
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRT24A5165 International Journal of Creative Research Thoughts (IJCRT)www.ijcrt.org k448

Vector-Based Chat with Multi Pdf Using

Langchain and AI

Amruta Bhosale Department of

Computer Science and Technology

Usha Mittal Institute of Technology

S.N.D.T. Women’s University Mumbai

400049

Saniya Shaikh Department of

Computer Science and Technology

Usha Mittal Institute of Technology

S.N.D.T. Women’s University Mumbai

400049

Shivani Sharma Department of

Computer Science and Technology

Usha Mittal Institute of Technology

S.N.D.T. Women’s University Mumbai

400049

Prof. Prajakta Gotarne

Department of Computer Science and Technology Usha Mittal Institute of Technology S.N.D.T. Women’s University

Mumbai 400049

Abstract— The project presents the development of an in-
novative chatbot system that integrates with PDF documents,
enhancing users’ ability to extract information through natural
language queries. The primary goal is to address the growing
demand for efficient information retrieval from textual docu- ments,
particularly in educational and professional contexts. The proposed
system aims to provide a user friendly system for extracting
relevant information from PDFs swiftly and accurately. To achieve
this, the system leverages several key technologies. Streamlit is used
for the user interface, providing an intuitive and interactive
platform for users to interact with the chatbot. PyPDF2 is employed
for PDF parsing, allowing the system to extract text from uploaded
PDF documents. Langchain is utilized for text processing and
embeddings, enabling the system to process and index the extracted
text ef- ficiently. Google Generative AI is integrated for
conversational capabilities, enabling the chatbot to understand user
queries and provide relevant answers. Additionally, FAISS is used
for similarity search, allowing for fast and accurate retrieval of
information from indexed PDF content. The system’s work ow
involves users uploading PDF documents, from which text is
extracted, processed, and indexed for efficient retrieval. The
chatbot, powered by Google Generative AI, interacts with users,
interprets their queries, and provides relevant answers based on
the indexed PDF content. The project’s main objective is to
provide an interactive and easy to use user experience, making it
easy for users to access and utilize information from PDF
documents effectively. Future enhancements may include support
for more complex queries, integration with other document
formats, and improved user interaction features. Overall, this
project contributes to the advancement of natural language
processing and information retrieval systems, bene- fiting users in
various domains requiring efficient document analysis and
information extraction.

Index Terms— Langchain, Google Generative AI Embedding,
FAISS Indexing, Streamlit, Python.

I. INTRODUCTION

In today’s digital era, there is infinite information available in

textual documents has led to an increasing demand for efficient

methods of information retrieval. PDF documents, in particular,

are widely used for storing and sharing information, making

them a valuable source of knowledge. However, extracting

relevant information from PDFs can be challenging, especially

when dealing with large volumes of text.

To work on this problem, we propose the development of a

chatbot system that integrates with PDF documents, allowing

users to ask questions based on the content of uploaded

PDFs. This system aims to provide a user- friendly and

efficient solution for extracting information from PDFs through

natural language queries.

The motivation behind this project stems from the need for

tools that simplify the process of extracting information from

PDFs, particularly in educational and professional settings where

access to accurate and timely information is crucial. By

developing a chatbot system that can effectively extract

information from PDFs, we hope to provide users with a

valuable tool for accessing and utilizing information from textual

documents more efficiently.

This project’s research problem lies in the lack of user- friendly

tools for extracting relevant information from PDFs quickly and

accurately. Existing methods often require manual effort and

are not suitable for handling large volumes of text. The

proposed chatbot system aims to overcome these limitations by

providing an automated

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRT24A5165 International Journal of Creative Research Thoughts (IJCRT)www.ijcrt.org k449

and intuitive solution for extracting information from

PDFs through natural language queries. In this paper,

we present the methodology and implementation of the

proposed chatbot system. We describe the technologies

used, the system’s workflow, and the expected outcomes.

We also discuss potential future enhancements and the

impact of the project on the field of natural language

processing and information retrieval.

Overall, this project represents a significant step towards

improving the efficiency of information retrieval from

textual documents, particularly PDFs. By developing a

chatbot system that can extract information from PDFs

through natural language queries, we aim to provide

users with a valuable tool for accessing and utilizing

information more effectively.

II. LITERATURE SURVEY

A. Overinformative Question Answering by Humans and

Machines

Authors: Polina Tsvilodub, Michael Franke, Robert

Hawkins) Noah D. Goodman, Year:2023. This paper

explores methods for question answering (QA) over PDF

documents. It likely discusses techniques for extracting

information from PDF files and utilizing it to answer ques-

tions posed by users. This could involve approaches such

as text extraction, natural language processing (NLP), and

document understanding to enable effective QA systems

specifically tailored for PDF documents.

B. Information Retrieval Meets Large Language Models

Authors: Qingyao AI, Ting BAI, Zhao CAOc, Yi CHANG,

Jiawei CHEN, Zhumin CHEN, Zhiyong CHENGg, Shoubin

DONG, Zhicheng DOU, Fuli FENG, Shen GAO , Jiafeng

GUO, Xiangnan, Yanyan LANa, Chenliang LI, Yiqun LIU,

Ziyu LYU, Weizhi MA, Jun MA, Zhaochun REN, Pengjie

REN, Zhiqiang WANG, Mingwen WANG, Ji-Rong WEN,

Le WU, Xin XIN, Jun XU, Dawei YIN, Peng ZHANG,

Fan ZHANG, Weinan ZHANG, Min ZHANG, Xiaofei ZHU,

Year:2023.This paper likely investigates the application of

large language models (LLMs) for information retrieval

tasks. It may discuss how LLMs, such as transformer-based

models, can be leveraged to improve the effectiveness

and efficiency of information retrieval systems. This paper

involve techniques like fine-tuning pre-trained models

on retrieval-specific datasets, designing architectures op-

timized for retrieval tasks, and exploring methods for

integrating LLMs into existing retrieval frameworks.

C. Conversational Agents: Theory and Applications

Authors: Mattias Wahde and Marco Virgolin,

Year:2022. This paper focuses on conversational agents

designed for document understanding tasks. It discuss

how conversational agents, such as chatbots or virtual as-

sistants, can assist users in understanding and extracting

information from documents. This include techniques for

natural language understanding (NLU), dialogue manage-

ment, and document summarization tailored for conver-

sational interfaces. The paper likely explores how these

agents can enhance user interaction and productivity in

document-centric tasks.

D. Vector Space Model: An Information Retrieval System

Authors: Vaibhav Kant Singh, Vinay Kumar Singh,

Year:2022. This paper introduce and explain the con-

cept of the vector space model for information retrieval

systems. It discusses how documents and queries can

be represented as vectors in a multi-dimensional space,

based on similarity measures. This model serves as a fun-

damental framework for understanding and implementing

information retrieval systems.

E. Creating Large Language Model Applications Utilizing

LangChain: Primer on Developing LLM Apps Fast

Oguzhan Topsakal, T. Cetin Akinci, Year:2023. This

paper discussed about the concept of Langchain and how

it could be used to develop LLM applications. It likely

serves as an introductory guide for developers, offering

insights into leveraging LangChain a framework or toolset

designed for building LLM applications. The paper discuss

best practices, methodologies, and practical examples to

facilitate the development process and enable the creation

of effective LLM applications.

III. RELATED WORK

A. Existing System - "An AI-Driven Interactive Chatbot: A

Well Trained Chatbot that Communicates with the Users

and Reduces the Manual Interaction", Vol.9, Feb 2024

The existing system is an AI-driven interactive chatbot

designed to provide easy conversation and reduce manual

interaction. Here are the key points of the existing system:

• Purpose: Provide a chatbot interface for users to inquire

about details regarding the institute.

• Functionality: Users interact with the chatbot to ask

questions. It reduces the need for direct interaction with

a salesperson. Increases accessibility for users to get in-

formation about the institute. Uses LLM (Large Language

Models) generative AI for conversations.

• Benefits: Users can inquire about the institute at any

time. Salespersons are relieved from continuous inquiries.

Increased accessibility and convenience for users.

• Technologies: LLM (Large Language Models) generative

AI. Chatbot interface.

B. Proposed System

The proposed system seems to be an extension or

modification of the existing system, now incorporating

features to handle multiple PDF uploads and questions

related to those PDFs.

• System Architecture Overview:

The components of Proposed System are as follows:

User Interface: The web-based interface allows users to

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRT24A5165 International Journal of Creative Research Thoughts (IJCRT)www.ijcrt.org k450

Fig. 1. Proposed System Architecture

upload PDF files and submit queries. Users can interact

with the chatbot to ask questions and receive answers

based on the contents of the uploaded PDF files. The in-

terface provides a user-friendly experience, guiding users

through the process of uploading files and querying in-

formation.

PDF Processing Module: Upon file upload, the system

uses the PyPDF2 library to extract text from each PDF

document. The extracted text is then processed to remove

any unnecessary characters or formatting, ensuring that

the text is clean and ready for further analysis. The

processed text is split into manageable chunks, typically

sentences or paragraphs, to facilitate efficient processing

and analysis.

Text Embedding Module: The Langchain’s Google Gen-

erative AI Embeddings model is used to generate em-

beddings for each text chunk. The model converts each

text chunk into a numerical representation, capturing

the semantic meaning of the text. These embeddings are

high-dimensional vectors that represent the text’s context,

allowing for more accurate information retrieval and sim-

ilarity calculations.

Indexing and Retrieval Module: The embeddings for

text chunks are indexed using the FAISS library, which

efficiently stores and retrieves embeddings for similarity

search. When a user submits a query, the system calculates

the embeddings for the query and uses FAISS to retrieve

the most relevant text chunks based on similarity scores.

The system may use advanced indexing techniques to

speed up retrieval and optimize resource utilization.

Conversational AI Module: The system utilizes Google

Generative AI for conversational capabilities, enabling the

chatbot to understand user queries and provide responses

based on the indexed PDF content. The chatbot uses

natural language processing techniques to interpret user

queries and retrieve relevant information from the indexed

PDF files. The chatbot can engage in a natural lan-

guage conversation with users, providing answers to their

queries and offering suggestions for further exploration.

Real-time Updates and User Feedback: The system

provides real-time updates to users as it processes and

retrieves information, ensuring a seamless and interactive

user experience. Users can provide feedback on the rel-

evance and accuracy of retrieved information, enabling

continuous improvement of the system. The system may

use this feedback to update its indexing and retrieval

algorithms, improving the quality of future responses.

• User Workflow:

Step 1: Upload PDF Files: Users upload one or more PDF

files through the web interface.

Step 2: Text Extraction and Embedding: The system

extracts text from the uploaded PDF files and generates

embeddings for text chunks.

Step 3: Indexing and Retrieval: Text embeddings are

indexed using FAISS for efficient retrieval. When a user

submits a query, the system matches the query against

indexed embeddings to retrieve relevant information.

Step 4: Conversational Interaction: The chatbot interacts

with the user, providing answers to queries based on the

retrieved information from PDF documents.

Step 5: Display Results: The chatbot displays the relevant

information to the user through the web interface,

allowing for further interaction and refinement of queries.

• Additional Features:

- Real-time Updates: The system provides real-time up-

dates to users as it processes and retrieves information,

ensuring a seamless and interactive user experience.

- Query Suggestions: Based on the user’s query history

and document content, the system provides suggestions

for refining queries to improve search results.

- Document Summarization: Optionally, the system can

provide summaries of PDF documents to users, highlight-

ing key information relevant to their queries.

By following this proposed methodology, the system aims

to provide users with a robust and efficient tool for

information retrieval from large PDF files in a multipdf

chat environment, enhancing the overall user experience

and usability of the system.

C. Gaps between the Existing System and the Proposed

System

1. Functionality:

Existing: Primarily focused on institute-related inquiries.

Proposed: Extends functionality to include handling ques-

tions based on uploaded PDF content.

2. Data Input:

Existing: Takes user queries directly.

Proposed: Introduces PDF uploads as additional data

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRT24A5165 International Journal of Creative Research Thoughts (IJCRT)www.ijcrt.org k451

of extracting information from PDFs is the ability to parse

PDF files and extract text. Several libraries and tools exist

for this purpose, including PyPDF2, which is used in this

project. PyPDF2 allows for the extraction of text from

PDF files, making it a valuable tool for processing PDF

documents in an automated manner.

- Importing the Library: First, the PyPDF2 library is

imported at the beginning of the code: - Extracting Text

from PDFs: When the user uploads PDF files, the ‘get

pdf text‘ function is called to extract text from each PDF

document. This function iterates through each page of

the PDF and extracts the text using PyPDF2.

- Splitting Text into Chunks: After extracting the text

from PDFs, the ‘get text chunks‘ function is used to split

the text into manageable chunks. It uses Langchain’s

RecursiveCharacterTextSplitter with a specified chunk size

and overlap. The ‘chunk size‘ parameter determines the

maximum size of each chunk, and the ‘chunk overlap‘

parameter specifies how much overlap there is between

consecutive chunks. These parameters are chosen based

on the desired balance between chunk size and overlap

for efficient processing and analysis of text chunks.

sources.

3. Processing:

Fig. 2. User workflow

2. Text Processing and Embeddings: Text processing

and embeddings play a crucial role in understanding

the content of textual documents. In this project, the

Langchain Google Generative AI Embeddings model is

used for text processing and embeddings. Langchain

provides a range of functionalities for processing text,

including splitting text into chunks and generating

embeddings for each chunk. These embeddings are used

to index the text for efficient retrieval, as well as to

provide context for natural language understanding.

Taking this following text as an example of chunk: "The

quick brown fox jumps over the lazy dog."
- Tokenization: Before generating embeddings, the text is

Existing: Processes user queries based on predefined

knowledge.

Proposed: Requires text extraction from PDFs and pro-

cessing of questions based on this new data source.

4. Interaction Flow:

Existing: Linear interaction with the chatbot for general

queries.

Proposed: Introduces an interactive system where user can

ask PDF related question.

IV. RESULT AND ANALYSIS

In the realms of information retrieval and natural

language processing, several approaches and technologies

have been developed to address the challenge of

information retrieval from textual documents, including

PDFs. These approaches vary in complexity and efficiency,

with some focusing on manual extraction methods and

others on automated techniques. In this section, we

review some relevant work in this area and discuss the

technologies, algorithms, and methodologies used.

1. PDF Parsing Technologies: One of the key components

tokenized into individual words or subwords. Each token

is then converted into a numerical representation (e.g.,

an index or a vector) using Langchain’s model.

Tokenize the text into individual words: ["The", "quick",

"brown", "fox", "jumps", "over", "the", "lazy", "dog."]

- Embedding Lookup: The numerical representations

of tokens are used to look up embedding vectors

from a pre-trained embedding matrix. This matrix

contains embedding vectors for all tokens in the model’s

vocabulary. Assume we have a pre-trained embedding

matrix with embeddings for each token. Let’s say the

embeddings are 3-dimensional vectors: "The": [0.1, 0.2,

0.3] "quick": [0.4, 0.5, 0.6] ... "dog.": [0.7, 0.8, 0.9]

Look up the embeddings for each token and create a list

of embeddings: [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], ..., [0.7, 0.8,

0.9]]

- Aggregation: The embedding vectors for individual

tokens are aggregated to form a single vector

representation for the entire text chunk. This aggregation

step can involve techniques like averaging, pooling, or

attention mechanisms to capture the overall meaning of

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRT24A5165 International Journal of Creative Research Thoughts (IJCRT)www.ijcrt.org k452

the text chunk. Average the embeddings to get a single

vector representation: Aggregated embedding = [(0.1 +

0.4 + ... + 0.7) / 9, (0.2 + 0.5 + ... + 0.8) / 9, (0.3 + 0.6 +

... + 0.9) / 9]

Aggregated embedding = [0.4, 0.5, 0.6]

- Normalization: The aggregated embedding vector is

often normalized to have a unit length. This normalization

step helps in training and comparing embeddings.

Normalize the aggregated embedding to have unit a

length: Norm = sqrt(0.77) = 0.88 Normalized embedding

= [0.4 / 0.88, 0.5 / 0.88, 0.6 / 0.88] = [0.45, 0.57, 0.68]

Output: The final normalized embedding vector

represents the semantic meaning of the text chunk in a

high-dimensional space. Similar text chunks are expected

to have similar embeddings, allowing for effective

information retrieval and similarity calculations. The

final normalized embedding [0.45, 0.57, 0.68] represents

the semantic meaning of the text chunk "The quick

brown fox jumps over the lazy dog." as a 3-dimensional

embedding space. Overall, the Text Embedding Module

uses Langchain’s Google Generative AI Embeddings

model to convert text chunks into embeddings, which

capture the semantic meaning of the text and enable

efficient information retrieval from PDF documents.

3. Similarity Search: FAISS is used in this project for

similarity search, enabling fast and accurate retrieval

of information from indexed PDF content. FAISS is a

library for efficient similarity search and clustering of

dense vectors, making it well-suited for indexing and

searching embeddings generated from text chunks in

PDF documents.

• Indexing :

When the text chunks are extracted from PDF documents

and embedded using Langchain’s Google Generative AI

Embeddings model, FAISS is used to create an index of

these embeddings. The embeddings are quantized using

product quantization to reduce the dimensionality and

improve search efficiency. FAISS creates inverted lists for

each quantized centroid, where each list contains the

IDs of text chunks that are quantized to that centroid.

These inverted lists serve as the index, allowing FAISS to

quickly retrieve similar text chunks based on a query.

• Retrieval :

When a user submits a query, FAISS calculates the

embeddings for the query using the same process used

during indexing. The query embeddings are quantized

and used to look up the inverted lists in the index. FAISS

retrieves the IDs of text chunks in these inverted lists

and calculates the similarity scores between the query

and these text chunks. The text chunks with the highest

similarity scores are returned as the results of the query,

allowing the system to retrieve and display the most

relevant text chunks to the user.

Simplified numerical example to illustrate the indexing

and retrieval process using FAISS :

Assume we have 3 text chunks (T1, T2, T3) and each is

represented by a 2-dimensional embedding vector. We use

product quantization to divide the 2-dimensional space

into 2 subspaces (1-dimensional each). Quantization

reduces the embeddings to a codebook of 2 centroids

per subspace (a total of 4 centroids).

o The quantized embeddings for each text chunk are as

follows:

• T1: [0.1, 0.2] -> [0, 0]

• T2: [0.3, 0.4] -> [1, 0]

• T3: [0.5, 0.6] -> [1, 1]

o FAISS creates inverted lists for each centroid:

• Centroid [0, 0]: [T1]

• Centroid [1, 0]: [T2]

• Centroid [1, 1]: [T3]

o Retrieval Process

The User submits a query with an embedding [0.2, 0.3].

The query embedding is quantized to [0, 0]. FAISS looks

up the inverted list for centroid [0, 0] and retrieves text

chunk T1. The system presents T1 as the most similar

text chunk to the user’s query.

Overall, FAISS plays a crucial role by providing efficient

indexing and retrieval capabilities for the embeddings

generated from PDF documents, facilitating fast and

accurate information retrieval in a multiple chat

environment.

4. Conversational AI: Conversational AI is used to

enable the chatbot to interact with users in a natural

and intuitive manner. Google Generative AI is employed

in this project for conversational capabilities. It allows

the chatbot to understand user queries and provide

relevant answers based on the indexed PDF content. This

technology enhances the user experience by providing a

conversational interface for interacting with the chatbot.

A numerical explanation of how the Conversational AI

Module provides answers to user queries:

- Indexed PDF Content: Assume we have two PDF

documents (D1, D2) with text chunks and embeddings.

Each document contains several text chunks (T1, T2, T3)

with corresponding embeddings. These embeddings are

indexed using FAISS for efficient retrieval.

- User Query: - A user submits a query with an embedding

[0.2, 0.3].

- Answer Generation: The Conversational AI Module

retrieves the most relevant text chunks based on the

query embedding using FAISS. It uses Google Generative

AI to generate a response based on the content of the

retrieved text chunks and the context of the query. The

generated response is presented to the user as an answer

to their query.

- Example: Suppose the closest text chunk to the query

embedding is T3 from document D1, which contains

the text "Data Structures and Algorithms." The module

generates a response like "You can find information

about Data Structures and Algorithms in the indexed

PDF documents."

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRT24A5165 International Journal of Creative Research Thoughts (IJCRT)www.ijcrt.org k453

5. Vector Store: The vector store is a component

that manages the storage and retrieval of embeddings

for text chunks extracted from PDF documents. When

a user uploads PDF files, the PDFs are stored in a

location accessible to the backend server. The server may

store the PDF files on disk, depending on the project’s

architecture and requirements. Each uploaded PDF file

is associated with a unique identifier (e.g., file name or

ID) that allows the system to retrieve the file when needed.

6. Integration with Streamlit: Streamlit is used for the

user interface in this project, providing an interactive

platform for users to interact with the chatbot and upload

PDF documents. Streamlit allows for the easy integration

of various components, such as file uploaders and chat

interfaces, making it ideal for developing user-friendly

applications.

A. Implementation

Fig. 3. Fig. 1. Upload single or Multiple Files

Fig. 4. output 1

Fig. 5. Output

2

V. CONCLUSIONS

This project successfully demonstrates the development

of a chat interface that facilitates question answering

based on uploaded PDFs. It leverages Langchain’s capabil-

ities to create a custom question-answering work ow and

integrates a large language model (LLM) for generating

responses to user queries.

Streamlit provides a user-friendly web interface for

uploading PDFs and interacting with the system through

a chat-like interface. The key strengths of this project lie

in its clear separation of functionalities, effective use of

Langchain and Streamlit, and the integration of a powerful

LLM for response generation. However, there’s room for

improvement in areas like error handling, search opti-

mization, context management, and security best prac-

tices.

This project not only showcases the technical prowess

in NLP and document analysis but also underscores the

practical applications of such technology. By bridging the

gap between static document content and dynamic user

interactions, it opens avenues for enhanced information

retrieval and user engagement.

By addressing these aspects, we developed a robust tool

for exploring and gaining insights from information stored

within PDF documents. This user-friendly chat interface

empowers users to ask questions from the content of

uploaded PDFs and receive relevant answers, fostering

a more effi cient and interactive way to navigate and

understand these documents.

REFERENCES

[1] Ritendu Bhattacharyya, Sharat Chandra K.

Manikonda, Bharani Kumar Depuru3 "An AI-

Driven Interactive Chatbot: A Well Trained Chatbot

that Communicates with the Users and Reduces the

Man- ual Interaction", Vol.9, Feb 2024

[2] Vaibhav Kant Singh, Vinay Kumar Singh "VECTOR

SPACE MODEL:

AN INFORMATION RETRIEVAL SYSTEM", July 2022

[3] Topsakal, Oguzhan and Akinci, T. Cetin "Creating

Large Language Model Applications Utilizing

LangChain: A Primer on Developing LLM Apps

Fast", July 2023

[4] Wenhu Chen and Ming-Wei Chang and Eva

Schlinger and William Wang and William W. Cohen

"Open Question Answering over Tables and

Text,2021

[5] Singla, Samriddhi and Eldawy, Ahmed and Diao,

Tina and Mukhopadhyay, Ayan and Scudiero, Elia

"Experimental Study of Big Raster and Vector

Database Systems",April 2021.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRT24A5165 International Journal of Creative Research Thoughts (IJCRT)www.ijcrt.org k454

[6] Qingyao Ai and Ting Bai and Zhao Cao and Yi Chang

and Jiawei Chen and Zhumin Chen and Zhiyong

Cheng and Shoubin Dong and Zhicheng Dou and

Fuli Feng and Shen Gao and Jiafeng Guo and

Xiangnan He and Yanyan Lan and Chenliang Li

and Yiqun Liu and Ziyu Lyu and Weizhi Ma and

Jun Ma and Zhaochun Ren and Pengjie Ren and

Zhiqiang Wang and Mingwen Wang and Ji- Rong

Wen and Le Wu and Xin Xin and Jun Xu and Dawei

Yin and Peng Zhang and Fan Zhang and Weinan

Zhang and Min Zhang and Xiaofei Zhu "Information

Retrieval Meets Large Language Models: A Strategic

Report from Chinese IR Community",2023.

[7] Polina Tsvilodub and Michael Franke and Robert

D. Hawkins and Noah D. Goodman

"Overinformative Question Answering by Humans

and Machines", the Year 2023

[8] Mattias Wahde,Marco Virgolin "Conversational

Agents: Theory and Applications ", Feb 2022

http://www.ijcrt.org/

