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Abstract— Agriculture is the prime factor that controls the 

significant population of the world. As the large increasing 

population is directly or indirectly involved in Agriculture fields, it 

is the foremost and primal source of occupation. Among the 

agriculture industry Tea plantation agriculture is one of the most 

essential beverage people used to consume. Likewise in agriculture 

industry several challenges like crop disease and pest problem 

widely effect the production. Similarly in Tea plantation agriculture 

the production is severely affected by diseases. Therefore, automatic 

detection of disease in tea leaves at early stage has become an 

important factor. The concept of machine learning based techniques 

such as Deep Learning techniques diagnose the system for analyzing 

unhealthy leaves which seems interesting because there is a scarcity 

of skilled specialist to analyze images and make diagnostic 

conclusion. Furthermore, the introduction of new sophisticated 

hardware and software system approach has prompted the 

development of automated detection system for the early 

identification of tea leaf disease. This effort will facilitate the 

researchers those who are new in this field to get a quick 

introduction towards the trend of Deep Learning and Computer 

Vision in Tea plant leaves disease detection.   

KEY WORDS: Deep Learning, Computer Vision, Tea Leaf 

Disease. 

I. INTRODUCTION 

In India Tea is one of the most famous beverages among the 

people. With the increasing world population, the need to 

improve the quality and quantity of tea plantation has gained 

significant importance. The use of modern tools especially 

based on information technology has enable humans to 

achieve goals to a great extent almost all over the world [1]. 

But this benefit is achieved at the cost of increased numbers 

and types of tea leaves disease [2]. The occurrence of Tea leaf 

disease has negative impact on the Tea plant production. If 

disease are not discovered in time, plantation insecurity will 

increase [3]. Early detection is the basis for effective 

prevention and control of Tea leaf disease and they play an 

important role in the management and decision making of 

Tea plantation agriculture production.  

Disease infected Tea plants usually shows obvious marks on 

leaves, stems. Generally, disease and pest conditions presents 

a unique visible pattern that can be used to uniquely diagnose 

abnormalities. Usually, the leaves of Tea plant are the 

primary source for identifying plant disease and most of the 

symptoms of disease may being appear on the leaves [4].  

In most cases agriculture and forestry experts are used to 

identify disease in Industry or farmers identify disease and 

pest based on experience. This method is not only subjective 

but also time consuming, laborious and inefficient. Farmers 

with less experience may misjudge and may use drugs blindly 

during the identification process. Quality and quantity will 

also bring environmental pollution which cause unnecessary 

economic issue. To counter these challenges research into the 

use of image processing techniques for Tea plant disease 

diagnosis has become a wide research topic.  

 

 
 

 

II. TEA LEAF DISEASE 

The Tea leaves dataset in figure 2 contains images of selected 

tea leaves disease names as Blister Blight, Red Scab, Red 

Lead Spot & Leaf Blight. 

A. Brown Blight 

Brown blight is a disease that occurs on perennial 

ryegrass during cool, wet, and cloudy periods in the spring or 

fall. Brown blight is a "Helminthosporium"™ disease, which 

is a complex of diseases caused by fungi that produce large, 

cigar-shaped spores.  
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B. Red Rust 

Red rust of tea is one of the major disease in tea 

cultivation areas of Nepal. It may reduce the fresh yield of 

about 30-50% if not controlled. We've prepared here about 

the cause, symptoms and control measure of this algal 

disease. 

C. Red Spider Mite 

Red spider mite present of the tea crop throughout the 

year because tea is a perennial crop provides food and shelter 

due to which Nymphs and adults of RSM lacerate cells, 

producing minute characteristic reddish brown marks on the 

upper surface of mature leaves, which turn red in severe cases 

of infestation. 

 

 

III. LITERATURE REVIEW 

Different types of disease of leaf have been investigated 

including disease in rice leaf, wheat leaf. Various paper 

describing the methods suggesting ways to implement the 

detection of disease will be discussed here in the paper 

review. 

Plants infected with disease usually exhibits visible marks or 

lesions on either leaf, stems, flowers or in fruits. Generally, 

each disease or pest condition presents a unique visible 

pattern which can be used to uniquely identify or diagnose 

the anomaly. Extension officer often tries to visualize the 

control of disease through training themselves to detect and 

diagnose the disease by some laboratory training test on 

plants. In context to this, the techniques emerge as a limited 

boundary. 

 

 The number of extension officer is not that much for 

performing the test to whole farms. So farmers are 

not able to get adequate services. [5]. 

 Training of extension officers becomes costlier to 

make it possible for farmers [6]. 

 The farmers and extension officers may not be able 

to detect the non-familiar pest or disease [7].  

 Frequent monitoring of early disease detection is 

must and stopping it from spreading all over. This 

process becomes time-consuming, inefficient to 

perform on ongoing plantation [8], [identification of 

leaf disease in pepper plant using soft computing 

techniques][9,10,11]. 

Computer vision and object recognition in particular has 

made a successive growth in the field of plantation security 

system from diseases. The PASCAL VOC Challenge and 

more recently used Large Scale Visual Recognition 

Challenge (LSVRC) based on Image Net dataset have been 

widely used as benchmarks for numerous visualization 

related problems in computer vision, including object 

classification. In 2012, a large number of deep convolutional 

neural network achieved a benchmarks of 16.4% error for the 

classification of images into 1000 possible categories, while 

in the following 3 years, various advances in deep 

convolutional neural network lowered the error rate t only 

3.57%. It is being very effective to work by training large 

neural network, because the trained models can classify the 

images very efficiently. Use of Deep neural network has 

given successive results in many diverse domains as example 

of end-to-end learning. Neural Network works as mapping 

between an input-such as an image of disease plant-to an 

output-such as crop disease pair. They are trained by tuning 

the network parameters in such a way that mapping improves 

during the training process.  

To develop the accuracy in image classification for plant 

disease diagnosis, a large number of dataset of images are 

required (diseased image and healthy image), but such 

datasets does not exist and even smaller datasets are not freely 

available. To minimize this problem, the Plant Village project 

has begun to collect thousands of image of healthy and 

diseased plant and has made them openly and freely available 

[11-15]. 

 

In [16], the authors proposed a model for plant disease 

detection and classification with the help of healthy leaf 

images and leaves with diseases. They have taken 25 different 

types of plants with 87,848 images which include plants 

diseases, and also healthy plants. Their model performance 

has been reached up to 99.53% accuracy. Due to the high 

level of performance, CNN is highly recommended for the 

detection of plant diseases. 

In [17], the authors have done a review on the usage of new 

techniques in imaging processing and computer vision 

approaches for plant diseases classification. 

In [18], Chen et al. proposed GMDH-Logistic model, which 

is a self-adaptive classification method used for plant disease 

detection. In this, the authors introduced a model approach 

for the automatic detection, recognition, and classification of 

plant leaf diseases by image process method we perform the 

feature engineering analysis Plant disease classification 

through leaf symptoms plays an important role, Zhang, have 

introduced a novel segmentation method of hybrid clustering 

to divide the given color image into several pixels to improve 

the classification accuracy and also to reduce the different 

segmentation carried out by EM algorithm [19]. 

In [20], Saradhambal et al. offered a method for building a 

system that can identify plant diseases automatically. By 

using the k-means clustering technique and the Otsu s 

classifier, research was done to predict the infected region of 

the leaves. Both the form and texture features were retrieved 

in the suggested study. Shape-oriented features included area, 

color axis length, eccentricity, solidity, and perimeter, and 

texture-oriented features included contrast, correlation, 

energy, homogeneity, and mean.  

In [21], Aravind et al. stated for automating the plant disease 

detection system, research was done on maize crop diseases. 

Each image was processed to obtain SURF (Speeded up 

Robust Features) features. The k-means technique was used 

to cluster the features. Histogram and GLCM were employed 

as the two feature extraction techniques. These two 

techniques were used to investigate different textural aspects. 

Multi-class SVM, based on different kernel functions 

including linear, polynomial, and radial basis function, etc., 

was used for classification. 

Sabrol, kumar et al. [22] proposed algorithm that begins with 

the digital image acquisition of contaminated and 

uncontaminated plants; image pre-processing; segmenting 

the images to extract features for detection and classification 

based on feature analysis, neural network, support vector 
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machine, fuzzy and rule-based classification, and feature 

extraction from segmented images. Researchers working in 

the fields of plant pathology and pattern recognition should 

benefit from this review. 

Khirade et al. [23] centered on identifying and classifying 

plant diseases. To divide the plant's diseased area, the authors 

employed Otsu's technique and Kmeans clustering. They 

classified plant illnesses and extracted characteristics of 

affected leaves using feature extraction and classification 

algorithms.  

Ramakrishnan et al. [24] focused image processing methods 

to find diseases in groundnut plants. This approach converts 

RGB photos of the leaves to HSV color images once they 

have been obtained. In the study of color and texture, co-

occurrence matrices and feature extraction analyses are 

applied. Basically, there are two ways to analyse texture 

photos. The first approach is a structured one, whereas the 

second is a statistical one. Back propagation method is used 

to classify and identify groundnut illness. Back propagation 

has two stages: phase 1 is propagation and phase 2 is weight 

updating. 

Ananthi et al. [25] outlined a technique for quickly 

identifying and classifying plant diseases. According to the 

procedure, a digital camera takes the image first, and then 

image processing techniques are utilised to extract certain key 

information. The three bacterial, fungal, and viral plant 

diseases are the writers' primary focus. To find and categorize 

the disease, HSI and SGDM approaches were applied. The 

RGB image was converted using the HSI technique, and color 

occurrence was done using the SGDM technique. 

All the above-named papers are totally studied. These papers 

gave tons of knowledge regarding the chosen topic. 

Therefore, the basics foundation construct trends to be 

discovered from the top of the mentioned papers. 

Understanding above papers advancement in Deep Learning 

were revised.  

 

 

 

IV. RELATED WORK 

When plant are infected by disease it usually exhibits visible 

marks on either the leaves, stems, flower or fruits. Generally, 

each disease or pest condition present a unique visible pattern 

which can be used to uniquely diagnose the anomalies present 

in it. A large number of officers are trained to diagnose the 

pest and disease by visual inspection or by conducting test in 

laboratories on plant leaf or plant fruits samples. These 

approaches however have several limitations:  

1.Unavailability of officers to cover the whole farm. Thus, 

many farmers may lack extension service t critical times [26-

30, 31, 32]. 

2.Training of extension officers is costly and time consuming 

[33]. 

3.Difficulty in finding out the non-native disease and pest for 

farmers and extension officers [34, 35]. 

4.A high level of expertise is required to distinguish between 

anomalies with visually similar characteristics [26, 36-39, 35, 

40]. In such a case even a highly trained expert may still 

arrive at a wrong diagnosis due to fatigue poor illumination 

or poor eye sight. 

5.Continuous monitoring is necessary for early disease 

detection and prevention of disease from spreading is a 

tedious work and very time consuming. It is also costly and 

inefficient.  

The use of Image Processing Techniques (IPTs) in crop pest 

and disease is an active era of research aimed at overcoming 

these limitations.  

In this section, I will present an overview of the work done in 

the field of leaf disease detection using IPTs. Section 5.1 

shows that early works relied on classical image processing 

procedures and hand-crafted feature extraction from leaf 

image. These features were then used to train shallow 

classifier algorithms such as Support Vector Machine 

(SVM), Principal Components Analysis (PCA), K-Nearest 

Neighbor (KNN), Decision Tree Classifier (DTC) and 

Random Forest (RF) [41, 42, 26, 36, 38, 17, 43, 40, 44-49].  

 

V. METHODOLOGY 

 

 
 

A. Identification of Tea Leaf Disease using CNN 

CNNs are a subset of deep neural networks that are frequently 

used to identify patterns in images. In essence, CNN is a deep 

learning (DL) algorithm that takes an input image, applies 

biases and learnable weights to different objects in the image, 

and can distinguish between them. Convolution, ReLu, 

Pooling, and Classification (Fully Connected Layer) are the 

four main operations of CNN. Applications for CNN include 

the analysis of geographical data, computer vision, and 

natural language processing, among others. The use of shared 

weights in convolutional layers, the reduction in pre-

processing, the simplicity of classical feature extraction [50], 

and the capacity to handle both two-dimensional and three-

dimensional data are some of the benefits of CNN.  

The CNN is mostly employed for picture recognition and 

classification among the many DL models. To identify and 

categorize plant diseases, many researchers have employed 

the existing deep CNNs models, created their own models 

from scratch or by utilizing transfer learning. 

The researchers can employ some of the existing models, 

such as AlexNet [51], Caffenet, VGG-19 [52], GoogleNet 

[53], and Inception-Resnet, to create their own models [54]. 

All of the current models already have their weights pre-

trained using datasets like ImageNet [55] and PASCALVOC 

[56]. Numerous applications, including pedestrian detection 

[57], gender and smile categorization [58], estimate of 
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heterogeneous face attributes [30], writer identification using 

CNN [59], biological picture analysis [60], and concrete 

crack detection [62], among others, use CNN architectures. 

After AlexNet [51] in 2012, numerous cutting-edge DL 

models were released. A brief overview of some of the well-

known CNN architectures is provided in the section that 

follows. 

The ImageNet Large-Scale Visual Recognition Challenge 

has been won by AlexNet [51]. Each of the first seven layers 

in AlexNet receives the Relu activation function, and dropout 

is used to lessen overfitting [63]. Similar to the GooLeNet 

[53] which was created in 2014 and has an inception 

architecture, it employs a parallel combination of 1x1, 3x3, 

and 5x5 convolutional layers [63] and 3x3 max-pooling 

layers. It was the winner of the ILSVRC 2014 competition. 

In order to overcome the degrading issue, another model 

called ResNet [64] was created in 2015. It is made up of 

numerous stacked residual units [63]. Another architecture 

created in 2014 is VGGNet [52]. It has a number of 

convolutional layers, then pooling layers. It is shaped like a 

pyramid [65]. 

The architecture of ZFNet [66], which was established in 

2013, is remarkably similar to that of AlexNet [67], however 

ZFNet has less weights. DenseNet [68] architecture includes 

fewer parameters and involves dense connections between 

the layers, which improves accuracy [69]. When compared to 

AlexNet [69], SqueezeNet [70] has 50 times less parameters, 

and its primary goal is to shrink the model using deep 

compression [71]. The first model created for object 

identification, localisation, and classification was OverFeat 

[72][69]. MobileNet's [73] CNN design, which has a smaller 

number of parameters [69], is primarily focused on the depth 

wise separable convolutional notion. 

B. Common CNN Architecture for Tea Leaf Disease 

Detection 

The next part provides an overview of the various CNN 

architectures that were applied to the diagnosis of plant 

diseases [18] as well as a quick rundown of deep learning 

meta-architectures that were applied to the identification of 

plant diseases. CNNs generally adhere to the Lenet-5 design. 

Fig. 4 displays an illustration of the CNN architecture, which 

is a common architecture. Convolution layers are the main 

component used to extract the feature maps from the input 

pictures. The feature maps are then subjected to pooling 

techniques like max, min, or average pooling. The output 

layer for the classification of the disease is the completely 

linked layer, which is the last layer. 

 

 
Fig. 4 illustrates how CNN-based DL techniques are used to 

diagnose plant diseases. The image provides a brief summary 

of the procedures involved in utilising the CNN to diagnose 

plant diseases. The first step is to gather or use a dataset of 

high quality. Both public and private datasets are possible. A 

sizable number of high-quality photos of both healthy and 

sick leaves should be included in the dataset. The dataset that 

was obtained may have noise, poor lighting, etc. To lessen 

these problems, the dataset might be subjected to image pre-

processing techniques such scaling, rotation, augmentation, 

and geometric alterations. After the dataset has been divided 

into three sections—training, validation, and testing—

existing or newly constructed CNN models (AlexNet, VGG, 

etc.) should be trained using the training data. You have the 

option of starting from scratch or applying transfer learning 

[68]. Analysing training accuracy, validation accuracy, 

training loss, and validation loss will reveal the model's 

importance. For evaluating the effectiveness of the trained 

model and classifying plant diseases, deficiencies, and pests, 

performance metrics like Log-loss, F1 score, Area Under the 

Curve, Precision, Recall, Specificity, etc. can be utilised. 

With the aid of visualisation techniques, sickness symptoms 

can be more clearly understood, and images of plant leaves 

can be found and located. [74] describes the fine-tuning of 

DL models for plant disease detection. 

 

VI. CONSLUSION 

In this paper, the basic knowledge of Deep Learning 

techniques has been classified for early detection of disease 

in tea leaf and presented a comprehensive review of recent 

research work done in early disease recognition in tea leaf. 

Provided sufficient data is available for training, Deep 

learning techniques are capable of recognizing plant leaf 

disease with high accuracy, data augmentation transfer 

learning and virtualization of CNN activation maps in 

improving classification accuracy and the importance of plant 

leaf disease detection and importance of hyper spectral 

imaging for early detection of plant disease have been 

discussed here.  Most of the Deep learning frameworks stated 

in the literature have been a good detection effect on the 

datasets. But it is very difficult to prepare labelled dataset for 

early disease detection of tea leaf.  

Pests and plant illnesses have a devastating effect on the 

world's agricultural sector. After a thorough analysis of the 

literature, it is clear that while AI-based plant disease 

detection solutions have grown significantly, there are still a 

number of issues that need to be resolved in order to create 

high-performing, real-time disease detection systems. This 

research provides an review on the fields of advancements as 

well as cutting-edge techniques utilizing DL, ML, and IP. 
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