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ABSTRACT 

 

Generating animation from capture human motion. important problem in computer graphics. The creation of these virtual 

characters is different from traditional 3D animation but is based on real character movements and expressions. An overview 

of several mainstream motion capture systems in the field of motion capture is presented, and the application of motion 

capture technology in film and animation is explained in detail. The current motion capture technology is mainly based on 

complex human markers and sensors, which are costly, while deep-learning-based human pose estimation is becoming a new 

option. However, most existing methods are based on a single person or picture estimation, and there are many challenges for 

video multiples on estimation. The experimental results show that a simple design of the human motion capture system is 

achieved. 

 

                                I.  INTRODUCTION 

As computational power has steadily risen over the years, so, 

too, has the realism and complexity of computer-generated 

scenes and animations. The complexity and computational 

Needs of techniques used by visual effects artists has kept 

pace with improvements in computation speed as 

summarized by Blink’ s Law, which states “ as technology 

advances, rendering Time remains constant”  . For example, 

a single frame from a recent animated film could Range 

from several hours to several days to render on modern 

hardware. 

In 1995, Pixar’ s Original Toy Story required similar render  

times on hardware from that time. However, if Rendered on 

current-day machines, the film would take a fraction of the 

time to render. Although image rendering takes a significant 

portion of the computation time spent Generating a movie, 

other aspects of the film have grown in complexity as well. 

Character Mesh deformations, for example, have also 

become more computationally demanding over The years. 

These mesh deformations are driven by character rigs, which 

controls how a Mesh is deformed according to a set of input 

parameters. As the detail and quality of mesh Deformations 

grow, so, too, does the complexity of the character rig. 

At dream Works Animation, for example, character rigs 

were so complex that they were Unable to evaluate at 

interactive rates before the development of Libee and Premo, 

their Current in-house animation software. Previously, 

animators would enter numbers in a Spreadsheet and would 

wait for their workstation compute the deformed mesh and 

update A character on their screen at non-interactive rates. 

To keep up with the growing complexity Of character rigs, 

they developed their current software to utilize multi-

threaded hardware on High-end computing machines. As a 

result, animators are now able to adjust rig parameters And 

see the changes in the deformed character mesh in real-time, 

which can increase their Productivity. Despite these 

improvements, artists still require a significant amount of 

time to Produce a high-quality character animation. For 

example, one artist might spend a week of Effort to author 5 

to 10 seconds of animation for a feature film. 

 

METHODOLOGY 

 

1 Processing Pipeline 

Motion capturing is the process of recording the movement 

of objects or people. In recent years, many systems and 

approaches have been proposed for capturing human 

activities, and can be categorized in two types, as follows. 

Marker-based motion capture. Currently, marker-based 

motion capturing is a mature technique that has been 

used.successfully in many fields such as the motion picture 

industry and VR. However, this method is disadvantaged by 

the controller having to be worn as a marker suit with 

sensors such as optical mounted cameras [9]. Thus, this 

makes it impossible to capture the movement of people 

wearing ordinary clothes. Additionally, marker based motion 

capturing is sensitive to skin movement relative to the 

underlying bone [10]. Moreover, the exact placement of 

markers on anatomical landmarks is difficult to realize, and 

markers placed on the skin do not directly correspond to the 
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3D joint positions. Presently, many commercial automatic 

PyTorchic systems, developed by companies such as the 

Captury, Organic Motion, and Simi, can be used to 

investigate human motion. However, these system mostly 

employ multi-view cameras that can deduce the 3D position 

of the objects and body skeleton. Although the specifications 

of these systems have noticeable differences [11], the same 

underlying principles apply in terms of several points of 

interest being located in sequential images, converted to 

real-space coordinates, and used to infer the 3D pose of the 

underlying skeleton. 

Markerlessmotion capture. A markerless system that can 

address the limitations and eliminate the need of body-worn 

sensors has attracted a substantial amount of attention in the 

field of computer vision and computer graphics, and has 

expanded the application of human motion capturing. 

Recently, this field has increasingly attracted more interest 

from researchers.The four major components of a markerless 

motion capturing system are (1) the camera systems being 

used, (2) the representation of the human body (the body 

model), (3) the image features being used, and (4) the 

algorithms used to determine the parameters (shape, pose, 

and location) of the body model [12]. There are two types of 
camera systems for markerless motion capturing, and can be 

distinguished according to whether or not a “ depth map”  is 

estimated. Currently, motion capturing systems based on 

depth-sensing are considered as an effective method of 

estimating a fullbody pose in real-time, for example, in [13], 

[14]. From an algorithmic viewpoint, markerless motion 

reconstruction can be classified into two main categories; 

discriminative approaches [15], [16], [17] and generative 

approaches [18], [19], [20] . 

Discriminative approaches. In this field, the idea behind 

discriminative algorithms is to convert the motion capturing 

problem into a regression or pose classification problem, so 

as to achieve a much faster processing time, improve 

robustness, and reduce the dependence on initial guesses. 

Discriminative algorithms can be divided in two major 

groups. One approach is to discover a mapping directly from 

the image features to a description of the pose, such as by 

using machine-learning based regression [21], [22]. 

Alternatively, a dataset of pose examples can be created and 

then searched to discover the most similar known pose if the 

current image is given, as has been done in previous studies 

[23], [24]. However, discriminative algorithms have reduced 

accuracy and require a very large set of training data, which 

makes their application difficult. Therefore, the 

discriminative approaches are typically used as the initial 

guesses in generative approaches [26]. Generative 

approaches. In the generative motion capturing approaches, 

the pose and shape of the body are acquired by fitting the 

model to information extracted from images                   

.  

Fig 1.1. The processing pipeline. (a) multi-view cameras; (b) 

images captured; (c) 2D joint keypoints detector; (d) output 

of 2D joint keypoints; (e) 3D skeletion; (f) reassembled 3D 

skeleton and bone transformation; (g) animation of a 3D 

character. 

 

 

This can generate a set of model parameters such as the body 

shape, bone length, and joint angle. Alternatively, the 3D 

body model can be compared against a 3D reconstruction, 

such as a visual hull, by minimizing the distances between 

the 3D vertices of the model and the 3D points of the visual 

hull [27] through a standard algorithm known as the iterative 

closest point. Contrary to discriminative algorithms, 

generative approaches are typically based on temporal 

information and can solve a tracking problem. 

The majority of these methods parameterize the high 

dimensional human body and embed a low dimensional 

skeleton into the body model. 

1 CAPTURING OF 2D IMAGES FROMCALIBRATED 

MULTIVIEW CAMERAS 
First, the experimental environment is set up for body 

motion capturing. After their positions are fixed, all cameras 

are calibrated using fundamental matrix estimation for pairs 

of images. This is followed by bundle adjustment, which is a 

feature-based 3D reconstruction algorithm[40], we achieve 

the reconstruction of the 3D sample space, and obtain all of 

the camera parameters, including the intrinsic matrix and 

extrinsic matrix. Additionally, the above mentioned 

calibration procedure only has to be carried out once for 

each camera layout.  

.2 2D JOINT  DETECTION FROM MULTI-VIEW 2D 

IMAGES 

 Here, we describe our method of capturing the 2D human 

pose without landmarks, as shown in Fig. 2. In this part, a 

deep CNN detector from a state-of-the-art open-source 2D 

pose estimation library [17] is used to  

perform the detection of the 2D human pose keypoints. As is 

well known, as the number of cameras increases, the 

obtained reconstruction accuracy becomes higher. 

Additionally, using the Deep CNN method is time- and 

resource-consuming. Hence, using many cameras requires a 

substantial amount of computational resources. Therefore, to 

balance the calculation speed and quality of 3D joint 

reconstruction, a procedure of merging multi-view images 

into a single image to be fed into the deep CNN is designed 

to speed up the calculation and improve the synchronization 

of the output 2D poses. The details of the process are shown 

in Fig. 2. First, we down-sample all images and merge them 

into a single image. Next, by performing 2D pose detection, 

a series of 2D joints are obtained. Finally, the operation of 

upsampling and reordering consist of scaling the 2D joint 

into the original input image size and matching the 

corresponding camera id. After the above mentioned phases 

have been completed, we obtain the key joints of the 2D 

skeleton from all views. 

 
 

Fig. 1.2. Estimation of 3D joints using 2D joints. 

(a) a 3D sample space is initialized with width 

W, height H, and length L; (b) the space is 

subdivided; (c) one subspace is considered as a 
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3D sample unit; (d) the area Ω of the 3D sample 

unit is projected onto image Π. 

 

 

Additionally, we defined a 3D sample cube with width w, 

height h, and length l as Cube{w,h,l}, and its center point 

with p 3 . project(p 3 , κ) represents the projection from p 3 

to p 2 , where κ denotes the camera parameters. Thus, the 

projection area Ωi of the 3D sample cube in the i-th image is 

defined as follows: 

Ωi={P²|p² = project (P³,K), P³ Є cube} 

Because the cube projection on the 2D plane is convex, its 

projection area can be calculated easily by its eight vertices 

{a, · · ·, g}. Accordingly, the foreground mask, known as a    

2D joint keypoint, is the 2D projection of the corresponding 

3D foreground object. Along with the cameras’  viewing 

parameters, the 2D point p 2 defines a back-projected 

generalized line containing the actual 3D joint p 3 , as shown 

in Fig. 5. 

 
 

 

 

FLOWCHART 

 
All the graphic user interface present in the project was 

implemented using the model of Interface Control and 

highlight input devices, present in the OpenCV library. Two 

windows are constructed in the beginning of the system, one 

called "Original", that show the frames obtained by the 

camera, and another called "Trackbar", with the controls of 

the reach of the image in color system HSV.       

 

 

 

 

 

 

 

 

2 RESULTS 

 
Fig. 1.4. Some experimental results on 

Humaneva-I dataset. 
 

 

This paper proposes a new system for markerless human 

body motion capturing and animated character rigging 

using multi-view cameras. According to the experimental 

results, our system can produce accurate and robust 3D 

human body joints from multi-view camera images, 

which can then be used to rig 3D characters for 

animation. This system may be used in fields such as 

animation production, video game production, and VR 

game interaction. Thus, the production costs can be 

reduced and the human-machine interaction can be 

simplified considerably. However, the development of 

the proposed system is in the prototype stage, and there 

still exist issues that require further investigation, such as 

the stability of the calculated 3D joints, number and 

layout of the cameras, and efficiency of the entire 

system. In future work, we will focus on improving the 

reconstruction of the 3D joints and the capturing of body 

motion.The Avg 2D Err in multi-views. In general, the 

average 2D error of each view is kept within a small 

ranges. The very high intensity is the noise, when 3D 

points or 2D CNN points are not detected. Frames 1-4 

represent the case that no 3D points are 

detected

Fig.1.5. Projection that is a bounding geometry of the actual 3D 

point. Purple points are the 3D samples. Red stars are the 2D 

joints detected by the deep CNN 
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Fig. 1.6.. Xtion failure cases for which correct results 

were obtained by our system: (a) wrong bone 

transformation for right upper arm; (b) tracking failure 

(right upper arm); (c) tracking failure (with interference 

from other parts); (d) tracking failure (limb overlap) 

 Experimental analysis 

In this part, we present more analysis about our system itself 

based on some additional experiments 

. 

 

 

 

1) Accuracy analysis of our system: In order to evaluate the 

accuracy of our method, we define the average 2D error 

(Avg 2D Err) directly in the image in pixels (pix). The Avg 

2D Err between the estimated pose x and the ground truth 

pose xˆ is expressed as the average Euclidean distance [43] 

between individual markers: d 2 (x, xˆ) = 1 n Xni=1 ||xi − xˆi 

||, (3) where n is the number of joints, i = 1 . . . n, x is the 2D 

joint directly obtained from the 2D CNN detector, and xˆ is 

the 2D reprojected joint of the calculated 3D joint. Fig. 15 

shows the comparison of the reprojected points between the 

calculated 3D joint points and the results directly obtained 

by the 2D CNN detector. Table V presents the results of 

calculating the Avg 2D Err to evaluate the effectiveness of 

the reconstruction joint in 3D space. The value (pixel 

distance) of each view is the average error of all 2D joints. 

Here, the image resolution is 1920×1080. The ratio of Avg 

2D Err and image resolution is under 2%. The accuracy of 

the cameras’  intrinsic and extrinsic parameters was not 

good, and this led to the Avg 2D Err ranges by view. From 

the comparison of one view, such as frame 10, view 0 in Fig. 

15, it can be seen that the proposed 3D voxel joint estimation 

method can precisely reconstruct the key joints of the body. 

Additionally, the bone transformation calculation can obtain 

the correct bone pose in 3D space, and the results can be 

used to animate multiple 3D characters. Fig. 16 shows the 

multi-views Avg 2D Err value of consecutive frames in our 

example video sequence as shown in Fig. 15. It shows that 

our 3D joint estimation method is stable and reliable 

.2) Time consumption analysis of the whole pipeline: Table 

VI shows the time consumption of our pipeline in 

millisecond (ms) by 4 main phases. The image collection 

phase costs a lot for image preprocessing in a high frame 

rate (about 30fps). The second phase (2D joint detection) 

takes about 120ms, which is the maximum in all the phases, 

because the deep CNN is very time-consuming due to many 

large computational processes. Nevertheless, the 2D joint 

detection using CNN is still much faster than the method 

based on feature correspondence. Additionally, another time-

consuming phase is 3D joint estimation, in which 18 joints 

are calculated one after another and the average processing 

time of each joint is about 5.6ms. The final phase is for 

generating character animation, including rigging and 

skinning, which usually takes less than 5ms. For now, the 

frame rate of our system can achieve 5fps by a preliminary 

implementation without any optimization in the 

experimental environment. In the future, the frame rate could 

be greatly improved by following strategies: optimizing the 

network structure of the deep CNN for 2D joints detection 

and adopting 

3) The effect of the resolution of input images: In the 

process of 2D joint detection described in Section III-B, the 

input images captured by cameras are down-sampled and 

merged into a single image. In order to analyze the effect on 

 
 

the performance of 3D joint estimation introduced by down 

sampling and merging input images, an additional 

experiment was carried out which processed 5 original input 

images separately, and the time consumption and accuracy 

of the results were compared with those of the proposed 

method. In the experiment, δ and σ were set to [20, 20, 20] 

and 4 respectively, and Box sequence of S1 in the 

HumanEva-I dataset was chosen as the test data. From the 

results listed in Table VII, it can be found that the input 

image resolution is responsible for the 3D joint estimation 

accuracy. Indeed, down-sampling operation will lead to a 

little increase in the 3D joint estimation error. However, 

merging input images into one big image makes the time 

consumption of the pipeline reduced dramatically. Generally 

speaking, it’ s worth sacrificing a little accuracy to improve 

efficiency greatly. 

4) More analysis of 3D joint estimation: The time 

consumption andresult quality (evaluated by Mean Abs 3D 

Err) of the 3D joint estimation phase were analyzed by a 

further experiment with different δ settings, in which the 

merged image resolution was set to 1280 × 960 and σ was 

set to 4. From the results listed in Table VIII, it can be found 

that the sample cube size δ plays an important role in terms 

of time consumption. When δ decreases, the time 

consumption increases dramatically. However, Mean Abs 

3D Err is not sensitive to the change of δ. When δ alters, 

Mean Abs 3D Err doesn’t change much. Therefore, it is not 

difficult to find a trade-off between computing precision and 

speed with appropriate parameters. 

TABLE V 

THE Avg 2D Err OF THE 2D 

REPROJECTION POINTS FROM THE 3D 

VOXEL AND 2D JOINTS WERE DETECTED 

BY THE CNN IN FIG. 15. 

TABLE VII 

THE EXPERIMENTAL RESULTS ABOUT THE 

EFFECT OF DOWN-SAMPLINGAND MERGING 

INPUT IMAGES. 
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Conclusion 

 

Due to its overwhelming characteristics, deep learning has 

been widely used in various research domains. From the 

current research trend, deep learning technology has very 

good application prospects. In this paper, we have 

considered the autonomous generation of facial expressions 

of 3D animated characters as the main research content 

along with improving the progress of deep learning. We 

have designed a method for generating facial expressions of 

animated characters, which is based on deep learning, and a 

localization experiment of 3D animation facial expression 

features is carried out to verify the operational superiority of 

the proposed model. Finally, through the matching 

experiments, it is proved that the 7proposed 3D animation 

facial expression generation method has a very good facial 

feature recognition effect. Additionally, generated facial 

expression features are more detailed, which has fully solved 

the problems associated with the traditional method and lay 

a solid foundation for the further development of the 3D 

animation design field. Recent advances in deep learning, 

and deep learning in particular, have provided new tools to 

apply to problems in character animation. To address 

growing complexity of filM quality character rigs, I have 

proposed methods to compress the computational cost of 

evaluating mesh deformations. Previously, these types of 

rigs have been specialized to individual films. In some film 

studios, these characters might even be inaccessible in future 

projects due to incompatibilities with updated animation 

software.   

However, my proposed methods offer a solution to these 

common challenges with character rigs. First, my approach 

reduces the computational complexity of character rigs so 

that they can be evaluated realtime on low-powered, 

consumer-quality devices. As a result, my approach can 

increase the level of complexity of characters in games and 

interactive applications. Second, because these rig 

approximations are implemented as neural networks, 

character rigs can now be expressed as a fixedlength set of 

model parameters. This rep-presentation provides a common 

format in which any character can be expressed. Because 

deep learning libraries and packages are readily available, 

applications that evaluate these models can easily be written. 

Once trained, these approximation models no longer depend 

on the original animation software used to create the rig. The 

model parameters can also be used as an archival method for 

characters authored on outdated rigging software. As 

Another benefit, the models allow for character sharing 

between animation studios in cases where sharing their 

proprietary rigging software is an impracticality. 

Additionally, I have proposed tools for character control and 

assisted animation authoring. As digital characters continue 

to grow in complexity, animators continually spend more 

effort to control additional character details to achieve an 

ever-increasing level of realism and expressiveness. 

Although automated methods may never match the quality 

of artist-created animations, I have developed methods that 

allow artists to control coarse movements and deformations 

of a character so that they can focus their energy on 

finercharacters quickly through manipulation of a small set 

of control points rather than a long list of rig scale details 

that make an animation believable. The inverse kinematics 

methods allow artists to pose parameters.  
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