IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

ON I-CAUCHY SEQUENCES OF FUNCTIONS IN P-ADIC LINEAR 2-NORMED SPACES

¹ Dontula Shankaraiah, ² Nagula Manjula

¹ Department of Mathematics, ¹ CVR College of Engineering, Ibrahimpatnam, Ranga Reddy District–501510, TS, INDIA ² Department of Mathematics, ²Sreenidhi Institute of Science and Technology, Hyderabad, TS, India.

Abstract

In this paper, we introduce the concepts of I and I^* – convergence of sequences of functions and the concepts of I and I^* – Cauchy sequences of functions in p-adic linear 2-normed spaces. Also we investigate the relation between these concepts in p-adic linear 2-normed spaces.

Keywords: 2-normed spaces, *p*-adic 2-norm, *p*-adic linear 2-normed space, I - C auchy sequence, $I^* - C$ auchy sequence.

2000 Mathematics Subject Classification: 11B68, 11F80, 46A15, 11S80, 46A65.

1. INTRODUCTION

Gähler [1] introduced the concept of linear 2-normed spaces in 1965 and it has since been expanded in different fields. Lewandowska published a lot of papers on 2-normed sets and convergent sequences...etc. (see ([4], [7], [8], [9], [12]). P.Kostyrko et al [6] were very first to introduce ideal convergence of sequences, which is a generalization of statistical convergence. The concepts of I – cluster point and I – limit point of a sequence in metric space were first discussed in [5] and established some results between these concepts. The relation between I – cluster points and ordinary limit points of sequences in 2-normed spaces was studied by A.Sahiner et al [13] and Gurdal [2].Gurdal and Isil Acik [3, 11] proposed the concept of I-Cauchy sequences in 2-normed spaces. I – Convergence and I – Cauchy Sequences of Functions in 2-normed spaces were introduced by Mukaddes Arslan and Erdinc Dundar [16].

The connection between the concepts in *p*-adic numbers, p-adic analysis and linear 2-normed spaces was first introduced by Mehmet Acikgoz ([10]). Certain *p*-adic linear 2-normed space properties were introduced by B.Surender Reddy [14]. The concept of ideal convergent sequences in *p*-adic linear 2-normed spaces introduced by B.Surender Reddy and D.Shankaraiah [15].

This paper's major goal is to introduce the notion of I and I^* – convergence of sequences of functions, I and I^* – Cauchy sequences of functions in p -adic linear 2-normed spaces. Furthermore, we establish how these ideas relate to one another in p -adic linear 2-normed spaces.

2. Preliminaries

Definition 2.1: Let K be field of real or complex numbers and X be a linear space of dimension higher than 1 over K. Suppose $N(\bullet, \bullet)$ be a real valued function on $X \times X$ which is non-negative and fulfills the following criteria:

1). N(x, y) > 0 and N(x, y) = 0 if and only if x and y are linearly dependent vectors.

2). N(x, y) = N(y, x) for all $x, y \in X$,

3). $N(\lambda x, y) = |\lambda| N(x, y)$ for all $\lambda \in K$ and $x, y \in X$,

4). $N(x+y,z) \le N(x,z) + N(y,z)$ for all $x, y, z \in X$.

Then $N(\bullet, \bullet)$ is called a 2-norm on X and the pair $(X, N(\bullet, \bullet))$ is called a linear 2-normed space.

Definition 2.2: Let K be field of real or complex numbers and X be a linear space of dimension higher than 1 over K. Suppose $N(\bullet, \bullet)_n$ be a real valued function on $X \times X$ which is non-negative and fulfills the following criteria:

1). $N(x, z)_p = 0$ if and only if x and z are linearly dependent vectors.

2). $N(xy, z)_p = N(x, z)_p \cdot N(y, z)_p$ for all $x, y, z \in X$,

3). $N(x+y,z)_p \le N(x,z)_p + N(y,z)_p$ for all $x, y, z \in X$,

4). $N(\lambda x, z)_p = |\lambda| N(x, z)_p$ for all $\lambda \in K$ and $x, z \in X$.

Then $N(\bullet, \bullet)_p$ is called a *p*-adic 2-norm on X and the pair $(X, N(\bullet, \bullet)_p)$ is called *p*-adic linear 2-normed space.

Proposition 2.3: If a sequence $\{x_n\}$ in a *p*-adic linear 2-normed space $(X, N(\bullet, \bullet)_p)$ is convergent to $x \in X$, then $\lim N(x_n, z)_p = N(x, z)_p$ for each $z \in X$.

Proposition 2.4: If $\lim N(x_n, z)_p$ exists then $\{x_n\}_{n\geq 1}$ is a Cauchy sequence w.r.t. $N(\bullet, \bullet)_p$.

Definition 2.5: A sequence $\{x_n\}_{n\geq 1}$ is a null sequence in p-adic linear 2-normed space if $\lim N(x_n, z)_n = 0$

for all $z \in X$.

A family of sets $I \subseteq 2^{Y}$ (power sets of $Y \subset N$) is said to be an ideal if

a). $\Phi \in I$,

b). $P, Q \in I \Rightarrow P \cup Q \in I$ and

c).
$$P \in I$$
, $Q \subseteq P \Longrightarrow Q \in I$.

JCR A family of non empty sets $F \subset 2^Y$ is a filter on Y if and only if $\Phi \notin F$, $P \cap Q \in F$ for each $P, Q \in F$, and any subset of an element of F is in F. An ideal I is called non-trivial if $I \neq \Phi$ and $Y \notin I$. Clearly I is a non-trivial ideal if and only if $F = F(I) = \{Y - P : P \in I\}$ is a filter in Y, called the filter associated with the ideal *I*. A non-trivial ideal *I* is called admissible if and only if $\{x\}: x \in Y\} \subset I$.

An admissible ideal $I \subset 2^{Y}$ is said to have the property (AP) if for any sequence $\{P_1, P_2, P_3, ...\}$ of mutually disjoint sets of I there is a sequence $\{Q_1, Q_2, Q_3, ...\}$ of sets such that each symmetric difference $P_i \Delta Q_i$,

i = 1, 2, 3..., is finite and $Q = \bigcup_{i=1}^{\infty} Q_i \in I$.

Lemma 2.6: Let $\{P_i\}_{i=1}^{\infty}$ be a countable collection of subsets of N such that $P_i \in F(I)$ for each i, where F(I) is a filter associated by an admissible ideal I with property (AP). Then there is a set $P \subset N$ such that $P \in F(I)$ and the set $P - P_i$ is finite for all *i*.

Definition 2.7: Let $I \subset 2^N$ be a non trivial ideal in N. A sequence $\{x_n\}$ in a p-adic linear 2-normed space $(X, N(\bullet, \bullet)_n)$ is X is said to be I – convergent to X if for each $\varepsilon > 0$ and non-zero z in X the set $A(\varepsilon) = \{n \in N : N(x_n - x, z)_p \ge \varepsilon\} \in I$. If $\{x_n\}$ is I-convergent to $x \in X$, then we write $I - \lim_{n \to \infty} N(x_n - x, z)_p = 0$ or $I - \lim_{n \to \infty} N(x_n, z)_p = N(x, z)_p$ for each non-zero $z \in X$. The number x is called $I - \text{limit of the sequence} \{x_n\}.$

3. *I* and *I*^{*} – Cauchy sequences of functions in p-adic linear 2-normed spaces

In this section, we present the concepts of I and I^* – convergence of sequences of functions, as well as the concepts of I and I^* – Cauchy sequences of functions in p -adic linear 2-normed spaces. Additionally, we establish how these ideas relate to one another in p -adic linear 2-normed spaces.

Throughout this paper, $(X_1, N_1(\bullet, \bullet)_p)$ and $(X_2, N_2(\bullet, \bullet)_p)$ are two *p*-adic linear 2-normed spaces, $\{f_n\}$ and $\{g_n\}$ are two sequences of functions and *f* is a function from X_1 to X_2 .

Definition 3.1: The sequence of functions $\{f_n\}$ is said to be convergent to f if for each $\varepsilon > 0$ and for each $z \in X_2$ there exists $n_0 \in N$ such that $\lim_{n \to \infty} N_2 (f_n(x) - f(x), z)_p < \varepsilon \quad \forall n \ge n_0$ and $\forall x \in X_1$.

 $\left(\forall z \in X_2 \right) \left(\forall x \in X_1 \right) \left(\forall \varepsilon > 0 \right) \left(\forall n_0 \in N \right) \left(\forall n \ge n_0 \right) N_2 \left(f_n(x) - f(x), z \right)_p < \varepsilon . \text{ This can be expressed as } f_n(x) \xrightarrow{N_2(\bullet, \bullet)_p} f(x) \text{ for each } x \in X_1 \text{ or we write } f_n \xrightarrow{N_2(\bullet, \bullet)_p} f .$

Definition 3.2: The sequence of functions $\{f_n\}$ is said to be I – pointwise convergent to f if for each $\varepsilon > 0$ and each non zero $z \in X_2$ the set $A(\varepsilon, z) = \{n \in N : N_2(f_n(x) - f(x), z)_p \ge \varepsilon\} \in I$

Or $I - \lim_{n \to \infty} N_2(f_n(x) - f(x), z)_p = 0$, for each $x \in X_1$ or $I - \lim_{n \to \infty} N_2(f_n(x), z)_p = N_2(f(x), z)_p$, for each non-zero z in X_2 . The function f is called I – limit of the sequence of functions $\{f_n\}$.

Lemma 3.3: Let $I \subset 2^N$ be an admissible ideal with property (AP). If a sequence of functions $\{f_n\}$ is I - pointwise convergent to f then there exists a set $P \in F(I)$, $P = \{m_1 < m_2 < \dots < m_k < \dots \}$ such that $\lim_{k \to \infty} N_2(f_{m_k}(x) - f(x), z)_p = 0$, for each non-zero $z \in X_2$.

Proof: Let a sequence of functions $\{f_n\}$ be I – pointwise convergent to f. Then for each $\varepsilon > 0$ and non-zero $z \in X_2$, the set $A(\varepsilon, z) = \{n \in N : N_2(f_n(x) - f(x), z)_p \ge \varepsilon\} \in I$. For each $i \in N$ and non-zero $z \in X_2$, define a sets $P_i = \{n \in N : N_2(f_n(x) - f(x), z)_p < \frac{1}{i}\}$ and $H_i = N - P_i =$

 $\{n \in N : N_2(f_n(x) - f(x), z)_p \ge \frac{1}{i}\}$. Then for each $i \in N$, $H_i \in I$ and $P_i \in F(I)$. By Lemma (2.6), we have $P \in F(I)$ such that $P = \{m_1 < m_2 < \dots < m_k < \dots\}$ and $P - P_i$ is finite set for all i. Now define the sequence $\{g_n\}$ such that $g_n = f_n$ for each $n \in P$ and $g_n = f$ for $n \notin P$. Then $\lim_{n \to \infty} N_2(g_n(x) - f(x), z)_p = 0$ which implies that $\lim_{k \to \infty} N_2(f_{m_k}(x) - f(x), z)_p = 0$, for each non-zero $z \in X_2$.

Now we introduce the concept of I^* – convergence of sequence of functions in p -adic linear 2-normed spaces.

Definition 3.4: A sequence of functions $\{f_n\}$ is said to be I^* – pointwise convergent to f if and only if there exists a set $M \in F(I)$, $M = \{m_1 < m_2 < \dots < m_k < \dots\}$ such that $\lim_{k \to \infty} N_2(f_{m_k}(x) - f(x), z)_p = 0$, for each non-zero $z \in X_2$.

If $\{f_n\}$ is I^* – pointwise convergent to f, then we write $I^* - \lim_{n \to \infty} N_2(f_n(x) - f(x), z)_p = 0$ or

 $I^* - \lim_{n \to \infty} N_2(f_n(x), z)_p = N_2(f(x), z)_p$, for each non-zero z in X_2 . The function f is called I^* – limit of the sequence of functions $\{f_n\}$.

From Lemma (3.3), it follows that if I is an admissible ideal with property (AP) and a sequence of functions $\{f_n\}$ is I-pointwise convergent to f then $\{f_n\}$ is I^* -pointwise convergent to f.

Lemma 3.5: Let $I \subset 2^N$ be an admissible ideal. If $I^* - \lim_{n \to \infty} N_2(f_n(x) - f(x), z)_p = 0$ then

$$\begin{split} I - \lim_{n \to \infty} N_2(f_n(x) - f(x), z)_p &= 0 \quad \text{for each non-zero } z \in X_2 \ . \\ \textbf{Proof: Let } I \subset 2^N \text{ be an admissible ideal and } I^* - \lim_{n \to \infty} N_2(f_n(x) - f(x), z)_p &= 0 \ . \text{ Then there exists a set} \\ H \in I \text{ such that for } M &= N - H = \{m_1 < m_2 < \dots < m_k < \dots \} \text{ we have} \\ \lim_{k \to \infty} N_2(f_{m_k}(x) - f(x), z)_p &= 0 \ , \text{ for each non-zero } z \in X_2 \ . \\ (3.6) \\ \text{Let } \varepsilon > 0 \ . \text{ By virtue of } (3.6) \text{ there exists } k_0 \in N \text{ such that } \lim_{k \to \infty} N(f_{m_k}(x) - f(x), z)_p < \varepsilon \text{ for each } k > k_0 \ . \\ \text{Then obviously} \\ A(\varepsilon, z) &= \{n \in N : N_2(f_n(x) - f(x), z)_p \ge \varepsilon\} \subset H \cup \{m_1 < m_2 < \dots < m_{k_0}\} \\ \text{The set on the right hand side of } (3.7) \text{ belongs to I (since I is an admissible). So } A(\varepsilon) \in I \ . \\ \text{Therefore } I - \lim_{n \to \infty} N_2(f_n(x) - f(x), z)_p = 0 \ , \text{ for each non-zero } z \in X_2 \ . \\ \text{From Lemma } (3.3) \text{ and Lemma } (3.5) \text{ we obtain the following Lemma which gives the equivalence} \end{split}$$

between I – convergence and I^* – convergence in p -adic linear 2-normed spaces. **Lemma 3.8:** Let $I \subset 2^N$ be an admissible ideal with property (AP), $\{f_n\}$ be a sequence of functions and f be a function from X_1 to X_2 . Then $\{f_n\}$ is I – pointwise convergent to f if and only if $\{f_n\}$ is I^* – pointwise convergent to f.

Now we introduce the concepts I and I^* – Cauchy sequences in p -adic linear 2-normed spaces. Also, we establish the relation between these concepts in p -adic linear 2-normed spaces.

Definition 3.9: Let $I \subset 2^N$ be an admissible ideal. The sequence of functions $\{f_n\}$ is said to be I – Cauchy sequence, if for each $\varepsilon > 0$ and non-zero $z \in X_2$ there exists a number $l(\varepsilon, z)$ such that $\{k \in N : N_2(f_k(x) - f_l(x), z)_p \ge \varepsilon\} \in I$.

Definition 3.10: Let $I \subset 2^N$ be an admissible ideal. Then the sequence of functions $\{f_n\}$ is said to be I^* -Cauchy sequence if there exists a set $M = \{m_1 < m_2 < \dots < m_k < \dots < m_k < \dots < N, M \in F(I) \text{ such that the sequence } \{f_{m_k}\}$ is a Cauchy sequence. i.e., $\lim_{k,l \to \infty} N_2(f_{m_k} - f_{m_l}, z)_p = 0$ for each non-zero $z \in X_2$.

Theorem 3.11: Let I be an admissible ideal. If the sequence of functions $\{f_n\}$ is I^* – Cauchy sequence then $\{f_n\}$ is I – Cauchy sequence.

Proof: Let *I* be an admissible ideal and $\{f_n\}$ be I^* – Cauchy sequence. Then by definition there exists the set $M = \{m_1 < m_2 < \dots < m_k < \dots\} \subset N$, $M \in F(I)$ such that $N_2(f_{m_k}(x) - f_{m_l}(x), z)_p < \varepsilon$ for every non-zero $z \in X_2$ and $k, l > k_0(\varepsilon)$. Let $l(\varepsilon) = m_{k_0+1}$. Then for every $\varepsilon > 0$, we have $N_2(f_{m_k}(x) - f_l(x), z)_p < \varepsilon$, for every non-zero $z \in X_2$ and $k > k_0$. Now put H = N - M. It is clear that $H \in I$ and

 $A(\varepsilon, z) = \{ n \in N : N_2(f_n(x) - f_l(x), z)_p \ge \varepsilon \} \subset H \bigcup \{ m_1 < m_2 < \dots < m_k < \dots \} .$ (3.12)

Then the set on the R.H.S. of (3.12) belongs to *I* because *I* is an admissible ideal. Therefore for every $\varepsilon > 0$ we find $l(\varepsilon)$ such that $A(\varepsilon, z) \in I$ i.e., $\{f_n\}$ is *I* – Cauchy sequence.

Now we will prove that I^* – convergence implies I – Cauchy condition in a p-adic linear 2-normed spaces.

Theorem 3.13: Let *I* be an admissible ideal and $I^* - \lim_{n \to \infty} N_2(f_n(x) - f, z)_p = 0$ where $\{f_n\}$ is a sequence of functions. Then $\{f_n\}$ is *I* - Cauchy sequence in *X*. In other words, let *I* be an admissible ideal and if a sequence of functions $\{f_n\}$ is I^* - convergent to *f*, then $\{f_n\}$ is *I* - Cauchy sequence.

Proof: Let I be an admissible ideal. Suppose $\{f_n\}$ is a sequence of functions is I^* – convergent to f. Then

there exists the set $M \in F(I)$, $M = \{m_1 < m_2 < \dots < m_k < \dots\} \subset N$, such that $\lim_{k \to \infty} N_2(f_{m_k}(x) - f, z)_p = 0$ for each non-zero $z \in X_2$. It shows that there exists $k_0 = k_0(\varepsilon)$ such that $N_2(f_{m_k}(x) - f, z)_p < \frac{\varepsilon}{2}$ for every $\varepsilon > 0$, non-zero $z \in X_2$ and $k > k_0$.

$$\begin{split} N_{2}(f_{m_{k}}(x) - f_{m_{i}}(x), z)_{p} &= N_{2}(f_{m_{k}}(x) - f + f - f_{m_{i}}(x), z)_{p} \\ &= N_{2}((f_{m_{k}}(x) - f) - (f_{m_{i}}(x) - f), z)_{p} \\ &\leq N_{2}(f_{m_{k}}(x) - f, z)_{p} + N_{2}(f_{m_{i}}(x) - f, z)_{p} \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \text{, for every } \varepsilon > 0 \text{, non-zero } z \text{ in } X_{2} \text{ and } k > k_{0}, l > k_{0} \text{.} \end{split}$$
$$\Rightarrow \quad \lim_{k,l \to \infty} N_{2}(f_{m_{k}} - f_{m_{i}}, z)_{p} = 0 \end{split}$$

 $\xrightarrow{k,l \to \infty} (f_k) = (f_k) =$

 $\Rightarrow \{f_{m_k}\}$ is Cauchy sequence.

 $\Rightarrow \{f_n\}$ is a I^* – Cauchy sequence.

According to Theorem (3.11), $\{f_n\}$ is I – Cauchy sequence.

The following corollary, which gives the relation between I – convergence and I – Cauchy sequence in a p -adic linear 2-normed spaces, is derived from Theorem (3.13) and Lemma (3.8).

Corollary 3.14: Let $I \subset 2^N$ be an admissible ideal with property (AP). If $I - \lim_{n \to \infty} N_2(f_n - f, z)_p = 0$, for each non-zero $z \in X_2$ then a sequence of functions $\{f_n\}$ is I - Cauchy sequence i.e., if $\{f_n\}$ is I - convergence to f then $\{f_n\}$ is I - Cauchy sequence.

The following theorem, which states that the equivalence of I – Cauchy sequence and I^* – Cauchy sequence in the case I has the property (AP).

Theorem 3.15: Let *I* be an admissible ideal with property (AP). Then $\{f_n\}$ is *I* – Cauchy sequence if and only if $\{f_n\}$ is I^* – Cauchy sequence.

Proof: Let $\{f_n\}$ be I^* – Cauchy sequence. Then by Theorem (3.11), $\{f_n\}$ is also I – Cauchy sequence. Let $\{f_n\}$ be I – Cauchy sequence. Now we have to prove that $\{f_n\}$ is a I^* – Cauchy sequence. There exists $l(\varepsilon)$ such that $A(\varepsilon, z) = \{n \in N : N_2(f_n - f_l, z)_p \ge \varepsilon\} \in I$, for each $\varepsilon > 0$ and non-zero $z \in X_2$. Let $P_i = \{n \in N : N_2(f_n - f_{m_i}, z)_p < \frac{1}{i}\}, i = 1, 2, 3, \dots$, where $m_i = N(\frac{1}{i})$.

Since $H_i = N - P_i = \{n \in N : N_2(f_n - f_{m_i}, z)_p \ge \frac{1}{i}\} \in I$, for each $i \in N$ and non-zero $z \in X_2$, therefore $P_i \in F(I), i \in N$. Since I has (AP) property then by Lemma (3.4) there exists a set $P \subset N$ such that $P \in F(I)$ and the set $P - P_i$ is finite for all i. Now we have to show that $\lim_{n,m \to \infty} N_2(f_n - f_m, z)_p = 0$; $m, n \in P$ and for each non-zero $z \in X_2$. For this, let $\varepsilon > 0$ and $j \in N$ be such that $j > \frac{2}{\varepsilon}$. If $m, n \in P$ then $P - P_j$ is a finite set, so there exists k = k(j) such that $m \in P_j$ and $n \in P_j$ for all m, n > k(j). Therefore $N_2(f_n - f_m, z)_p < \frac{1}{j}$ and $N_2(f_m - f_{m_j}, z)_p < \frac{1}{j}$, for all m, n > k(j) and non-zero $z \in X_2$. Now $N_2(f_n - f_m, z)_p = N_2(f_n - f_{m_j} + f_{m_j} - f_m, z)_p = N_2((f_n - f_{m_j}, z)_p + N_2(f_m - f_{m_j}, z)_p < \frac{1}{2} N_2(f_m - f_{m_j}, z)_p + N_2(f_m - f_{m_j}, z)_p$

$$<\frac{1}{j}+\frac{1}{j}=\frac{2}{j}<2(\frac{\varepsilon}{2})=\varepsilon$$
, for $m,n>k(j)$ and each non-zero $z \in X_2$.

Hence, for any $\varepsilon > 0$ there exists $k = k(\varepsilon)$ such that for $m, n > k(\varepsilon)$ and $m, n \in P \in F(I), N_2(f_n - f_m, z)_p < \varepsilon$, for each non-zero $z \in X_2$. This shows that the sequence $\{f_n\}$ is I^* – Cauchy sequence. Thus $\{f_n\}$ is I – Cauchy sequence if and only if $\{f_n\}$ is I^* – Cauchy sequence.

REFERENCES

- [1] S. Gähler, Linear 2-normerte raume, *Math. Nachr*, 28(1965), 1-45.
- [2] M. Gurdal, On ideal convergent sequences in 2-normed spaces, *Thai Journal of Mathematics*, 4(1) (2006), 85-91.
- [3] M. Gurdal and Isil Acik, On *I*-Cauchy sequences in 2-normed spaces, Mathematical Inequalities & Applications, Vol 11, Number 2(2008), 349-354
- [4] H. Gunawan and Mashadi, On finite dimensional 2-normed spaces, *Soochow J. Math.*, 27(3) (2001), 321-329.
- [5] P. Kostyrko, M. Macaj and T. Salat, *I*-convergence, *Real Anal. Exchange*, 26(2) (2000), 669-686.
- [6] P. Kostyrko, M. Macaj, T. Salat and M. Sleziak, *I*-convergence and extremal *I*-limit points, *Math. Slovaca*, 55(2005), 443-464.
- [7] Z. Lewandowska, Generalized 2-normed spaces, *Stuspskie Prace Matematyczno-Fizyczne*, 1(2001), 33-40.
- [8] Z. Lewandowska, Linear operators on generalized 2-normed spaces, *Bull. Math. Soc. Sci. Math. Roumanie* (N.S.), 42(90) (4) (1999), 353-368.
- [9] Z. Lewandowska, On 2-normed sets, *Glasnik Mat. Ser. III*, 38(58) (1) (2003), 99-110.
- [10] Mehmet Acikgoz, N. Aslan, N. Koskeroglu and S. Araci, p-adic approach to linear 2-normed spaces, *Mathematica Moravica*, 13(2) (2009), 7-22.
- [11] Anar Nabiev, Serpil Pehlivan and M. Gurdal, On *I*-Cauchy sequences, Taiwanese Journal of Mathematics, Vol.11, No.2, pp.569-576, June 2007
- [12] W. Raymond, R. Freese and J. Cho, *Geometry of Linear 2-Normed Spaces*, Nova Science Publishers, (2001).
- [13] H. Sahiner, M. Gurdal, S. Saltan and H. Gunawan, Ideal convergence in 2-normed spaces, *Taiwanese Journal of Mathematics*, 11(5) (2007), 1477-1484.
- [14] B.Surender Reddy, Equivalence of p-adic 2-norms in p-adic linear 2-normed spaces, International Journal of Open Problems in Computer Science and Mathematics, 3(5) (2010), 25-38.
- [15] B.Surender Reddy and D.Shankaraiah, On Ideal convergent sequences in p-adic linear 2normed spaces, General Mathematics Notes, Vol. 17, No. 1, 2013, (Press)
- [16] Mukaddes Arslan and Erdinc Dundar, I Convergence and I Cauchy Sequences of Functions in 2-normed spaces, Konuralp Journal of Mathematics, Vol. 6, No. 1, 2018, 57-62.