], our 

experiments achieved similar or even better results in terms of (1) the accuracy of prediction, despite being 

trained from bark, our tests on some public datasets (such as Agricultural Disease, PlantVillage, and Flowers) 

yielded promising results, with an average 5-shot accuracy of about 93%; (2) the ability of domain adaptation; 

while other methods may rely on more specific or domain-dependent features, our method can adapt to 

different regions, environments, and seasons more effectively than other methods; (3) the amount of data 

required (e.g., BarkVN50 has only 4000 images), reduce the cost and time for data collection and annotation; 

and (4) the transfer capability, as shown in the t-SNE visualization, the performance of the model is more 

stable in the transfer between domains. It is important to note that, unlike previous studies on FSL in 

agriculture, our work focuses on CDFSL. However, there are fewer studies in this area, so the comparisons 

with similar work may not be comprehensive. Nevertheless, the application value of CDFSL image 

classification in plant and disease recognition is considerably broad. When staff need to recognize a species 

that is not included in the dataset, they only need to input five labeled images as learning samples, and the 

fine- tuned model can be applied to the recognition of this new category. Using this technique, staff can 

collect images in the field and later upload them to the server for recognition. 

 

 

Through optimizing data acquisition and image processing, our FSL model can meet the needs of fieldwork 

in terms of efficiency and accuracy. In addition, by accumulating a large amount of data and model 

optimization, the model’s generalization performance can be continuously improved, and the model can be 

transferred to applications in different scenarios. Plant and disease recognition covers a wide range of species 

and symptoms, and our experiments are insufficient to generalize the features of all the classes. Thus, our 

method still has some drawbacks: (1) we did not test on a CDFSL image dataset covering multiple semantics 

classes in other domains, which limits the ability to use our trained models in specific domains; (2) our 

method may not be able to handle some complex or rare plants and diseases that require more specialized 

knowledge or features; (3) our method may not be able to capture some contextual or temporal information 

that may affect plant health or disease diagnosis; (4) the predictions or reasoning process in a transparent or 

interpretable way. In our future research, we will utilize prior knowledge from similar domains as auxiliary 

data to enhance both the data efficiency and generalization capability of our model, while also conducting 

further optimizations of the FSL algorithm. 5. Conclusions In this paper, we modified an effective pipeline of 

CDFSL for plant and disease recognition, and analyzed and visualized the model’s performance on multiple 

datasets from the same and different domains. In our experiments, we exploited the rich texture and color 

features of bark images to learn more discriminative and generalizable representations for plant and disease 

recognition. In addition, we used some visualization techniques to analyze the stability of the model on the 

novel dataset, as well as the recognition process of the neural network. We evaluated our method on various 

plant and disease datasets and obtained similar or even better results than previous studies in terms of the 

ability of domain adaptation, the amount of data required, and the transfer capability. Furthermore, we 

demonstrated the effectiveness of the recognition process using Grad CAM, revealing a strong correlation 

between the feature location of plant diseases and visual attractiveness. Based on our modified PMF pipeline, 

integrating diverse images with various agricultural and forestry semantics into the meta-dataset can enhance 

the model’s ability to generalize comprehensive recognition features, expanding its applicability to a broader 

range of application scenarios. 
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