ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Smart Cultivation using IOT and ML for Carnation flowers: A SURVEY

Samanvita.S^{*1},Sathya.K^{*2},Sharanya Shastri K.R^{*3},Sinchana Patel G.D^{*4}

,Mrs.Nayana G Bhat^{*5}

*1,2,3,4Under Graduate Student, Dept.Of Computer Science & Engineering, Jyothy Institute Of Technology Visvesaraya Technological University, Belagavi Bengaluru-560082, India

*5Assistant Professor, Dept. Of Computer Science & Engineering, Jyothy Institute Of Technology Visvesaraya Technological University, Belagavi Bengaluru-560082, India.

ABSTRACT

Agriculture is the most important sector of Indian Economy. Indian agriculture sector accounts for 18 percent of India's GDP and provides employment to 50% of the country's workforce. But latest studies have shown a steady decline in the contribution made by agriculture to the Indian economy although it is demographically the broadest economic sector and plays a significant role in the overall socio-economic fabric of India. This project explores the integration of Internet of Things (IoT) and Artificial Intelligence (AI) with a focus on Machine Learning (ML) to implement smart cultivation practices for Carnation Flowers. Through the deployment of sensor networks and IoT devices, real-time data on environmental conditions, soil moisture, and plant health are collected. The collected data is then processed using advanced AI and ML algorithms to provide predictive analytics, enabling precision cultivation strategies and proactive disease management. The synergy of IoT and AIML in Carnation Flowers sustainable and efficient farming practices.

I. INTRODUCTION

Agricultural practices have undergone a transformative shift with the advent of cutting-edge technologies like the Internet of Things (IoT) and Artificial Intelligence/Machine Learning (AI/ML). The amalgamation of these technologies has spurred the development of smart agricultural systems capable of revolutionizing cultivation methodologies.

A system is developed that can suggest crops based on weather, soil characteristics, crop requirements, and climatic circumstances from the open weather API.

In this context, this research endeavours to design, implement, and evaluate a tailored smart agriculture system dedicated to optimizing the cultivation of carnation flowers. Carnation cultivation, renowned for its ornamental value and economic significance, presents unique challenges concerning environmental monitoring and pest management.

The proposed system addresses these challenges by leveraging IoT-enabled sensors for comprehensive environmental monitoring. Key parameters such as temperature, soil moisture content, and humidity levels are continuously monitored in real-time, providing farmers with crucial insights into the plant's immediate surroundings.

Moreover, the integration of AI/ML techniques augments the system's functionality by enabling automated bug detection using image processing algorithms. This innovative approach facilitates early detection of pests and diseases, empowering farmers to adopt proactive measures, thereby minimizing crop losses and ensuring optimal plant health.

The study discusses why some machine learning models are more suitable for usage in agriculture than others, discusses the implementation of several machine learning algorithms in sensor data analytics within the agricultural ecosystem, and is thoroughly reviewed in this study.

The significance of this research lies in its potential to empower small-scale carnation farmers with affordable and accessible technological solutions. By harnessing the capabilities of IoT and AI/ML, the system not only simplifies monitoring complexities but also equips farmers with predictive analytics, enabling informed decision-making for irrigation, ventilation, and pest control.

Through this study, we aim to demonstrate the feasibility, efficacy, and practicality of implementing such an integrated smart agriculture system tailored explicitly for carnation cultivation. The subsequent sections delve deeper into the system architecture, methodologies employed, experimental setup, results obtained, and implications for the agricultural sector.

II. LITERATURE SURVEY

The literature review explores a comprehensive range of scholarly works, research papers, and technological developments that highlight the application of IoT and AIML in smart agriculture. This section delves into the evolution of IoT in agricultural settings, examining its role in monitoring environmental factors crucial for carnation growth.

This review critically assesses existing studies, identifying gaps, opportunities, and best practices in employing IoT and AIML technologies within the domain of smart carnation cultivation, setting the stage for the research's innovative contributions and advancements.

Furthermore, it scrutinizes the implementation of AIML algorithms for predictive analysis, disease detection, and precision farming, elucidating their contributions to the cultivation of high-quality carnation flowers. The integration of cutting-edge technologies such as the Internet of Things (IoT) and Artificial Intelligence and Machine Learning (AIML) has revolutionized various sectors, including agriculture.

In the context of cultivating carnation flowers, leveraging these advancements holds immense potential for optimizing cultivation practices, enhancing yield, and ensuring resource efficiency. Additionally, the review synthesizes research that showcases the role of AIML algorithms in the context of carnation farming.

This includes investigations into AI-driven predictive models that forecast blooming periods, disease outbreaks, and optimal resource management strategies. Exploring AI applications in disease detection, classification, and mitigation strategies within the context of carnation flowers is fundamental to establishing a robust system that safeguards crop health and minimizes losses.

Additionally, the review synthesizes research that showcases the role of AIML algorithms in the context of carnation farming. This includes investigations into AI-driven predictive models that forecast blooming periods, disease outbreaks, and optimal resource management strategies.

Exploring AI applications in disease detection, classification, and mitigation strategies within the context of carnation flowers is fundamental to establishing a robust system that safeguards crop health and minimizes losses.

The below list outlines survey of papers related to the topic in brief:

SI	Title	Authors	Year	Components	Advantages	Disadvantages	Conclusion
No.				and			
				Methodology			
1	Smart	Mehedi Hasan,	2021	Soil moisture	This system is	Our project is	The use of smart
	Agricultur	Kamrul Nazir		sensor,	useful to	not directly	agriculture
	e Robotic	Walli Uddin,		Humidity and	monitor the	used in	practices can enrich
	System	Ahosan Sayeed		Temperature	parameters	agricultural	the crops
	Based on	and Tasnuva		sensors, DHT22	which are	fields. It is	production. In this
	Internet	Tasneem		sensor	important for	intended to	work, a completely
	of Things			connection with	agriculture such	use this in real	unique IoT based
	to Boost			IoT with a LCD	as temperature,	life	smart robotic
	Crop			Display.	humidity,	application.	system is developed
	Productio			The obtained	moisture.		using which more
	n			data from			output can be
				DHT22 and Soil			generated from
				Moisture sensor			identical amount of
				are stored in the			input.The
				Blynk Cloud			application of this
				platform.			system in the field
							can help to improve
							the harvesting and
							global production.
2	Internet-	MUHAMMAD	2019			s power issue	Every inch of
	of-Things	AYAZ ,				as due to its	farmland is vital to
	(IoT)-	MOHAMMAD				nature; smart	maximize crop
	Based	AMMAD-				farming	production.
	Smart	UDDIN ,				requires wide	However, to deal
	Agricultur	ZUBAIR				use of energy.	with every inch
	e: Toward	SHARIF , ALI				long term	accordingly, the use
	Making	MANSOUR,				sensor	of sustainable IoT-
	the Fields	AND EL-HADI				deployment,	based sensors and
	Talk	M. AGGOUNE				use of GPS	communication
		Internetternet					

IJCRT24A5234 International Journal of Creative Research Thoughts (IJCRT)<u>www.ijcrt.org</u> k957

www.ijcrt.org

© 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

			Г Volume 12, Is	,	1
				repeatedly and transmission	technologies is not optional—it is
				of sensed data via GPRS.	necessary.
Arsalan Khan Mudassar, Bashir , Sumair Aziz, aMuhammad Umar Khan	2020	Computer vision-based, pixel-wise CNN (Convolutional Neural Network) segmentation classifier for crop. This vision algorithm is implemented on Raspberry Pi 3 based single board computer having Broadcom BCM2837 system incorporated on chip [17]. It includes a quad- core processor having 64-bit ARM cortex A53 chip, 1.2 GHz frequency. Also, it includes video core four GPU and contain 1GB LPDDR2-900 SDRAM. Secondly, Arduino Mega 2560 is used for acquiring data	The average accuracy of the system is about 93%. To make the robot autonomous, we used Ultrasonic sensors.	via GPRS. One of the significant applications of the autonomous robot is agricultural monitoring or work in an environment where a human cannot work. It can move quickly in the field without any human intervention and monitor the environmental parameters with the help of sensors mounted on it.	By introducing mobility in some or all nodes in the wireless sensor network, we decreased the number of nodes and thus reducing the cost of the overall system.
		mounted on	\checkmark	101	
Santhosh Kumar S, Anusha M, Mohammed junaid, Anju KC, Meghana.	2019	both robots. A GSM SIM300 is used to give the farmer the information on the humidity and temperature. The temperature sensor used is LM35 and the humidity sensor is DST11. LCD- 16x2 display is used for displaying the current operation.	This machine has exceptionally less expense. This grower is easy to utilize henceforth, untalented rancher is likewise ready to deal with this machine.	The current approaches are challenging. The tools used here are problematic and troublesome has it requires more man power. Hence, there is a necessity to advance the equipment which will decrease the efforts of the agriculturalists	The robotic arm helps in unwanted plant elimination. The heart of the proposed system is microcontroller which controls the entire operation. The prototype model has been implemented so that it can be scaled up for development of the larger systems.
Akshay Krishnan, Shashank Swarna, Balasubramanya H. S	2020	A binocular stereo vision technique is used to get 3D contrast images of crop clusters	The primary advantages is that the yield can be shielded from the vagaries of	Initial seed money to be invested is very high. As of now, drones have to	The way forward to achieve a guaranteed increase in food production, is towards implementation of
	Mudassar, Bashir , Sumair Aziz, aMuhammad Umar Khan Umar Khan Santhosh Kumar S, Anusha M, Mohammed junaid, Anju KC, Meghana.	Mudassar, Bashir, Sumair Aziz, aMuhammad Umar KhanIMuhammad Umar KhanIImage: Santhosh Kumar S, Anusha M, Mohammed junaid, Anju KC, Meghana.2019Kumar S, Anusha M, Mohammed junaid, Anju KC, Meghana.2019	Mudassar, Bashir , Sumair Aziz, aMuhammad Umar Khanvision-based, pixel-wise CNN (Convolutional Neural Network) segmentation classifier for crop. This vision algorithm is implemented on Raspberry Pi 3 based single board computer having Broadcom BCM2837 system incorporated on chip [17]. It includes a quad- core processor having 64-bit ARM cortex A53 chip, 1.2 GHz frequency. Also, it includes video core four GPU and cortant IGB LPDDR2-900 SDRAM. Secondly, Arduino Mega 2560 is used for acquiring data from sensors mounted on both robots.Santhosh KC, Meghana.2019A GSM SIM300 is used to give the farmer the information on the humidity sensor is DST11. LCD- lóx2 display is used for acquiring the current operation.Akshay Krishnan, Shashank Swarna, Balasubramanya2020A binocular stereo vision technique is used to get 3D contrast images	Mudassar, Bashir, Sumair Aziz, aduhammad Umar Khanvision-based, pixel-wise CNN (Convolutional aduinammad Neural Network) segmentation classifier for crop. This vision algorithm is implemented on Raspberry Pi 3 based single board computer having Broadcom BCM2837 system incorporated on chip [17]. It includes a quad- core processor having 64-bit ARM cortex A53 chip, 1.2 GHZ frequency. Also, it includes video core for roy. Also, it includes video core for GPU and contain 1GB LPDDR2-900 SDRAM. Secondly, Arduino Mega Z506 is used for acquiring data from sensors mounted on both robots.This machine has exceptionally less expense. This grower is easy to utilize hace transhamk Mohammed junaid, Anju KC, Meghana.2019A binocular stere vision technique is used for acquiring data from sensors mounted on both robots.This machine has exceptionally less expense. This grower is easy to utilize henceforth, untal-ented macher is likewise ready to deal with this machine.Akshay Krishnan, Shashank Swarma, Balasubrammaya2020A binocular stere vision technique is used to grive to dal with this is used to grive to dal with this is has the yield contrast images	Arsalan Khan Mudasar, Pashir, Sumair Aziz, aMuhammad2020Computer vision-based, pixel-wise CNN (Convolutional Network) segmentation classifier for crop. This is implemented on Raspberry Pi 3 based single board computer having 64-bit ARM cortex A53 chip, 12The average accuracy of the system is about uatonomous, wat autonomous, wat robot is autonomous, wat robot is autonomous, work in an environment where a human cannot work it can monitoring or work. It can monitoring or work in an environment where a human cannot work it can monitoring or work it can monitoring or work it can monitoring or work it can monitoring or work in an environment where a human cannot work it can monitoring or work it can

© 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

www.i	jcrt.org			© 2024 IJCR	۲ Volume 12, Is	sue 5 May 2024	ISSN: 2320-2882
	al Industry:			& computer vision	climate conditions,	frequently return to bases	robotics, IoT and AI in the
	A Review			algorithms	increased	for recharging.	automation of
	11 Review			developed to	efficiency and	for reenarging.	agricultural
				arrive at	reduced wastage		industry.
				readiness of the	of insecticides,		industry.
				crop for	increased		
				harvesting	efficiency and		
				based on their	reduced wastage		
				colour, shape	of insecticides.		
				and location.			
6	Smart	Ms.B.Ragavi,	2020	Optical Sensors	In our proposed		This smart
	Agricultur	Ms.L.Pavithra,		– It is used to	paper at the side		agricultural IOT
	e with AI	Mrs.P.Sandhiya		determine clay	of smart		implementation can
	Sensor by	devi,		natural and	farming gives		gives a better
	Using	Ms.G.K.Mohan		moisture	more accuracy		performance for
	Agrobot	apriya,		content material	and provides		producing a crop
		Ms.S.Harikirub		of the soil,	better overall		agricultural field
		ha		Electrochemical	performance to		and cloud based
				Sensors - soil	advantage a		agriculture can
				nutrient degree	greater expertise		gives a
				and PH, HTE	about		performance and it
		🗕 🛌 🛌		MIX Sensors -	agricultural		can be able analyze
				for determining	improvement		and store the data
				the moisture	and to growth		for future use.
				content and	productiveness.		
				temperature in both soil and			
				environmental			
				aspe <mark>ct, Motio</mark> n			
				Detector			
				Sensors- used			
	-			round the field			
				those sensors			
				any uncommon			
				moments that			
				taking place			
				around, ARM7			
				processor, LPC2148 IC		_ Q.	
7	Design	Md Shadman	2019	The Node MCU	With this		Agricultural
,	and	Tajwar Haque,	2017	(Microcontroller	proposed		technologies are
	Implemen	Khaza Abdur		Unit) SoC	automated	0	being modernized
	tation of	Rouf, Zobair		(System on	centralized	•	and day by day
	an IoT	Ahmed Khan,		Chip)	system, not only		farmers are opting
	based	Al Emran,Md.		development	controlling the		newer technologies
	Automate	Saniat Rahman		board used on	farm can be		and methods to
	d	Zishan		the proposed	made easy but		cultivate crops.
	Agricultur			system is a	also it can be		Similarly, the
	al			ESP8266	utilized to		project would help
	Monitorin			(Espressif Systems)	reduce the need for manual		the farmers to monitor and control
	g and Control			microcontroller	labor. Thus,		the entire farming
	System			variant which is	reducing the		process which
	System			a cost effective	labor cost and		would cause an
				Wi-Fi enabled	increasing the		overall increase in
				microchip. The	overall profit of		the yield of crop
				designed board	the farmer.		production.
				is based on			
				Arduino and be			
				programmed			
				using Arduino			
	D 1 ·	A · • • •	2012	IDE.	7731 1 7 7		
8	Evaluation	Ajay Kumar	2013	Three	This would		This technology
	of	Singh*, D. K.		subsystems are combined into	support		could be used by
	carnation varieties	Singh, Balraj Singh, Shailja		one primary	preserving the crop's soil		farmers as an effective decision-
	under	Punetha and		system.	fertility until it		making tool to help
	naturally	Deepak Rai		Examines	had been		them reduce
L	maturarry	Deepur Kai	1	LAutimos			

www.ijcrt.org	© 2024 IJCR	Г Volume 12, Iss	ue 5 May 2024	ISSN: 2320-2882
ventilated	numerous soil	harvested.		manual labor,
greenhouse	and	This		conserve energy,
in mid hills	meteorological	demonstrates		and increase output.
of Kumaon	conditions in a	how different		For the future scope
Himalaya	specific place	crops are best		of this work, a
	and	adapted to grow		disease prediction
	recommends a	under various		system can be
	crop that would	atmospheric		added to the
	do well there.	conditions.		suggested system to
	Based on the			predict crop
	plant's			diseases based on
	requirements for			image
	moisture, the			classification.
	system then			
	determines if it			
	is necessary to			
	water the plant.			
	the accuracy of			
	5 distinct			
	models has been			
	compared.			
	From the			
	findings, KNN			
	fits the dataset			
	used;			
	therefore, the			
	 KNN machine			
	learning			
	algorithm is			
	imp <mark>lemented</mark> in			
	the crop			
	rec <mark>ommenda</mark> tio	. /		
	n <mark>system.</mark>	11/2		

III. EXISTING SOLUTION

The lack of favorable atmospheric conditions leads to the loss of many crops each year. In India alone, over 11 billion dollars are lost. By combining IoT and machine learning technologies, we has created a system that integrates agriculture. We have proposed a system that will help farmers reduce physical labor, use less energy, and increase productivity will be developed. With the help of a Machine learning algorithm, a system will be developed that can select crops, irrigate them autonomously, and recommend fertilizers. Technology, especially CNNs, is significantly advancing smart cultivation of carnations.

IV. PROPOSED SOLUTION

The humidity, PH, and temperature values are requested from the cloud and been displayed in the API.

The soil moisture content will be examined using a moisture sensor, and the weather will be checked using a cloud platform open weather API. The amount of water being poured into the soil will be calculated using flow sensors.

If the moisture is less than a value which is appropriate for the crop to grow, It notifies the farmer to water the plant through his most used apps like Whatsapp or Telegram. This information is tracked by the IOT sensors and been sent to the Machine Learning Model. The accuracy of 5 distinct models has been compared. From the findings, CNN fits the dataset used; therefore, the CNN machine learning algorithm is implemented in the crop recommendation system.

V. CONCLUSION

This research successfully developed and implemented a novel "Smart Agriculture for Carnation Flowers using IoT and AI/ML" system. The system comprised a network of sensor nodes monitoring environmental and plant growth parameters, an IoT gateway for data transmission, a cloud platform for storage and analysis, and AI/ML models for intelligent decision-making.

The proposed methodology proved effective in achieving the project's objectives. By leveraging the chosen sensors, including temperature, humidity, soil moisture, light intensity, pH, and electrical conductivity sensors, the system gathered comprehensive data on the carnation growth environment. Utilizing various deep learning algorithms like CNNs, regression models, and anomaly detection algorithms, the AI/ML models processed the data to provide actionable insights for optimizing irrigation, fertilization, climate control, and pest/disease management.

VI. FUTURE WORKS

This Model can be further improved by adding an automated water sprinkler which waters the plants when it finds Soil Moisture less and automated Fertilizer Sprinkler which fertilizes the plant upon requirement analysis.

VII. REFERENCES

- [1] Aydin, A., Ercil, C., & Ozgur, E. (2020). An IoT-based smart greenhouse monitoring system for precision agriculture. Sensors, 20(12), 3438.
- [2] Wang, B., Zhang, W., & Yang, Y. (2021). Development of a wireless sensor network for carnation plantation monitoring and automatic irrigation system. Computers and Electronics in Agriculture, 189, 106405.
- [3] Kim, C., Yoo, S., Han, T., & Chung, C. H. (2023). Deep learning-based plant disease and pest detection using high-resolution images from unmanned aerial vehicles. Precision Agriculture, 24(8), 1451-1473.
- [4] Ebrahimi, D., Khalilian, N., &Ghodrati, M. (2022). Predicting flowering time of carnations using machine learning models based on environmental parameters. Scientia Horticulturae, 295, 110765.
- [5] Raychaudhuri, D., Kumar, V., & amp; Srivatsa, N. (2022). Challenges and future directions in agriculture IoT: A review. Journal of the Indian Society of Remote Sensing, 50(4), 703-733.
- [6] Liakos, K., Kaggos, D., & Georgoulias, V. (2022). Agricultural robotics: A perspective on state-of-the-art research and deployment. Journal of the International Society of Precision Agriculture, 16(3), 568-581.
- [7] Wu, W., Feng, H., Yao, Y., Zhou, W., & Jiang, Y. (2020). Flower species recognition using convolutional neural networks. Applied Soft Computing, 91, 106170.
- [8] Barbedo, I. G. (2018). Application of deep learning convolutional neural networks to predict apple tree yield from tree images. Computers and Electronics in Agriculture, 150, 163-170.
- [9] Liu, S., Wu, C., Wang, L., & Zhao, S. (2020). Plant leaf disease identification via deep learning. Frontiers in Plant Science, 11, 842.
- [10] Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv preprint arXiv:1804.02767.
- [11] Kamilaris, A., & Preti, F. (2020). A survey of image segmentation algorithms for citrus pest detection. Computers and Electronics in Agriculture, 170, 105307.
- [12] Li, M., Zou, W., & Wang, Z. (2020). A hybrid approach for automatic rose flower bud counting using object detection and instance segmentation. Precision Agriculture, 21(5), 769-783.
- [13] Wang, S., Chen, F., Zeng, A., Wu, C., & Wang, F. (2022). Early pest detection in pear orchards using image processing and a random forest classifier. Computers and Electronics in Agriculture, 199, 107207.
- [14] Kamble, K. B., Gunjal, K. H., & Jadhav, B. G. (2020). Grading of rose flowers using image processing and machine learning. Computers and Electronics in Agriculture, 176, 105650.
- [15] Ghosal, S., & Das, A. K. (2019). Smart agriculture using internet of things: A review. Sensors, 19(1), 166.
- [16] Kamble, K. B., Gunjal, K. H., & Jadhav, B. G. (2020). Grading of rose flowers using image processing and machine learning. Computers and Electronics in Agriculture, 176, 105650.