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ABSTRACT  

The application of machine learning (ML) and artificial intelligence (AI) in metabolomics provides 

revolutionary possibilities for improving disease diagnostics and comprehending intricate biochemical 

processes. The study of small molecules in biological systems, known as metabolomics, gains from AI/ML's 

capacity to analyse enormous datasets and identify complex patterns and biomarkers. The main developments 

in AI-driven metabolomics are highlighted in this review, with particular emphasis on the use of ML models 

such as random forests, support vector machines, and artificial neural networks for disease diagnosis and 

biomarker discovery, as well as deep learning approaches for metabolite identification and multi-omics data 

integration. Even with this tremendous advancement, issues like population variability management, 

repeatability, and interpretability of models still need to be resolved. It is imperative that these problems are 

resolved in order to advance personalised medicine and realise dependable clinical metabolomics applications. 
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      I.  INTRODUCTION  

1. Metabolomics 

The study of small metabolites or chemical reactions involving tiny substrates in tissues or organisms is known 

as metabolomics. All the metabolites found in any biological cells, tissue, or organ, as well as the cellular 

products that result from them, are represented by the metabolome. It can be used to investigate biological 

data at the biochemical level and gives a snapshot of the physiology of the cell under study. This offers a line 

of inquiry into the biological phenotype that can be utilized to comprehend health and illness [1]In the late 

1940s, Roger Williams developed the idea of a metabolic profile [2]. Using paper chromatography, he 

proposed that distinct metabolic patterns in saliva and urine are indicative of schizophrenia. The term 

"metabolic profile" was not coined until the 1970s, when mass spectrometry and gas chromatography were 

introduced, along with other technological breakthroughs [3]. The Metabolite and Chemical Entity Database 

(METLIN), the first comprehensive database for metabolomic tandem mass spectrometry, was created in 2005 

at the Scripps Research Institute [4] Under the direction of David S. Wishart, "The Human Metabolome 

Project" created the initial draft of a database in 2007 that contained around 2,500 metabolites, 1,200 

medications, and approximately 3,500 food components. The ability of methods like mass spectrometry and 

gas chromatography to identify thousands of distinct characteristics in a single specimen has advanced, 

making the computational problem of finding metabolites linked to a disease or trait more and more 
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challenging. A thorough evaluation of biological specimens and the molecules they are connected with has 

been made possible by the field of metabolomics. According to Gowda et al. (2008), a better understanding 

of the biological system at the molecular level is essential for disease diagnosis and the development of new 

treatments. Metabolomics is the fundamental layer in the area of omics that captures all the information 

expressed and changed by the genetic regulatory and processing layers upstream. The closest connection to 

the phenotypic is this. Because of its direct relevance to the field of biomarker discovery, it is at the forefront 

of personalised health in terms of diagnosis and treatment. Because biological systems are intricate, 

understanding them frequently necessitates integrating multiple layers of omic data. As the result of the 

interaction between the different omic layers, metabolomics is a possible remedy for this[5]. 

   

Figure 1: A Machine learning model showing prediction of samples using metabolomics analysis of 

biological samples with mass spectrometry and nuclear magnetic resonance. 

  

2.  Machine Learning 

The concept and area of artificial intelligence (AI) have garnered significant attention in the 21st century. AI 

and machine learning (ML) offer endless possibilities with their many applications in comprehending the 

structures or trends in enormous amounts of data generated from contemporary high-throughput research. ML 

is used to create models that can process massive amounts of data and, via learning, resolve challenging issues. 

In the twenty-first century, artificial intelligence (AI) as a concept and field have attracted a lot of interest. 

With its numerous applications in understanding the structures or trends in massive amounts of data generated 

from modern high-throughput research, artificial intelligence (AI) and machine learning (ML) present 

countless opportunities. ML is used to build models that can handle large volumes of data and, through 

learning, solve difficult problems. A dataset used to create a machine learning model is typically split into 

two subsets: a testing subset, which contains about 30% of the data and is used to provide an unbiased 

assessment of the final model from the training step, and a training subset, which contains about 70% of the 

available data and is used in the ML algorithm to build a model and make predictions. For the machine 

learning algorithm to have more chances to learn and refine the model, a large amount of data must be used 

in the initial learning process. Formally, the algorithm is capable of learning through a mathematical function 

that associates particular inputs with particular outputs. Without being specifically designed, the algorithms 
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utilise the training dataset as a reference to make predictions. This is accomplished by a sequence of processes 

in which learning is done using weights and biases to provide predictions in a finite number of steps [6]. 

There are three types of machine learning: semisupervised learning, unsupervised learning, and supervised 

learning. Using highly statistical techniques, supervised machine learning algorithms train a model on labelled 

data and generate predictions about unknown (unlabeled) data. Unsupervised models, on the other hand, use 

unlabeled training data. Because machine learning can handle both linear and non-linear data, it is the best 

application for mass spectrometry data. Yet, applying machine learning to mass spectrometry applications is 

not a new idea; a 1990s studyThough not a new idea, applying machine learning to mass spectrometry 

applications was first shown in a 1990s study that showed how well artificial neural networks (ANNs) could 

categorise mass spectra [7]. Subsequently, a multitude of additional supervised algorithms were employed to 

enhance the mass spectrometry data categorization process [8]. Machine learning-based diagnostic research 

in mass spectrometry started to expand in the twenty-first century. 

   II.  APPLICATIONS 

  

1. Machine Learning Applications for Biomarker Discovery 

The correlation of variables makes the process of discovering biomarkers through machine learning complex 

and full of challenges. Several research have demonstrated how feature selection algorithms can be used to 

use metabolomics data to identify disease biomarkers. For instance, to find the most discriminating 

characteristics to use as potential biomarkers, researchers employed random forests with feature significance 

functions [9, 10]. They employed the top-ranking features to train the classifier model after calculating the 

relevance score assigned to each feature based on the Gini index calculation. 

In a different study, the prospect of employing targeted metabolomics to analyse plasma samples to find 

biomarkers for lung cancer disease was explored. Quick correlation-based selection algorithms found five 

best-performing biomarkers that might distinguish lung cancer patients from healthy individuals [11]. In order 

to predict the state of renal cell carcinoma, Bifarin et al. [12] analysed urine samples using liquid 

chromatography–mass spectrometry and NMR. They also created a biomarker panel of 10 compounds by 

using the PLS regression approach and recursive feature selection. Following the selection of features based 

on their frequency of appearance in both feature selection techniques, 10 metabolites were chosen to train the 

classification model. 

In a different investigation, the authors assessed serum samples examined by high-resolution mass 

spectrometry-based metabolomics to see how well multivariate approaches with unbiased variable selection 

(MUVR) performed. Using random forest, SVM, and logistic regression techniques, the MUVR approach 

identified 13 metabolites that yielded good results and created a panel of potential biomarkers that can 

differentiate gout from asymptomatic hyperuricemia [13]. Furthermore, PLS-DA has been employed to 

determine the most discriminant lipids and metabolites to distinguish serum metabolomic and lipidomic 

profiles of patients with rheumatoid arthritis from healthy controls [9]. Three classifier methods were used to 

assess the selected properties of the 26 molecules that the authors proposed as potential biomarkers for 

rheumatoid arthritis: logistic regression, random forest, and SVM. 

  

2.  Application of Machine Learning for the Diagnosis of Diseases 

The number of metabolomics research that have used machine learning techniques has significantly increased 

since the year 2000. Numerous research have demonstrated the ability of machine learning to distinguish 

between groups that are healthy and those that are sick, as well as to find significant biomarkers that may be 

used in a range of clinical decision-making contexts [14, 15]. The most current uses of supervised machine 

learning for illness diagnosis are shown in the sections that follow.  

2.1 Random Forest  

Random forest is one of the most widely used supervised machine learning algorithms for mass spectrometry 

data due to its ability to cope with missing values, data noise, and reduced overfitting risk [15]. The ensemble 

methodology of decision trees is incorporated into the Random Forest classification and regression technique 

to predict classes. The decision trees' predictions are used by the algorithm to determine the result. The class 
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that the majority of the trees choose for classification tasks is the random forest's output; each tree may be 

thought of as an uncorrelated model. 

Compared to other classifier models, random forest was demonstrated to be more effective at selecting 

potential biomarkers, stability, prediction ability, and overfitting, and in diagnosing colorectal cancer (with 

100% accuracy) using metabolomics data [16]. By using metabolomics data to identify the Zika virus, Melo 

et al. [9] demonstrated the robustness and better performance of random forest compared to other classifier 

models, proving that random forest works better than other classifier models. To distinguish across groups, 

42 features were used in the model's development and evaluation. Lima et al. [18] used a mix of metabolomics 

and random forest data to claim 97% accuracy in diagnosing Para coccidioidomycosis. 

  

Using random forest and metabolomics data, recent research has shown that malignant mesothelioma may be 

identified with 92% accuracy in the validation dataset [19]. Researchers investigated twenty dysregulated 

characteristics that set the malignant mesothelioma group apart from others. Biliverdin and bilirubin were 

shown to have diagnostic potential among the 20 characteristics. To further illustrate how random forest can 

be used to choose the best possible biomarkers, biliverdin was evaluated as the fourth-most significant variable 

overall by random forest. However, to obtain a precise picture of the diagnostic model, study constraints were 

also disclosed, such as a reduced number of classes and sample sizes. 

  

Fukui et al. [20] combined logistic regression and random forest to achieve a higher score in terms of 

sensitivity and specificity than if each method had been employed alone in a study that focused on identifying 

irritable bowel syndrome. Using metabolomics data, four classifier models were developed by other 

researchers [21]: a generalised linear regression model, PLS-DA, PCA linear discriminant analysis, and 

random forest. Two methods were used to train the models. Using every metabolite, the models were trained 

in the first method. In the second method, only pre-selected metabolites were used to train the models. With 

an AUC score of 72%, the random forest model with pre-selected variables proved to be the most successful. 

   2.2 Support Vector Machine 

Currently, the most popular machine learning method in precision medicine is SVM classification. SVM is a 

model that builds a decision boundary (hyper-plane) in a high-dimensional feature space using "support 

vectors." Datapoints that are near to the hyperplane are known as support vectors, and they help to optimise 

the hyperplane itself [22]. With as few data points as possible on the wrong side of the decision boundary, the 

hyperplane's goal is to maximise the distance between two classes [23, 24]. 

  

 In order to maximise the distance for a given set of training samples, a hyperplane is created, which is 

expressed mathematically as 

WTX + b = 0, 

  

    where W stands for weight matrix, X for dataset, and b for constant term. 

SVM can also be used, via a technique known as the kernel trick, to classify non-linear data. The polynomial 

kernel, Gaussian kernel, Gaussian radial basis function (RBF), Laplace RBF, sigmoid kernel, hyperbolic 

tangent kernel, and linear splines kernel in one dimension are a few examples of the various kinds of kernel 

tricks utilised for various situations. Radial basis function (RBF), however, is the preferred option among 

other kernels and is frequently utilised for non-linear tasks in metabolomics. SVM was applied in a recent 

study to distinguish gout from asymptomatic hyperuricemia. The technique was utilised as a classifier in 

conjunction with random forest and logistic regression. According to the author, random forest performed 

better in the training set but worse in the test set, suggesting that the classifier model was overfitting. In 

contrast, SVM beat the other classifiers in terms of obtaining a higher area under curve score in the validation 

set. 
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Using a mouse model, Song et al. [25] employed SVM to find an early indicator of diabetes cognitive deficits. 

Using seven features, SVM was able to identify two sets of samples with 91.66% accuracy. The scientists 

also suggested biomarkers that may be involved in pathogenesis, such as the metabolism of nicotinamide and 

glutathione, tryptophan, and sphingolipids. 

SVM was employed in a different recent work [26] to categorise Staphylococcus aureus multidrug resistance 

and benzylpenicillin resistance. The researchers used matrix-assisted laser desorption/ionization–time of 

flight mass spectrometry to find antibiotic resistance signature profiles in isolates of S. aureus. SVM 

outperformed naive Bayes, random forest, and multilayer neuron perceptron neural networks in terms of 

accuracy, specificity, and sensitivity. 

  

Major depression was diagnosed by Zheng et al. [27] using the least-squares SVM (LS-SVM) with three 

kernel functions: linear, polynomial, and radial basis. With a radial basis function, LSSVM performed better 

on the test dataset than other kernel functions, achieving 96% accuracy. Glucose–lipid signalling 

characteristics, including polyunsaturated fatty acids, lipids containing acetoacetate, lipids with N-acetyl, 

glucose, adipic acid, and sugars including amino acids, were incorporated into the classifier's construction. 

SVM is a very appealing algorithm to conduct precision medicine studies and to find possible metabolic 

biomarkers, as all of the published research has demonstrated. Furthermore, SVM is especially useful when 

there are few biological replicates or patients. 

  

2.3    Artificial Neural Networks 

  

ANNs are capable of handling complex (non-linear) aspects inside input and making future situation 

predictions, just like the human brain. While ANNs learn by modifying the connections between the 

processing units that comprise the network structure, humans learn by making small changes to synaptic 

linked neurons. 

  

Artificial neurons were defined in 1943 by McCulloch and Pitts [28] as a mathematical function created by 

imitating the functions of real biological neurons. The complexity of the scenario determines how many 

hidden layers and neurons there are in each layer. The external system sends a vector of predictor variables, 

each represented by a node, to the input layer. The first hidden layer's weights are then multiplied by these 

data, making them changed. These products are combined and sent through a non-linear transfer function 

(sigmoid, hyperbolic tangent) to provide an output that resembles an axon. In ANN-supervised learning, the 

weights are adjusted to roughly reflect each goal as a nonlinear function of the inputs. 

  

An output layer with a back propagation technique, seven hidden layer units, and thirteen input layers were 

utilised by ANNs with an output layer in a metabolomics study conducted on plasma samples from Parkinson's 

disease patients [29]. The neural network algorithm's accuracy in identifying the course of the disease was 

97.14%. One incidence of misdiagnosis was also noted, though. 

  

Another study used flow infusion electrospray ion mass spectrometry to profile the compounds in the sputum 

of lung cancer patients and age-matched smokers as a control [30]. ANNs were then used to analyse the 

metabolomic profiles and diagnose lung cancer, namely non-small-cell lung cancer (NSCLC) and small-cell 

lung cancer (SCLC). The authors achieved an 80% sensitivity and 100% specificity in their classification of 

SCLC. Between the NSCLC and SCLC groups, six metabolites—phenylacetic acid, L-fucose, caprylic acid, 

acetic acid, propionic acid, and glycine—were found to represent potential indicators. 
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Additionally, ANNs were employed to elaborate metabolite abundances from dried blood spots that were 

subjected to direct infusion mass spectrometry analysis [31]. Acute cerebral infarction and intracerebral 

haemorrhage were contrasted by the writers. They were able to distinguish between intracerebral haemorrhage 

and acute cerebral infarction with over 70% accuracy when using an external validation set. They employed 

ANNs with 11 units and 10 hidden layers of neurons, and after training the ANN model with stepwise 

regression, they were able to identify 11 important metabolites. 

  

 III. Machine Learning Tools for Metabolomic Analysis 

With its rapid advancement, machine learning (ML) now provides a broad range of methods to address 

complex problems in the field of metabolomics and identify putative biomarkers. Machine learning has 

already been applied to enhance data processing techniques in the NMR and mass spectrometry domains [32]. 

Numerous machine learning tools, including WEKA, KNIME, and Orange include user-friendly interfaces, 

don't require programming knowledge, and are available as open-source software [33]. Other well-liked open-

source libraries are TPOT, which offers an automated pipeline of machine learning algorithms that uses 

genetic programming stochastic global search approach to sort out top-performing ML models [35], and 

Scikit-learn (also known as sklearn), which is used to implement machine learning algorithms in Python [34]. 

Numerous machine learning algorithms and feature selection techniques are available in the R Caret library 

[36]. Furthermore, the field of metabolomics is increasingly using ANN-based data processing tools such as 

PyTorch, Keras, and TensorFlow [35]. Yet, metabolomics data have not yet been analysed using recently 

established automated machine learning and deep learning pipelines as AutoGluon, AutoPrognosis, H2O, and 

PennAI [37,38]. The most popular tools and libraries for metabolomics research are listed in Table 1. 

    

 

Table 1. Tools used by metabolomics studies for machine learning algorithms. 

Tools/Libraries Purpose of 

Use in Studies 

Programing 

Language 

Programing 

Skills 

Requirement 

Metabolomic 

Studies 

Weka Classification/f

eature selection 

Java No [33,37] 

KNIME Data 

processing 

Java No [39,40] 

Orange data 

mining 

Classification Python, 

Cython, C++, 

C 

No [41] 

Scikit-learn Data 

processing/Cla

ssification 

Python Yes [12,42] 

TPOT Classification/f

eature selection 

Python Yes [43] 

Caret Classification/f

eature selection 

R Yes [44] 

Keras and 

Tensor flow 

Data 

processing/Pea

k identification 

Python, R Yes [45] 
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 IV.   Limitations 

Even with machine learning's progress in the healthcare industry, a number of issues still need to be addressed. 

The first challenge in creating a metabolomics-based machine learning-assisted diagnostic model is figuring 

out how little information is required to accurately depict a given biological issue or disease. Generating 

datasets with enough samples for training and assessing a strong model on a separate dataset, while also 

accurately representing the variance of the population, is a challenging task. In addition, biases in the 

experimental process may affect the quality of the metabolomics data. The reproducibility of outcomes and 

the algorithms' ability to explain them are two further issues with machine learning models; with larger 

datasets, it gets harder to understand the reasoning behind algorithmic choices [46]. Because the mathematics 

of prediction is based on incomplete knowledge, many algorithms are referred to as "black boxes". When it 

comes to applying machine learning to clinical decision making, this feature is a significant drawback. 

Numerous classifiers have been employed for the identification of biomarkers as well as the diagnosis of 

illnesses, as demonstrated in earlier sections. Random forest demands a lot of processing power for large 

datasets, but it is typically less prone to overfitting. SVM, on the other hand, works incredibly well with high-

dimensional data, although overfitting is a common side consequence. Lastly, while ANNs perform poorly 

with small datasets, they are especially well suited for large datasets. 

  

   V.  CONCLUSION 

In metabolomics and other high-throughput technologies, artificial intelligence is a commonly employed 

method, particularly for early detection. The effectiveness of machine learning in the field of medical science 

has been demonstrated by recent studies that have produced multiple algorithms for disease classification 

based on metabolomics profiles. However, there are still several challenges to be solved, such as how to 

interpret machine learning models and create reliable models that take population variability and disease into 

consideration. There is currently no gold standard for choosing the best algorithm to apply given a certain 

dataset. In fact, depending on the technique used, even little modifications to the dataset format can produce 

wildly different results. 
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