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Abstract— The project presents the development of an in- 
novative chatbot system that integrates with PDF documents, 
enhancing users’ ability to extract information through natural 
language queries. The primary goal is to address the growing 
demand for efficient information retrieval from textual docu- ments, 
particularly in educational and professional contexts. The proposed 
system aims to provide a user friendly system for extracting 
relevant information from PDFs swiftly and accurately. To achieve 
this, the system leverages several key technologies. Streamlit is used 
for the user interface, providing an intuitive and interactive 
platform for users to interact with the chatbot. PyPDF2 is employed  
for  PDF  parsing,  allowing the system to extract text from uploaded 
PDF documents. Langchain is utilized for text processing and 
embeddings, enabling the system to process and index the extracted 
text ef- ficiently. Google Generative AI is integrated for 
conversational capabilities, enabling the chatbot to understand user 
queries and provide relevant answers. Additionally, FAISS is used 
for similarity search, allowing for fast and accurate retrieval of 
information from indexed PDF content. The system’s work ow 
involves users uploading PDF documents, from which text is 
extracted, processed, and indexed for efficient retrieval. The 
chatbot, powered by Google Generative AI, interacts with users, 
interprets their queries, and provides relevant answers based on 
the indexed PDF  content.  The  project’s  main  objective  is to 
provide an interactive and easy to use user experience, making it 
easy for users to access and utilize information from PDF 
documents effectively. Future enhancements may include support 
for more complex queries, integration with other document 
formats, and improved user interaction features. Overall, this 
project contributes to the advancement of natural language 
processing and information retrieval systems, bene- fiting users in 
various domains requiring efficient document analysis and 
information extraction. 

Index Terms— Langchain, Google Generative AI Embedding, 
FAISS Indexing, Streamlit, Python. 

 
I. INTRODUCTION 

In today’s digital era, there is infinite information available in 

textual documents has led to an increasing demand for efficient 

methods of information  retrieval. PDF documents, in particular, 

are widely used for storing and sharing information, making 

them a valuable source of knowledge. However, extracting 

relevant information from PDFs can be challenging, especially 

when dealing with large volumes of text. 

To work on this problem, we propose the development of a 

chatbot system that integrates with PDF documents, allowing 

users to  ask questions  based  on the  content of uploaded 

PDFs. This system aims to provide a user- friendly and 

efficient solution for extracting information from PDFs through 

natural language queries. 

The  motivation  behind  this  project  stems  from  the need for 

tools that simplify the process of extracting information from 

PDFs, particularly in educational and professional settings where 

access to accurate and timely information is crucial. By 

developing a  chatbot  system that can effectively extract 

information from PDFs, we hope to provide users with a 

valuable tool for accessing and utilizing information from textual 

documents more efficiently. 

This project’s research problem lies in the lack of user- friendly 

tools for extracting relevant information from PDFs quickly and 

accurately. Existing methods often require manual effort and 

are not suitable for handling large volumes of text. The 

proposed chatbot system aims to overcome these limitations by 

providing an automated 
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and intuitive solution for extracting information from 

PDFs through natural language queries. In this paper, 

we present the methodology and implementation of the 

proposed chatbot system. We describe the technologies 

used, the system’s workflow, and the expected outcomes. 

We also discuss potential future enhancements and the 

impact of the project on the field of natural language 

processing and information retrieval. 

Overall, this project represents a significant step towards 

improving the efficiency of information retrieval from 

textual documents, particularly PDFs. By developing a 

chatbot system that can extract information from PDFs 

through natural language queries, we  aim  to  provide 

users with a valuable tool for accessing and utilizing 

information more effectively. 

 
 

II. LITERATURE SURVEY 

A. Overinformative Question Answering by Humans and 

Machines 

Authors: Polina Tsvilodub, Michael Franke, Robert 

Hawkins) Noah D. Goodman, Year:2023. This paper 

explores methods for question answering (QA) over PDF 

documents. It likely discusses techniques for extracting 

information from PDF files and utilizing it to answer ques- 

tions posed by users. This could involve approaches such 

as text extraction, natural language processing (NLP), and 

document understanding to enable effective QA systems 

specifically tailored for PDF documents. 

 

B. Information Retrieval Meets Large Language Models 

Authors: Qingyao AI, Ting BAI, Zhao CAOc, Yi CHANG, 

Jiawei CHEN, Zhumin CHEN, Zhiyong CHENGg, Shoubin 

DONG, Zhicheng DOU, Fuli FENG, Shen GAO , Jiafeng 

GUO, Xiangnan, Yanyan LANa, Chenliang LI, Yiqun LIU, 

Ziyu LYU, Weizhi MA, Jun MA, Zhaochun REN, Pengjie 

REN, Zhiqiang WANG, Mingwen WANG, Ji-Rong WEN, 

Le WU, Xin XIN,  Jun  XU,  Dawei  YIN,  Peng  ZHANG, 

Fan ZHANG, Weinan ZHANG, Min ZHANG, Xiaofei ZHU, 

Year:2023.This paper likely investigates the application of 

large language models (LLMs) for information  retrieval 

tasks. It may discuss how LLMs, such as transformer-based 

models,  can  be  leveraged  to  improve  the  effectiveness 

and efficiency of information retrieval systems. This paper 

involve  techniques  like   fine-tuning   pre-trained   models 

on retrieval-specific datasets, designing architectures op- 

timized for retrieval tasks, and exploring methods for 

integrating LLMs into existing retrieval frameworks. 

 

C. Conversational Agents: Theory and Applications 

Authors: Mattias Wahde and Marco Virgolin, 

Year:2022. This paper focuses on conversational agents 

designed for document understanding tasks.  It  discuss 

how conversational agents, such as chatbots or virtual as- 

sistants, can assist users in understanding and extracting 

information from documents. This include techniques for 

natural language understanding (NLU), dialogue manage- 

ment, and document summarization tailored for conver- 

sational interfaces. The paper likely explores how these 

agents can enhance user interaction and productivity in 

document-centric tasks. 

D. Vector Space Model: An Information Retrieval System 

Authors: Vaibhav Kant Singh, Vinay Kumar Singh, 

Year:2022. This paper introduce and explain the con- 

cept of the vector space model for information retrieval 

systems. It  discusses  how  documents  and  queries  can 

be represented as vectors in a multi-dimensional space, 

based on similarity measures. This model serves as a fun- 

damental framework for understanding and implementing 

information retrieval systems. 

E. Creating Large Language Model Applications Utilizing 

LangChain: Primer on Developing LLM Apps Fast 

Oguzhan Topsakal, T. Cetin Akinci, Year:2023. This 

paper discussed about the concept of Langchain and how 

it could be used to develop LLM applications. It likely 

serves as an introductory guide for developers, offering 

insights into leveraging LangChain a framework or toolset 

designed for building LLM applications. The paper discuss 

best practices, methodologies, and practical examples to 

facilitate the development process and enable the creation 

of effective LLM applications. 

III. RELATED WORK 

A. Existing System - "An AI-Driven Interactive Chatbot: A 

Well Trained Chatbot that Communicates with the Users 

and Reduces the Manual Interaction", Vol.9, Feb 2024 

The existing system is an AI-driven interactive chatbot 

designed to provide easy conversation and reduce manual 

interaction. Here are the key points of the existing system: 

• Purpose: Provide a chatbot interface for users to inquire 

about details regarding the institute. 

• Functionality: Users interact with the chatbot to ask 

questions. It reduces the need for direct interaction with 

a salesperson. Increases accessibility for users to get in- 

formation about the institute. Uses LLM (Large Language 

Models) generative AI for conversations. 

• Benefits: Users can inquire about the institute at any 

time. Salespersons are relieved from continuous inquiries. 

Increased accessibility and convenience for users. 

• Technologies: LLM (Large Language Models) generative 

AI. Chatbot interface. 

B. Proposed System 

The proposed system seems to be an extension or 

modification of the existing system, now incorporating 

features to handle multiple PDF uploads and questions 

related to those PDFs. 

 
• System Architecture Overview: 

The components of Proposed System are as follows: 

User Interface: The web-based interface allows users to 
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Fig. 1.    Proposed System Architecture 

 

 

 
upload PDF files and submit queries. Users can interact 

with the chatbot to ask questions and receive answers 

based on the contents of the uploaded PDF files. The in- 

terface provides a user-friendly experience, guiding users 

through the process of uploading files and querying in- 

formation. 

PDF Processing Module: Upon file upload, the system 

uses the PyPDF2 library to extract text from each PDF 

document. The extracted text is then processed to remove 

any unnecessary characters or formatting,  ensuring  that 

the text is clean and ready for further analysis. The 

processed text is split into manageable chunks, typically 

sentences or paragraphs, to facilitate efficient processing 

and analysis. 

Text Embedding Module: The Langchain’s Google Gen- 

erative AI Embeddings model is used to generate em- 

beddings for each text chunk. The model converts each 

text  chunk  into  a  numerical  representation,  capturing 

the semantic meaning of the text. These embeddings are 

high-dimensional vectors that represent the text’s context, 

allowing for more accurate information retrieval and sim- 

ilarity calculations. 

Indexing and Retrieval Module: The embeddings for 

text chunks are indexed using the FAISS library, which 

efficiently stores and retrieves embeddings for similarity 

search. When a user submits a query, the system calculates 

the embeddings for the query and uses FAISS to retrieve 

the most relevant text chunks based on similarity scores. 

The system may use advanced indexing techniques to 

speed up retrieval and optimize resource utilization. 

Conversational AI Module: The system utilizes Google 

Generative AI for conversational capabilities, enabling the 

chatbot to understand user queries and provide responses 

based on the indexed PDF content. The chatbot uses 

natural language processing techniques to interpret user 

queries and retrieve relevant information from the indexed 

PDF files. The chatbot can engage in a natural lan- 

guage conversation with users, providing answers to their 

queries and offering suggestions for further exploration. 

Real-time Updates and User Feedback: The system 

provides real-time updates to users as it processes and 

retrieves information, ensuring a seamless and interactive 

user experience. Users can provide feedback on the rel- 

evance and  accuracy of  retrieved information, enabling 

continuous improvement of the system. The system may 

use this feedback to update its indexing and retrieval 

algorithms, improving the quality of future responses. 

• User Workflow: 

Step 1: Upload PDF Files: Users upload one or more PDF 

files through the web interface. 

Step 2: Text Extraction and Embedding: The system 

extracts text from the uploaded PDF files and generates 

embeddings for text chunks. 

Step 3: Indexing and Retrieval: Text embeddings are 

indexed using FAISS for efficient retrieval. When a user 

submits a query, the system matches the query against 

indexed embeddings to retrieve relevant information. 

Step 4: Conversational Interaction: The chatbot interacts 

with the user, providing answers to queries based on the 

retrieved information from PDF documents. 

Step 5: Display Results: The chatbot displays the relevant 

information to the user through the  web  interface, 

allowing for further interaction and refinement of queries. 

 

• Additional Features: 

- Real-time Updates: The system provides real-time up- 

dates to users as it processes and retrieves information, 

ensuring a seamless and interactive user experience. 

- Query Suggestions: Based on the user’s query history 

and document content, the system provides suggestions 

for refining queries to improve search results. 

- Document Summarization: Optionally, the system can 

provide summaries of PDF documents to users, highlight- 

ing key information relevant to their queries. 

By following this proposed methodology, the system aims 

to provide users with a robust and efficient tool for 

information retrieval from large PDF files in a multipdf 

chat environment, enhancing the overall user experience 

and usability of the system. 

C. Gaps between the Existing System and the Proposed 

System 

1. Functionality: 

Existing: Primarily focused on institute-related inquiries. 

Proposed: Extends functionality to include handling ques- 

tions based on uploaded PDF content. 

2. Data Input: 

Existing: Takes user queries directly. 

Proposed: Introduces PDF uploads as additional  data 
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of extracting information from PDFs is the ability to parse 

PDF files and extract text. Several libraries and tools exist 

for this purpose, including PyPDF2, which is used in this 

project. PyPDF2 allows for the extraction of text from 

PDF files, making it a valuable tool for processing PDF 

documents in an automated manner. 

- Importing the Library: First, the PyPDF2 library is 

imported at the beginning of the code: - Extracting Text 

from PDFs: When the user uploads PDF files, the ‘get 

pdf text‘ function is called to extract text from each PDF 

document. This function iterates  through  each  page  of 

the PDF and extracts the text using PyPDF2. 

- Splitting Text into Chunks: After extracting the  text 

from PDFs, the ‘get text chunks‘ function is used to split 

the text into manageable chunks. It uses Langchain’s 

RecursiveCharacterTextSplitter with a specified chunk size 

and overlap. The ‘chunk size‘ parameter determines the 

maximum size of each chunk, and the ‘chunk overlap‘ 

parameter specifies how much overlap there is between 

consecutive chunks. These parameters are chosen based 

on the desired balance between chunk size and overlap 

for efficient processing and analysis of text chunks. 
 

 

 

 

 

 

 

 

 

 

 

 
sources. 

3. Processing: 

 
 
 
 
 
 
 
 
 

 
Fig. 2.    User workflow 

2. Text Processing and Embeddings: Text processing 

and embeddings play a crucial  role  in  understanding 

the content of textual documents. In this project, the 

Langchain Google Generative AI Embeddings model is 

used for text processing and embeddings. Langchain 

provides a range of functionalities for processing text, 

including splitting text into chunks and generating 

embeddings for each chunk. These embeddings are used 

to index the text for efficient retrieval, as well as to 

provide context for natural language  understanding. 

Taking this following text as an example of chunk: "The 

quick brown fox jumps over the lazy dog." 
- Tokenization: Before generating embeddings, the text is 

Existing: Processes user queries based on predefined 

knowledge. 

Proposed: Requires text extraction from PDFs and pro- 

cessing of questions based on this new data source. 

4. Interaction Flow: 

Existing: Linear interaction with the chatbot for general 

queries. 

Proposed: Introduces an interactive system where user can 

ask PDF related question. 

 

IV. RESULT AND ANALYSIS 

In the realms of information retrieval and natural 

language processing, several approaches and technologies 

have been developed to address the challenge of 

information retrieval from textual documents, including 

PDFs. These approaches vary in complexity and efficiency, 

with some focusing on manual extraction methods and 

others on automated techniques. In  this  section,  we 

review some relevant work in this area and discuss the 

technologies, algorithms, and methodologies used. 

1. PDF Parsing Technologies: One of the key components 

tokenized into individual words or subwords. Each token 

is then converted into a numerical representation (e.g., 

an index or a vector) using Langchain’s model. 

Tokenize the text into individual words: ["The", "quick", 

"brown", "fox", "jumps", "over", "the", "lazy", "dog."] 

- Embedding  Lookup:  The  numerical   representations 

of  tokens  are  used  to  look  up   embedding   vectors 

from a pre-trained embedding matrix.  This  matrix 

contains embedding vectors for all tokens in the model’s 

vocabulary. Assume we have a pre-trained embedding 

matrix with embeddings for each token. Let’s say the 

embeddings are 3-dimensional vectors: "The": [0.1, 0.2, 

0.3] "quick": [0.4, 0.5, 0.6] ... "dog.": [0.7, 0.8, 0.9] 

Look up the embeddings for each token and create a list 

of embeddings: [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], ..., [0.7, 0.8, 

0.9]] 

- Aggregation: The embedding vectors for individual 

tokens are aggregated to form a single vector 

representation for the entire text chunk. This aggregation 

step can involve techniques like averaging, pooling, or 

attention mechanisms to capture the overall meaning of 
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the text chunk. Average the embeddings to get a single 

vector representation: Aggregated embedding =  [(0.1  + 

0.4 + ... + 0.7) / 9, (0.2 + 0.5 + ... + 0.8) / 9, (0.3 + 0.6 + 

... + 0.9) / 9] 

Aggregated embedding = [0.4, 0.5, 0.6] 

- Normalization: The aggregated embedding vector  is 

often normalized to have a unit length. This normalization 

step helps in training and comparing embeddings. 

Normalize the aggregated embedding to have unit  a 

length: Norm = sqrt(0.77) = 0.88 Normalized embedding 

= [0.4 / 0.88, 0.5 / 0.88, 0.6 / 0.88] = [0.45, 0.57, 0.68] 

 
Output: The final normalized embedding vector 

represents the semantic meaning of the text chunk in a 

high-dimensional space. Similar text chunks are expected 

to have similar embeddings, allowing for effective 

information retrieval and similarity calculations. The 

final normalized embedding [0.45, 0.57, 0.68] represents 

the semantic meaning of the text  chunk  "The  quick 

brown fox jumps over the lazy dog." as a 3-dimensional 

embedding space. Overall, the Text Embedding Module 

uses Langchain’s Google Generative AI Embeddings 

model to convert text chunks into embeddings, which 

capture the semantic meaning of the text and enable 

efficient information retrieval from PDF documents. 

 
3. Similarity Search: FAISS is used in this project for 

similarity search, enabling fast  and  accurate  retrieval 

of information from indexed PDF content. FAISS is a 

library for efficient similarity search and clustering of 

dense vectors, making it well-suited for indexing and 

searching embeddings generated from  text  chunks  in 

PDF documents. 

• Indexing : 

When the text chunks are extracted from PDF documents 

and embedded using Langchain’s Google Generative AI 

Embeddings model, FAISS is used to create an index of 

these embeddings. The embeddings are quantized using 

product quantization to reduce the dimensionality and 

improve search efficiency. FAISS creates inverted lists for 

each quantized centroid,  where  each  list  contains  the 

IDs of text chunks that are quantized to that centroid. 

These inverted lists serve as the index, allowing FAISS to 

quickly retrieve similar text chunks based on a query. 

• Retrieval : 

When a user submits a query, FAISS calculates the 

embeddings for the query using the same process used 

during indexing. The query embeddings are quantized 

and used to look up the inverted lists in the index. FAISS 

retrieves the IDs of text chunks in these inverted lists 

and calculates the similarity scores between the query 

and these text chunks. The text chunks with the highest 

similarity scores are returned as the results of the query, 

allowing the system to retrieve and display the most 

relevant text chunks to the user. 

 
 

 

 

 

 

 

Simplified numerical example to illustrate the indexing 

and retrieval process using FAISS : 

Assume we have 3 text chunks (T1, T2, T3) and each is 

represented by a 2-dimensional embedding vector. We use 

product quantization to divide the 2-dimensional  space 

into 2 subspaces (1-dimensional each). Quantization 

reduces the embeddings to  a  codebook  of  2  centroids 

per subspace (a total of 4 centroids). 

o The quantized embeddings for each text chunk are as 

follows: 

• T1: [0.1, 0.2] -> [0, 0] 

• T2: [0.3, 0.4] -> [1, 0] 

• T3: [0.5, 0.6] -> [1, 1] 

o FAISS creates inverted lists for each centroid: 

• Centroid [0, 0]: [T1] 

• Centroid [1, 0]: [T2] 

• Centroid [1, 1]: [T3] 

o Retrieval Process 

The User submits a query with an embedding [0.2, 0.3]. 

The query embedding is quantized to [0, 0]. FAISS looks 

up the inverted list for centroid [0, 0] and retrieves text 

chunk T1. The system presents T1 as the most similar 

text chunk to the user’s query. 

Overall, FAISS plays a crucial role by providing efficient 

indexing and retrieval capabilities for the embeddings 

generated from PDF documents, facilitating fast and 

accurate information retrieval in a multiple chat 

environment. 

 
4. Conversational AI: Conversational AI is used to 

enable the chatbot  to  interact  with  users  in  a  natural 

and intuitive manner. Google Generative AI is employed 

in this project for conversational  capabilities.  It  allows 

the chatbot to understand user queries  and  provide 

relevant answers based on the indexed PDF content. This 

technology enhances the user experience by providing a 

conversational interface for interacting with the chatbot. 

A numerical explanation of how the Conversational AI 

Module provides answers to user queries: 

- Indexed PDF Content: Assume we have two PDF 

documents (D1, D2) with text chunks and embeddings. 

Each document contains several text chunks (T1, T2, T3) 

with corresponding embeddings. These embeddings are 

indexed using FAISS for efficient retrieval. 

- User Query: - A user submits a query with an embedding 

[0.2, 0.3]. 

- Answer Generation: The Conversational AI Module 

retrieves the most relevant text chunks  based  on  the 

query embedding using FAISS. It uses Google Generative 

AI to generate a response based on the content of the 

retrieved text chunks and the context of the query. The 

generated response is presented to the user as an answer 

to their query. 

- Example: Suppose the closest text chunk to the query 

embedding is  T3  from  document  D1,  which  contains 

the text "Data Structures and Algorithms." The module 

generates a response like "You  can  find  information 

about Data Structures and Algorithms in the indexed 

PDF documents." 
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5. Vector Store: The vector store  is  a  component 

that manages the storage and retrieval of embeddings 

for text chunks extracted from PDF documents. When 

a user uploads PDF files, the PDFs are stored in a 

location accessible to the backend server. The server may 

store the PDF files on disk, depending on the project’s 

architecture and requirements. Each uploaded PDF file 

is associated with a unique identifier (e.g., file name or 

ID) that allows the system to retrieve the file when needed. 

 
6. Integration with Streamlit: Streamlit is used for the 

user interface in this project, providing an interactive 

platform for users to interact with the chatbot and upload 

PDF documents. Streamlit allows for the easy integration 

of various components, such as file uploaders and chat 

interfaces, making it ideal for developing user-friendly 

applications. 

 

A. Implementation 

 

 

Fig. 3.    Fig. 1. Upload single or Multiple Files 

 

Fig. 4.    output 1 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

Fig. 5.    Output 

2 

 

 

V. CONCLUSIONS 

This project successfully demonstrates the development 

of a chat interface that facilitates  question  answering 

based on uploaded PDFs. It leverages Langchain’s capabil- 

ities to create a custom question-answering work ow and 

integrates a large language model (LLM) for generating 

responses to user queries. 

Streamlit provides a user-friendly web interface for 

uploading PDFs and interacting with the system through 

a chat-like interface. The key strengths of this project lie 

in its clear separation of functionalities, effective use of 

Langchain and Streamlit, and the integration of a powerful 

LLM for response generation. However, there’s room for 

improvement in areas like error handling, search opti- 

mization, context management, and security best prac- 

tices. 

This project not only showcases the technical prowess 

in NLP and document analysis but also underscores the 

practical applications of such technology. By bridging the 

gap between static document content and dynamic user 

interactions, it opens avenues for enhanced information 

retrieval and user engagement. 

By addressing these aspects, we developed a robust tool 

for exploring and gaining insights from information stored 

within PDF documents. This user-friendly chat interface 

empowers users to ask questions from the content of 

uploaded PDFs  and  receive  relevant  answers,  fostering 

a more effi cient and interactive way to navigate and 

understand these documents. 
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