50

ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Cg-Closed Sets And C-Normal Spaces

¹Anuj Kumar, ² Hamant Kumar, ³Bhopal Singh Sharma Department of Mathematics ^{1 & 3}N. R. E. C. College, Khurja-Bulandshahr, 203131, U. P. (India)

²V. A. Govt Degree College, Atrauli-Aligarh, 202280, U. P. (India)

Abstract: In this paper, we introduced a new class of sets called C-generalized closed (briefly Cg-closed) set which is a simultaneous generalization of C-closed and g-closed sets. First we investigated basic some properties of Cg-closed sets and then we obtained the relationship of Cg-closed sets with some other existing generalized closed sets. Moreover, we introduced the notion of C-Normal space by using C-closed sets, also we obtained some basic characterizations, properties and preservation theorems of C-normal spaces. Further, we also introduced some function related to Cg-open sets and investigated their properties with C-normal spaces.

Keyword:- C-closed set, F-closed sets, Cg-closed set, Fg-closed set, C-normal Space, almost Cg-closed function, almost Cg-continuous function etc.

2020 Mathematics Subject classification: 54A05, 54C08, 54C10, 54D15.

1. Introduction

Closed sets play a major role in the study of topological spaces. Generalized closed sets are a very useful research topic in topological spaces for many Topologists. In 1923, Tietze [8] first introduced the concept of normal spaces and studied their properties. In 1937, M. Stone [7] introduced the notion of regular open sets. In 1963, N. Levine [4] defined the concept of semi open sets and investigated their properties. In 1970, N. Levine [5] introduced the notion of generalized closed sets and studied the properties of g-closed sets in topological spaces. In 2002, K. Chandrasekhara Rao and K. Joseph [6] introduced the concept of s*g-closed sets in topological spaces. In 2023, Mesfer H. Alqahtani [1] introduced the concept of C-open and F-closed sets in topological spaces. In 2024, Hamant Kumar, B. S. Sharma and Anuj Kumar [3] introduced the concept of Fg-closed sets and examine the relationships between Fg-open and Fg-closed sets with other kinds of closed and open sets such as semi open, semi closed, w-open, w closed and g-open and g-closed sets etc.

2. Preliminaries

Throughout in this paper, spaces (X, \Im), (Y, σ), and (Z, γ) (or simply X, Y and Z) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let f: X \rightarrow Y (or simply f) always denote a mapping from space X to space Y. Let B be a subset of a space X. The closure of B, interior of B and complement of B is denoted by cl(B), int(B) and B^c (or X – B) respectively.

Definition 2.1: A subset B of a topological space (X, ℑ) is said to be:

- (i) regular open [7] if B = int(cl(B)).
- (ii) semi open [4] if $B \subset cl(int(B))$.
- (iii) **F-open [1]** if cl(B) B is finite set and B is open in X.
- (iv) C-open [2] if cl(B) B is countable set and B is open in X.

The complement of a regular open (resp. semi open, F-open and C-open set) set is called **regular closed** (resp. **semi closed**, **F-closed** and **C-closed**) set.

The intersection of all regular closed (resp. semi closed, F-closed and C-closed) sets containing B, is called **regular closure** (resp. **semi closure**, **F-closure** and **C-closure**) of B, and is denoted by **r-cl(B)** (resp. **s-cl(B)**, **F-cl(B)** and **C-cl(B)**). The union of all regular open (resp. semi open, F-open and C-open) sets contained in B, is called **regular interior** (resp. **semi interior**, **F-interior** and **C-interior**) of B, and is denoted by **r-int(B)** (resp. **s-int(B)**, **F-int(B)** and **C-int(B)**).

The collection of all regular open (resp. semi open, F-open and C-open) sets in X is denoted by r-O(X) (resp. s-O(X), F-O(X) and C-O(X)). The collection of all regular closed (resp. semi closed, F-closed and C-closed) sets in X is denoted by r-C(X) (resp. s-C(X), F-C(X) and C-C(X)).

Remark 2.2 From the above definitions the relationship among C-open sets and some other existing weaker and stronger forms of open sets are given as:

F-open \rightarrow C-open \rightarrow open \rightarrow semi open

Where none of the implications is reversible can be seen from the following examples:

Example 2.3 Let $X = \{a, b, c\}$ and $\Im = \{\phi, \{a\}, X\}$. Then $\{a, b\}$ is semi open set in X but not open set in X.

Example 2.4 Let (\mathbb{R}, \mathbf{U}) be the usual topological space then interval [2, 5) is semi open in \mathbb{R} as $[2, 5] \subset cl(int([2, 5)))$ but not open in \mathbb{R} .

Example 2.5 Let $X = \mathbb{R}$ and \mathfrak{I} is the collection of all those subsets of \mathbb{R} which do not contain any irrational numbers together with \mathbb{R} then $(\mathbb{R}, \mathfrak{I})$ be a topological space. Now the set of rational number \mathbb{Q} be an open set in $(\mathbb{R}, \mathfrak{I})$ but not a C-open set in $(\mathbb{R}, \mathfrak{I})$ as: $cl(\mathbb{Q}) - \mathbb{Q} = \mathbb{R} - \mathbb{Q} = \mathbb{Q}^{\mathbb{C}}$ (set of irrational numbers) which is an uncountable set.

Example 2.6 Let $X = \mathbb{R}$ and \mathfrak{I} is the collection of all those subsets of \mathbb{R} which contains a particular point 0 together with empty set ϕ then $(\mathbb{R}, \mathfrak{I})$ be a topological space. Now the set of integer \mathbb{Z} be an open set in $(\mathbb{R}, \mathfrak{I})$ but not C-open set in $(\mathbb{R}, \mathfrak{I})$ as: $cl(\mathbb{Z}) - \mathbb{Z} = \mathbb{R} - \mathbb{Z}$ which is not a countable set.

Example 2.7 The set of natural numbers \mathbb{N} is a closed set of usual topological spaces (\mathbb{R}, \mathbf{U}) then $\mathbb{R} - \mathbb{N}$ is open set in \mathbb{R} , also C-open set in \mathbb{R} but not F-open set in \mathbb{R} as: $cl(\mathbb{R} - \mathbb{N}) - (\mathbb{R} - \mathbb{N}) = \mathbb{R} - (\mathbb{R} - \mathbb{N}) = \mathbb{N}$ which is countable set but not finite set.

Definition 2.8 A subset B of a topological space (X, \mathfrak{I}) is said to be:

(i) **g-closed [5]** if $cl(B) \subset U$ whenever $A \subset U$ and $U \in \mathfrak{I}$.

(ii) s*g-closed [6] if $cl(B) \subset U$ whenever $A \subset U$ and U is semi-open.

(iii)**Fg-closed [3]** if $cl(B) \subset U$ whenever $A \subset U$ and U is F-open.

3. Cg-closed sets

Definition 3.1 A subset B of a topological space (X, \mathfrak{I}) is said to be **Cg-closed** if $cl(B) \subset U$ whenever $B \subset U$ and U is C-open. The complement of the Cg-closed set is called Cg-open set. The collection of all Cg-open (resp. Cg-closed) sets is denoted by Cg-O(X) (resp. Cg-C(X)).

The intersection of all Cg-closed sets containing B, is called the Cg-closure of B and is denoted by Cg-cl(B). The Cg-interior of B, denoted by Cg-int(B) is defined to be the union of all Cg-open sets contained in B.

Theorem 3.2 Every s*g-closed set is Cg-closed set.

Proof: Let B be an s*g-closed set in X and let $B \subset U$ where U is C-open in X. Now every C-open set is semi open set and B is s*g-closed, so by the definition of s*g-closed set, $cl(B) \subset U$, hence B is Cg-closed set in X.

Theorem 3.3 Every g-closed set is Cg-closed set.

Proof: Let B be a g-closed set in X and let $B \subset U$ where U is C-open in X. Now every C-open set is open set and B is g-closed, so by the definition of g-closed set, $cl(B) \subset U$, hence B is Cg-closed set in X.

Theorem 3.4 Every Cg-closed set is Fg-closed set.

Proof: Let B be a Cg-closed set in X and let $B \subset U$ where U is F-open in X. Now every F-open set is C-open set and B is Cg-closed, so by the definition of Cg-closed set, $cl(B) \subset U$, hence it is clear that B is Fg-closed set in X.

Remark 3.5 We summarize the fundamental relationships between several types of generalized closed sets by the following implications:

closed \rightarrow s*g-closed \rightarrow g-closed \rightarrow Cg-closed \rightarrow Fg-closed

The converse of the above implication may not be true as can be seen from the following examples:

Example 3.6 Let for the set of real numbers \mathbb{R} , the collection of open sets $\mathfrak{I} = \{\phi, \mathbb{Q}, \mathbb{Q}^{\mathbb{C}}, \mathbb{R}\}$ then $(\mathbb{R}, \mathfrak{I})$ be a topological space. The set of integer \mathbb{Z} is not closed in $(\mathbb{R}, \mathfrak{I})$ as $cl(\mathbb{Z}) = \mathbb{Q}$, but \mathbb{Z} is an s*g-closed set as \mathbb{Q} is the smallest semi open set which contains \mathbb{Z} and $cl(\mathbb{Z}) = \mathbb{Q} \subset \mathbb{Q}$.

Example 3.7 For the set of real numbers \mathbb{R} , let the collection of open sets $\mathfrak{I} = \{\phi, \mathbb{N}, \mathbb{R}\}$ (where \mathbb{N} is the set of *natural number*) then $(\mathbb{R}, \mathfrak{I})$ be a topological space. Now the set of integer \mathbb{Z} is a g-closed in $(\mathbb{R}, \mathfrak{I})$ as: \mathbb{R} is the smallest open set which contains \mathbb{Z} (*because \mathbb{Z} is not open*) and $cl(\mathbb{Z}) = \mathbb{R}$ also contained in \mathbb{R} . But \mathbb{Z} is not s*g-closed set in $(\mathbb{R}, \mathfrak{I})$ as: \mathbb{Z} be a semi open in $(\mathbb{R}, \mathfrak{I})$ (*because \mathbb{Z} \subset cl(int(\mathbb{Z})) = cl(\mathbb{N}) = \mathbb{R}*) and $\mathbb{Z} \subset \mathbb{Z}$ but $cl(\mathbb{Z}) = \mathbb{R}$ is not subset of \mathbb{Z} .

Example 3.8 By **example 2.5** the set of rational numbers \mathbb{Q} is a Cg-closed set in $(\mathbb{R}, \mathfrak{I})$ as set of real numbers \mathbb{R} is the smallest C-open set containing \mathbb{Q} (because \mathbb{Q} is not C-open set in $(\mathbb{R}, \mathfrak{I})$) and $cl(\mathbb{Q}) = \mathbb{R} \subset \mathbb{R}$. But \mathbb{Q} is not a g-closed set in $(\mathbb{R}, \mathfrak{I})$ as \mathbb{Q} is open in $(\mathbb{R}, \mathfrak{I})$ also $\mathbb{Q} \subset \mathbb{Q}$ but $cl(\mathbb{Q}) = \mathbb{R}$ is not a subset of \mathbb{Q} .

Example 3.9 For topological spaces (\mathbb{R} , \Im), where $\Im = \{\phi, \mathbb{N}, \mathbb{R}\}$. Now the set of natural numbers \mathbb{N} is a Cgclosed set in (\mathbb{R} , \Im) as the set of real numbers \mathbb{R} is the smallest C-open set containing \mathbb{N} (*because N is not Copen set in* (\mathbb{R} , \Im) *as N is open and cl*(\mathbb{N}) – $\mathbb{N} = \mathbb{R} - \mathbb{N}$ which is an uncountable set) and cl(\mathbb{N}) = $\mathbb{R} \subset \mathbb{R}$. But \mathbb{N} is not a g-closed set in (\mathbb{R} , \Im) as \mathbb{N} is an open set in (\mathbb{R} , \Im) also $\mathbb{N} \subset \mathbb{N}$ but cl(\mathbb{N}) = \mathbb{R} is not a subset of \mathbb{N} .

Example 3.10 For the topological space $(\mathbb{R}, \mathfrak{T})$ where \mathbb{R} is the set of real numbers and \mathfrak{T} be the collection of open sets and $\mathfrak{T} = \{\phi, \mathbb{Q}^C, \mathbb{R}\}$, the set of irrational number \mathbb{Q}^C is a C-open set in $(\mathbb{R}, \mathfrak{T})$ as \mathbb{Q}^C is open set in $(\mathbb{R}, \mathfrak{T})$ and $cl(\mathbb{Q}^C) - \mathbb{Q}^C = \mathbb{R} - \mathbb{Q}^C = \mathbb{Q}$ which is a countable set. Now \mathbb{Q}^C is not a Cg-closed set in $(\mathbb{R}, \mathfrak{T})$ as \mathbb{Q}^C is C-open set and $\mathbb{Q}^C \subset \mathbb{Q}^C$ but $cl(\mathbb{Q}^C) = \mathbb{R}$ is not a subset of \mathbb{Q}^C , but \mathbb{Q}^C is an Fg-closed set in $(\mathbb{R}, \mathfrak{T})$ as \mathbb{R} is the smallest F-open set which contains \mathbb{Q}^C (because \mathbb{Q}^C is not F-open in $(\mathbb{R}, \mathfrak{T})$) and $cl(\mathbb{Q}^C) = \mathbb{R} \subset \mathbb{R}$.

4. Properties of Cg-closed sets

Theorem 4.1: Union of two Cg-closed set is Cg-closed set.

Proof: Let J and K be two Cg-closed sets. Let U be a C-open set containing $J \cup K$. Now J is Cg-closed set then $cl(J) \subset U$ as $J \subset U$ and U is C-open set, also K is Cg-closed set then $cl(K) \subset U$ as $K \subset U$ and U is C-open set. Now $cl(J) \subset U$ and $cl(K) \subset U \Rightarrow cl(J) \cup cl(K) \subset U \Rightarrow cl(J \cup K) \subset U$ (*because* $cl(J \cup K) = cl(J) \cup cl(K)$). Hence $cl(J \cup K) \subset U$ whenever $J \cup K \subset U$ and U is C-open set. Hence $J \cup K$ is Cg-closed set.

In general finite union of Cg-closed sets is Cg-closed set.

Theorem 4.2: Intersection of two Cg-closed set is Cg-closed set.

Proof: Let J and K be two Cg-closed set. Now J is Cg-closed set if $cl(J) \subset U_1$ whenever $J \subset U_1$ and U_1 is C-open set, also K is Cg-closed set if $cl(K) \subset U_2$ whenever $K \subset U_2$ and U_2 is C-open set. Now $U_1 \cap U_2$ is C-open set as U_1 and U_2 are C-open sets, and $J \cap K \subset U_1 \cap U_2$ as $J \subset U_1$ and $K \subset U_2$. Now $cl(J) \subset U_1$ and $cl(K) \subset U_2 \Rightarrow cl(J) \cap cl(K) \subset U_1 \cap U_2 \Rightarrow cl(J \cap K) \subset U_1 \cap U_2$ (because $cl(J \cap K) \subset cl(J) \cap cl(K)$). Hence $cl(J \cap K) \subset U_1 \cap U_2$ and $U_1 \cap U_2$ is C-open set. Hence $J \cap K$ is Cg-closed set.

In general finite intersection of Cg-closed sets is Cg-closed set.

Theorem 4.3: Union of two Cg-open sets is Cg-open set.

Proof: Let G and H be two Cg-open subset of a topological space (X, \Im) . Then X – G and X – H be two closed Cg-subset of X. Hence $(X – G) \cap (X – H)$ is Cg-closed subset of X by **Theorem 4.2** Now $(X – G) \cap (X – H) = X - (G \cup H)$ be Cg-closed set $\Rightarrow G \cup H$ is Cg-open set. Hence union of two Cg-open sets is Cg-open set.

In general finite union of Cg-open sets is Cg-open set.

Theorem 4.4: Intersection of two Cg-open sets is Cg-open set.

Proof: Let G and H be two Cg-open subset of a topological space (X, \mathfrak{J}) . Then X – G and X – H be two Cgclosed subsets of X. Hence $(X – G) \cup (X – H)$ be the Cg-closed subset of X by **Theorem 4.1**. Now $(X – G) \cup (X – H) = X - (G \cap H)$ be Cg-closed set $\Rightarrow G \cap H$ is Cg-open set. Hence intersection of two Cg-open sets is Cg-open set.

In general finite intersection of Cg-open sets is Cg-open set.

Remark 4.5: Arbitrary union of Cg-closed sets is may not be Cg-closed set.

Example 4.6: For the set of natural number \mathbb{N} , \mathfrak{I} be the collection of all those subset of \mathbb{N} whose complement is finite together with the empty set, then \Im is cofinite topology for N. Let $A_n = \{n+1\} \forall n \in \{1, 2, 3, 4, \dots\}$ be the closed sets, hence Cg-closed subsets in the N. Now let A be the countable union of A_n i.e. $A = A_1 \cup A_2$ $\cup A_3 \cup A_4 \cup \ldots = \{2, 3, 4, 5 \ldots\} = \mathbb{N} - \{1\}$ which is not Cg-closed set as $A \subset \mathbb{N} - \{1\}$ and $\mathbb{N} - \{1\}$ is Copen set (as $N - \{1\}$ is open set in N, and $cl(N - \{1\}) - (N - \{1\}) = N - (N - \{1\}) = singleton set \{1\}$ which *is countable*) but $cl(A) = \mathbb{N}$ which is not subset of $\mathbb{N} - \{1\}$. Hence arbitrary union of Cg-closed sets is may not be Cg-closed set.

Remark 4.7: Arbitrary intersection of Cg-open sets is may not be Cg-open set.

Example 4.8: By example 4.6, $B_n = \mathbb{N} - \{n+1\} \forall n \in \mathbb{N}$ be the open set, hence Cg-open sets in \mathbb{N} . Now let B be the countable intersection of B_n , i. e. $B = B_1 \cap B_2 \cap B_3 \cap B_4 \dots = (\mathbb{N} - \{2\}) \cap (\mathbb{N} - \{3\}) \cap (\mathbb{N} - \{4\}) \cap (\mathbb{$ $(\mathbb{N} - \{5\})$ = $\mathbb{N} - (\{2\} \cup \{3\} \cup \{4\} \cup \{5\}$) = $\mathbb{N} - \{2, 3, 4, 5$...} = $\{1\}$ which is not a Cg-open set as \mathbb{N} - {1} is not Cg-closed set by **Example 4.6**. Hence arbitrary intersection of Cg-open sets is may not be Cgopen set.

Definition 4.9: The intersection of all C-open subsets of a space X containing a set B is called the C-kernel of B and is denoted by C-ker(B).

Lemma 4.10: A subset B of a space X is Cg-closed iff $cl(B) \subset C$ -ker(B). **Proof:** Let B is a Cg-closed set in X. Then $cl(B) \subset U$ whenever $B \subset U$ and U is C-open in X. This implies $cl(B) \subset \bigcap \{U: B \subset U \text{ and } U \text{ is } C \text{ open in } X\}$ i. e. $cl(B) \subset C \text{-ker}(B)$. **Conversely**, let $cl(B) \subset C$ -ker(B). This implies $cl(B) \subset \cap \{U: B \subset U \text{ and } U \text{ is } C\text{-open in } X\}$ i. e. $cl(B) \subset U$ whenever $B \subset U$ and U is C-open in X. This proves that B is Cg-closed. 10

5. C-NORMAL SPACES

Definition 5.1: A space X is said to be C-normal (resp. normal [8]) if for every pair of disjoint C-closed (resp. closed) sets J and K in X, there exist disjoint open sets G and H such that $J \subset G$ and $K \subset H$.

Remark 5.2: Every normal space is C-normal but not conversely.

Theorem 5.3 : For a topological space X, the following properties are equivalent:

- (1) X is C-normal;
- (2) for any disjoint J, K \in C-C(X), there exist disjoint Cg-open sets G, H such that J \subset G and K \subset H;
- (3) for any $J \in C-C(X)$ and any $H \in C-O(X)$ containing J, there exists a Cg-open set G of X such that $J \subset C$ $G \subset Cg-cl(G) \subset H;$
- (4) for any $J \in C$ -C(X) and any $H \in C$ -O(X) containing J, there exists an open set G of X such that $J \subset G$ \subset cl(G) \subset H;
- (5) for any disjoint J, K \in C-C(X), there exist disjoint regular open sets G, H such that J \subset G and K \subset H.
- **Proof:** (1) \Rightarrow (2): Since every open set is Cg-open, the proof is obvious.

(2) \Rightarrow (3): Let $J \in C$ -C(X) and H be any C-open set containing J. Then J, $X - H \in C$ -C(X) and $J \cap (X - H) = \phi$. By (2), there exist Cg-open sets G, F such that $J \subset G$, $X - H \subset F$ and $G \cap F = \phi$. Therefore, we have $J \subset G \subset (X - F) \subset H$. Since G is Cg-open and X - F is Cg-closed, we obtain $J \subset G \subset Cg$ -cl(G) $\subset (X - F) \subset H$.

(3) ⇒ (4): Let J ∈ C-C(X) and J ⊂ H ∈ C-O(X). By (3), there exists a Cg-open set G₀ of X such that J ⊂ G₀ ⊂ Cg-cl(G₀) ⊂ H. Since Cg-cl(G₀) is Cg-closed and H ∈ C-O(X), cl(Cg-cl(G₀)) ⊂ H. Put int(G₀) = G, then G is open and J ⊂ G ⊂ cl(G) ⊂ H.

(4) \Rightarrow (5): Let J, K be disjoint C-closed sets of X. Then $J \subset (X - K) \in C$ -O(X) and by (4) there exists an open set G_0 such that $J \subset G_0 \subset cl(G_0) \subset (X - K)$. Therefore, $H_0 = (X - cl(G_0))$ is an open set such that $J \subset G_0$, $K \subset H_0$ and $G_0 \cap H_0 = \phi$. Moreover, put $G = int(cl(G_0))$ and $H = int(cl(H_0))$, then G, H are regular open sets such that $J \subset G$, $K \subset H$ and $G \cap H = \phi$.

(5) \Rightarrow (1): This is obvious.

We get a characterization of normal spaces by using Cg-open sets.

Theorem 5.4: For a topological space X, the following properties are equivalent:

- (1) X is normal;
- (2) for any disjoint closed sets J and K, there exist disjoint Cg-open sets G and H such that $J \subset G$ and $K \subset H$;
- (3) for any closed set J and any open set H containing J, there exists a Cg-open set G of X such that $J \subset G \subset cl(G) \subset H$.
- **Proof:** (1) \Rightarrow (2): This is obvious since every open set is Cg-open.

(2) \Rightarrow (3): Let J be a closed set and H be any open set containing J. Then J and (X – H) are disjoint closed sets. There exist disjoint Cg-open sets G and F such that J \subset G and (X – H) \subset F. Since X – H is closed, we have (X – H) \subset int(F) and G \cap int(F) = ϕ . Therefore, we obtain cl(G) \cap int(F) = ϕ and hence J \subset G \subset cl(G) \subset (X – int(F)) \subset H.

(3) \Rightarrow (1): Let J, K be disjoint closed sets of X. Then J \subset (X – K) and (X – K) is open. By (3), there exists a Cg-open set F of X such that J \subset F \subset cl(F) \subset (X – K). Since J is closed, we have J \subset int(F). Put G = int(F) and H = (X – cl(F)). Then G and H are disjoint open sets of X such that J \subset G and K \subset H. Hence, X is normal.

Lemma 5.5: A subset G of a space X is Cg-open if and only if $F \subset int(G)$ whenever $F \subset G$ and F is C-closed **Proof:** let G be a Cg-open set then X – G is Cg-closed set. Since X – G is Cg-closed iff $cl(X – G) \subset X – F$ whenever X – G \subset X – F and X – F is Cg-open, this implies that X – $int(G) \subset X – F$ whenever $F \subset G$ and F is Cg-closed (*because* cl(X – G) = X – int(G)), i. e. $F \subset int(G)$ whenever $F \subset G$ and F is Cg-closed.

Theorem 5.6: For a space topological X, the following are equivalent:

- (1) X is C-normal.
- (2) For any disjoint C-closed sets J and K, there exist disjoint g-open sets G and H such that $J \subset G$ and K $\subset H$.

- (3) For any disjoint C-closed sets J and K, there exist disjoint Cg-open sets G and H such that $J \subset G$ and K $\subset H$.
- (4) For any C-closed set J and any C-open set H containing J, there exists a g-open set G of X such that $J \subset G \subset cl(G) \subset H$.
- (5) For any C-closed set J and any C-open set H containing J, there exists a Cg- open set G of X such that $J \subset G \subset cl(G) \subset H$.

Proof: (1) \Rightarrow (2): Let X be C-normal space. Let J, K be disjoint C-closed sets of X. By assumption, there exist disjoint open sets G, H such that J \subset G and K \subset H. Since every open set is g-open, so G and H are g-open sets such that J \subset G and K \subset H.

(2) \Rightarrow (3): Let J and K be two disjoint C-closed sets. By assumption, there exist disjoint g-open sets G and H such that J \subset G and K \subset H. Since every g-open set is Cg-open, G and H are Cg-open sets such that J \subset G and K \subset H.

(3) \Rightarrow (4): Let J be any C-closed set and H be any C-open set containing J. By assumption, there exist disjoint Cg-open sets G and H₁ such that $J \subset G$ and $X - H \subset H_1$. By Lemma 5.5, we get $X - H \subset int(H_1)$ and $cl(G) \cap int(H_1) = \phi$. Hence $J \subset G \subset cl(G) \subset X - int(H_1) \subset H$.

(4) \Rightarrow (5): Let J be any C-closed set and H be any C-open set containing J. By assumption, there exist g-open set G of X such that $J \subset G \subset cl(G) \subset H$. Since, every g-open set is Cg-open, there exists Cg-open sets G of X such that $J \subset G \subset cl(G) \subset H$.

(5) \Rightarrow (1): Let J, K be any two disjoint C-closed sets of X. Then J \subset X – K and X – K is C-open. By assumption, there exists Cg-open set G₁ of X such that J \subset G₁ \subset cl(G₁) \subset X – K. Put G = int(G₁), H = X - cl(G₁). Then G and H are disjoint open sets of X such that J \subset G and K \subset H.

Theorem 5.6: Let X be a C-normal space. Then a semi-regular subspace Y of X is also C-normal. **Proof:** Let X be a C-normal space and Y be a semi-regular subspace of X. Let $J \in C$ -C(Y) and $H \in C$ -O(Y) containing J. Since Y is semi-regular, so $J \in C$ -C(X) and $H \in C$ -O(X). Hence by **Theorem 5.3(4)**, there exists an open set G in X such that $J \subset G \subset cl_X(G) \subset H$. This gives $J \subset (G \cap Y) \subset cl_Y(G \cap Y) \subset H$, where $G \cap Y$ is open in Y and hence Y is C-normal.

6. FUNCTIONS AND C-NORMAL SPACES

Definition 6.1: A function $f : X \rightarrow Y$ is said to be:

- (1) almost Cg-continuous if for any regular open set U of Y, $f^{-1}(U) \in Cg-O(X)$;
- (2) almost Cg-closed if for any regular closed set J of X, $f(J) \in Cg-C(Y)$.

Definition 6.2: A function $f : X \rightarrow Y$ is said to be:

- C-irresolute (resp. C-continuous [2]) if for any C-open (resp. open) set U of Y, f⁻¹(U) is C-open in X;
- (2) pre-C-closed (resp. C-closed [2]) if for any C-closed (resp. closed) set J of X, f(J) is C-closed in Y.

Theorem 6.3: A function $f : X \to Y$ is an almost Cg-closed surjection iff for each subset P of Y and each regular open set G containing $f^{-1}(P)$, there exists a Cg-open set H such that $P \subset H$ and $f^{-1}(H) \subset G$. **Proof: Necessity.** Suppose that f is almost Cg-closed. Let P be a subset of Y and G be a regular open set of X containing $f^{-1}(P)$. Put H = Y - f(X - G), then H is a Cg-open set of Y such that $P \subset H$ and $f^{-1}(H) \subset G$. **Sufficiency:** Let J be any regular closed set of X. Then $f^{-1}(Y - f(J)) \subset (X - J)$ and X - J is regular open. There exists a Cg-open set H of Y such that $(Y - f(J)) \subset H$ and $f^{-1}(H) \subset (X - J)$. Therefore, we have $f(J) \supset (Y - H)$ and $J \subset f^{-1}(Y - H)$. Hence, we obtain f(J) = Y - H and f(J) is Cg-closed in Y. Therefore f is almost Cg-closed.

Theorem 6.4: If $f: X \to Y$ is an almost Cg-closed C-irresolute (resp. C-continuous) surjection and X is C-normal, then Y is C-normal (resp. normal).

Proof: Let J and K be any disjoint C-closed (resp. closed) sets of Y. Then $f^{-1}(J)$ and $f^{-1}(K)$ are disjoint C-closed sets of X. Since X is C-normal, there exist disjoint open sets G and H of X such that $f^{-1}(J) \subset G$ and $f^{-1}(K) \subset H$. Put $G_1 = int(cl(G))$ and $H_1 = int(cl(H))$, then G_1 and H_1 are disjoint regular open sets of X such that $f^{-1}(J) \subset G_1$ and $f^{-1}(K) \subset H_1$. By **Theorem 6.3**, there exist Cg-open sets L and M of Y such that $J \subset L$, $K \subset M$. $f^{-1}(L) \subset G_1$ and $f^{-1}(M) \subset H_1$. Since G_1 and H_1 are disjoint, so L and M are also disjoint. It follows from **Theorem 5.3** (resp. **Theorem 5.4**) that Y is C- normal (resp. normal).

Theorem 6.5: If $f: X \to Y$ is a continuous almost Cg-closed surjection and X is a normal space, then Y is normal.

Proof: The proof is similar to that of **Theorem 6.4.**

Theorem 6.6: If $f: X \rightarrow Y$ is an almost Cg-continuous pre-C-closed (resp. C-closed) injection and Y is C-normal, then X is C-normal (resp. normal).

Proof: Let J and K be disjoint C-closed (resp. closed) sets of X. Since f is a pre-C-closed (resp. C-closed) injection, f(J) and f(K) are disjoint C-closed sets of Y. Since Y is C-normal, there exist disjoint open sets G and H such that $f(J) \subset G$ and $f(K) \subset H$. Now, put $G_1 = int(cl(G))$ and $H_1 = int(cl(H))$, then G_1 and H_1 are disjoint regular open sets such that $f(J) \subset G_1$ and $f(K) \subset H_1$. Since f is almost Cg-continuous, $f^{-1}(G_1)$ and f $^{-1}(H_1)$ are disjoint Cg-open sets such that $J \subset f^{-1}(G_1)$ and $K \subset f^{-1}(H_1)$. It follows from **Theorem 5.3** (resp. **Theorem 5.4**) that X is C-normal (resp. normal).

Acknowledgment

The First author is grateful to the <u>COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH (CSIR)</u> for financial assistance.

REFERENCES

- 1. Mesfer H. Alqahtani, F-open and F-closed sets in Topological Spaces, *European Journal of Pure and Applied Mathematics*, vol. 16, No. 2, 2023, 819-832.
- 2. Mesfer H. Alqahtani, C-open sets on Topological Spaces, arXiv:2305.03166v1 [math .Gn] 4 may 2023.
- 3. Hamant Kumar, B. S. Sharma and Anuj Kumar, Fg-Closed Sets and F-Normal Spaces, *International Journal of Creative Research Thoughts (IJCRT)*, vol. 12, issue 4, 2024, 577-582.
- 4. N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, *The American Mathematical Monthly*, vol. 70, No.1, 1963, 36–41.
- 5. N. Levine, Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo, vol. 19, 1970, 89-96.

- 6. K. C. Rao and K. Joseph, semi star generalized closed sets, *Bulletin of Pure and Applied Science E*, vol. 19, 2002, 281-290.
- 7. M. H. Stone, Application of The Theory of Boolean Rings to General Topology, *Trans. Amer. Math. Soc.*, vol. 41, 1937, 375-481.
- 8. Tietze H., Uber Analysis Situs, Abh. Math. Semin. Univ. Hambg., Vol. 2, 1923, 37-68.

