ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Fg-Closed Sets And F-Normal Spaces

¹Hamant Kumar, ²Bhopal Singh Sharma and ³Anuj Kumar

Department of Mathematics ¹V. A. Govt Degree College, Atrauli-Aligarh, 202280, U. P. (India)

^{2 & 3}N. R. E. C. College, Khurja-Bulandshahr, 203131, U. P. (India)

Abstract: In this paper, a new kind of sets called F-generalized closed (briefly Fg-closed) sets are introduced, which is a generalization of F-closed as well as g-closed sets and also studied some basic properties of Fg-closed sets in topological spaces. Further by utilizing Fg-closed sets, we obtained a characterization of normal spaces. Moreover, we also introduced a new class of normal spaces is called F-normal spaces in topological spaces in topological spaces.

Keyword:- F-closed set, Fg-closed set, Fg-open set, F-normal Space, almost Fg-closed function, almost Fg-continuous function etc.

2020 AMS Subject classification: 54A05, 54C08, 54C10, 54D15.

1. Introduction

The concept of closedness is fundamental with respect to study of topological spaces. Generalized closed sets play a very important role in topology and generalized closed sets are research topics of many topologists. In 1923, Tietze [6] first defined the notion of normal spaces and studied their properties. In 1937, M. Stone [5] introduced the notion of regular open sets. In 1970, Levine [3] introduced the notion of generalized closed sets and studied the properties of g-closed sets in topological spaces. In 1971, Crossley and Hildebrand [2] defined the concept of semi open sets and investigated their properties. In 2000, A. Pushpalatha [4] studied the concept of w-closed sets in topological spaces and obtained some basic properties of w-closed sets. In 2023, Mesfer H. Alqahtani [1] introduced the concept of F-open and F-closed sets in topological spaces. They studied the main properties of these sets and examine the relationships between F-open and F-closed sets with other kinds of closed and open sets such as regular open, regular closed, π -open, π -closed and open sets etc.

2. Preliminaries

In what follows, spaces always mean topological spaces on which no separation axioms are assumed unless explicitly stated and $f : (X, \mathfrak{I}) \rightarrow (Y, \sigma)$ (or simply $f : X \rightarrow Y$) denotes a function f of a space (X, \mathfrak{I}) into a space (Y, σ) . Let A be a subset of a space X. The closure and the interior of A are denoted by cl(A) and int(A), respectively.

2.1 Definition: A subset A of a topological space (X, \mathfrak{I}) is said to be

(i) regular open [5] if A = int(cl(A)).

(ii) semi open [2] if $(A) \subset cl(int(A))$.

(iii) g-closed [3] if $cl(A) \subset U$ whenever $A \subset U$ and $U \in \mathfrak{I}$.

(iv) w-closed [4] if $cl(A) \subset U$ whenever $A \subset U$ and U is semi-open.

The collection of all semi open (resp. g-closed, w-closed) sets is denoted by S-O(X) (resp. g-C(X), w-C(X)).

2.2 Definition: An open subset A of the topological space (X, \Im) is said to be **F-open [1]** set if cl(A) - A is finite set. The complement of the F-open set is called F-closed. The collection of all F-open (resp. F-closed) sets is denoted by F-O(X) (resp. F-C(X)).

3. Fg-closed set

3.1 Definition: A subset A of a topological space (X, \mathfrak{I}) is said to be **Fg-closed** if $cl(A) \subset U$ whenever $A \subset U$ and U is F-open. The complement of the Fg-closed set is called Fg-open set. The collection of all Fg-open (resp. Fg-closed) sets is denoted by Fg-O(X) (resp. Fg-C(X)).

The intersection of all Fg-closed sets containing A, is called the Fg-closure of A and is denoted by Fg-cl(A). The Fg-interior of A, denoted by Fg-int(A) is defined to be the union of all Fg-open sets contained in A.

3.2 Remark. We summarize the fundamental relationships between several types of generalized closed sets in the following diagram.

Where none of the implications is reversible can be seen from the following examples

3.3 Example. Let $X = \{a, b, c\}$ and $\Im = \{\phi, X, \{a\}, \{a, b\}\}$. Then $C(X) = F-C(X) = w-C(X) = \{\phi, X, \{c\}, \{b, c\}\}$ $s-O(X) = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ $s-C(X) = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$ $g-C(X) = Fg-C(X) = \{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ Here $\{b\}$ is semi closed set but not closed set, Fg-closed and g-closed

Here {b} is semi closed set but not closed set, Fg-closed and g-closed also, the set {a, c} is Fg-closed and gclosed set but not semi closed set and closed. Hence it is clear that neither semi closed imply Fg-closed nor Fg-closed imply semi closed sets.

3.4 Example. Let $X = \{a, b, c, d\}$ and $\Im = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Then $C(X) = F-C(X) = w-C(X) = \{\phi, X, \{d\}, \{b, d\}, \{c, d\}, \{b, c, d\}\}$ $S-O(X) = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\}$ $S-C(X) = \{\phi, X, \{b\}, \{c\}, \{d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{b, c, d\}\}$ $S-C(X) = Fg-C(X) = \{\phi, X, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$ $Here \{a, d\}$ is g-closed set but not w-closed set.

www.ijcrt.org

3.5 Example. Let $X = \{a, b\}$ and $\mathfrak{I} = \{\phi, X\}$ Then $A = \{a\}$ is w-closed set but not closed.

3.6 Example. Let (\mathbb{R}, \mathbf{U}) be the usual topological space. The set of natural numbers \mathbb{N} is a closed set but not F-closed set of \mathbb{R} with respect to usual topology \mathbf{U} , as $\mathbb{N} - int(\mathbb{N}) = \mathbb{N} - \phi = \mathbb{N}$ which is an infinite set.

3.7 Example. Let (\mathbb{R}, \mathbf{U}) be the usual topological space, $A_n = (n, n+1) \forall n \in \mathbb{Z}$ be the open sets of set of real numbers \mathbb{R} in U. Now $cl(A_n) - A_n = [n, n+1] - (n, n+1) = \{n, n+1\}$ which is a finite set, i.e. A_n is a F-open subset of \mathbb{R} . Now define $A = \bigcup_{n \in \mathbb{Z}} A_n = \mathbb{R} - \mathbb{Z}$ which is an open set as it is countable union of open set. Also $cl(A) - A = cl(\mathbb{R} - \mathbb{Z}) - (\mathbb{R} - \mathbb{Z}) = \mathbb{R} - (\mathbb{R} - \mathbb{Z}) = \mathbb{Z}$ which is an infinite set hence A is not F-open set in (\mathbb{R}, \mathbf{U}) . Now for A, \mathbb{R} is the smallest F-open set containing A, also $cl(A) = \mathbb{R} \subset \mathbb{R}$ whenever $A \subset \mathbb{R}$ and \mathbb{R} is F-open set, hence A is Fg-closed set. But A is not g-closed set as $A \subset A$ and A is open set but $cl(A) = \mathbb{R}$ is not subset of A.

3.8 Theorem: Union of two Fg-closed set is Fg-closed set.

Proof: Let A and B be two Fg-closed sets. Now A is Fg-closed set if $cl(A) \subset U_1$ whenever $A \subset U_1$ and U_1 is F-open set, also B is Fg-closed set if $cl(B) \subset U_2$ whenever $B \subset U_2$ and U_2 is F-open set. Now $U_1 \cup U_2$ is F-open set as U_1 and U_2 are F-open sets, and $A \cup B \subset U_1 \cup U_2$ as $A \subset U_1$ and $B \subset U_2$. Now $cl(A) \subset U_1$ and $cl(B) \subset U_2 \Rightarrow cl(A) \cup cl(B) \subset U_1 \cup U_2 \Rightarrow cl(A \cup B) \subset U_1 \cup U_2$ because by using the result $cl(A \cup B) = cl(A) \cup cl(B)$. Hence $cl(A \cup B) \subset U_1 \cup U_2$ whenever $A \cup B \subset U_1 \cup U_2$ and $U_1 \cup U_2$ is F-open set. Hence $A \cup B$ is Fg-closed set.

In general finite union of Fg-closed sets is Fg-closed set.

3.9 Theorem: Intersection of two Fg-closed set is Fg-closed set.

Proof: Let A and B be two Fg-closed set. Now A is Fg-closed set if $cl(A) \subset U_1$ whenever $A \subset U_1$ and U_1 is F-open set, also B is Fg-closed set if $cl(B) \subset U_2$ whenever $B \subset U_2$ and U_2 is F-open set. Now $U_1 \cap U_2$ is F-open set as U_1 and U_2 are F-open sets, and $A \cap B \subset U_1 \cap U_2$ as $A \subset U_1$ and $B \subset U_2$. Now $cl(A) \subset U_1$ and $cl(B) \subset U_2 \Rightarrow cl(A) \cap cl(B) \subset U_1 \cap U_2 \Rightarrow cl(A \cap B) \subset U_1 \cap U_2$ because by using the result $cl(A \cap B) \subset cl(A) \cap cl(B)$. Hence $cl(A \cap B) \subset U_1 \cap U_2$ whenever $A \cap B \subset U_1 \cap U_2$ and $U_1 \cap U_2$ is F-open set. Hence $A \cap B$ is Fg-closed set.

In general finite intersection of Fg-closed sets is Fg-closed set.

3.10 Theorem: Union of two Fg-open sets is Fg-open set.

Proof: Let A and B be two Fg-open subset of a topological space (X, \mathfrak{I}) . Then X – A and X – B be two closed Fg-subset of X. Hence $(X – A) \cap (X – B)$ is Fg-closed subset of X by **Theorem 3.9**. Now $(X – A) \cap (X – B) = X - (A \cup B)$ be Fg-closed set $\Rightarrow A \cup B$ is Fg-open set. Hence union of two Fg-open sets is Fg-open set.

In general finite union of Fg-open sets is Fg-open set.

3.11 Theorem: Intersection of two Fg-open sets is Fg-open set.

Proof: Let A and B be two Fg-open subset of a topological space (X, \mathfrak{I}) . Then X – A and X – B be two Fg-closed subsets of X. Hence $(X – A) \cup (X – B)$ be the Fg-closed subset of X by **Theorem 3.8**. Now $(X – A) \cup$

www.ijcrt.org

 $(X - B) = X - (A \cap B)$ be Fg-closed set $\Rightarrow A \cap B$ is Fg-open set. Hence intersection of two Fg-open sets is Fg-open set.

In general finite intersection of Fg-open sets is Fg-open set.

3.12 Remark: Arbitrary union of Fg-closed sets is may not be Fg-closed set.

3.13 Example: Let $A_n = [1/n, n/n+1] \quad \forall n \in \{2, 3, 4,\}$ be the closed set, hence Fg-closed subsets in the usual topological space (\mathbb{R} , U). Now let A be the countable union of A_n , i.e. $A = A_2 \cup A_3 \cup A_4 \cup = (0, 1)$ which is not Fg-closed set as $A \subset (0, 1)$ and (0, 1) is F-open set but cl(A) = [0, 1] is not subset of (0, 1). Hence arbitrary union of Fg-closed sets is may not be Fg-closed set.

3.14 Remark: Arbitrary intersection of Fg-open sets is may not be Fg-open set.

3.15 Example: Let $A_n = (-1/n, 1/n) \forall n \in \mathbb{N}$ be the open set, hence Fg-open sets in the usual topological space (\mathbb{R}, \mathbf{U}) . Now let A be the countable intersection of A_n , i. e. $A = \bigcap_{n \in \mathbb{N}} A_n = A_1 \cap A_2 \cap A_3 \cap A_4 \cap \ldots = \{0\}$ which is not a Fg-open set as $\mathbb{R} - \{0\}$ is not Fg-closed set because $\mathbb{R} - \{0\} \subset \mathbb{R} - \{0\}$ and $\mathbb{R} - \{0\}$ is a F-open set but $cl(\mathbb{R} - \{0\}) = \mathbb{R}$ is not subset of $\mathbb{R} - \{0\}$. Hence arbitrary intersection of Fg-open sets is may not be Fg-open set.

4. F-NORMAL SPACES

4.1 Definition: A space X is said to be **F-normal** (resp. **normal** [10]) if for every pair of disjoint F-closed (resp. closed) sets A and B in X, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$.

4.2 Remark: Every normal space is F-normal but not conversely.

4.3 Theorem: For a topological space X, the following properties are equivalent:

(1) X is F-normal;

(2) for any disjoint H, $K \in F$ -C(X), there exist disjoint Fg-open sets U, V such that $H \subset U$ and $K \subset V$;

(3) for any $H \in F-C(X)$ and any $V \in F-O(X)$ containing H, there exists a Fg-open set U of X such that $H \subset U \subset Fg-cl(U) \subset V$;

(4) for any $H \in F$ -C(X) and any $V \in F$ -O(X) containing H, there exists an open set U of X such that $H \subset U \subset cl(U) \subset V$;

(5) for any disjoint H, $K \in F$ -C(X), there exist disjoint regular open sets U, V such that $H \subset U$ and $K \subset V$. **Proof:** (1) \Rightarrow (2): Since every open set is Fg-open, the proof is obvious.

(2) \Rightarrow (3): Let $H \in F$ -C(X) and V be any F-open set containing H. Then H, $X - V \in F$ -C(X) and $H \cap (X - V) = \phi$. By (2), there exist Fg-open sets U, G such that $H \subset U$, $X - V \subset G$ and $U \cap G = \phi$. Therefore, we have H $\subset U \subset (X - G) \subset V$. Since U is Fg-open and X - G is Fg-closed, we obtain $H \subset U \subset Fg$ -cl(U) $\subset (X - G) \subset V$.

(3) \Rightarrow (4): Let $H \in F$ -C(X) and $H \subset V \in F$ -O(X). By (3), there exists a Fg-open set U_0 of X such that $H \subset U_0 \subset Fg$ -cl(U_0) $\subset V$. Since Fg-cl(U_0) is Fg-closed and $V \in F$ -O(X), cl(Fg-cl(U_0)) $\subset V$. Put int(U_0) = U, then U is open and $H \subset U \subset cl(U) \subset V$.

(4) ⇒ (5): Let H, K be disjoint F-closed sets of X. Then $H \subset (X - K) \in FO(X)$ and by (4) there exists an open set U_0 such that $H \subset U_0 \subset cl(U_0) \subset (X - K)$. Therefore, $V_0 = (X - cl(U_0))$ is an open set such that $H \subset U_0$, K $\subset V_0$ and $U_0 \cap V_0 = \phi$. Moreover, put U = int(cl(U_0)) and V = int (cl(V_0)), then U, V are regular open sets such that $H \subset U$, K $\subset V$ and U $\cap V = \phi$.

(5) \Rightarrow (1): This is obvious.

By using Fg-open sets, we obtain a characterization of normal spaces.

4.4 Theorem: For a topological space X, the following properties are equivalent:

(1) X is normal;

(2) for any disjoint closed sets A and B, there exist disjoint Fg-open sets U and V such that $A \subset U$ and $B \subset V$; (3) for any closed set A and any open set V containing A, there exists a Fg-open set U of X such that $A \subset U \subset$ $cl(U) \subset V$.

Proof: (1) \Rightarrow (2): This is obvious since every open set is Fg-open.

(2) \Rightarrow (3): Let A be a closed set and V be any open set containing A. Then A and (X - V) are disjoint closed sets. There exist disjoint Fg-open sets U and W such that $A \subset U$ and $(X - V) \subset W$. Since X - V is closed, we have $(X - V) \subset int(W)$ and $U \cap int(W) = \phi$. Therefore, we obtain $cl(U) \cap int(W) = \phi$ and hence $A \subset U \subset cl(U) \subset (X - int(W)) \subset V$.

(3) \Rightarrow (1): Let A, B be disjoint closed sets of X. Then A \subset (X – B) and (X – B) is open. By (3), there exists a Fg-open set G of X such that A \subset G \subset cl(G) \subset (X – B). Since A is closed, we have A \subset int(G). Put U = int(G) and V = (X – cl(G)). Then U and V are disjoint open sets of X such that A \subset U and B \subset V. Therefore, X is normal.

4.5 Theorem: Let X be a F-normal space. Then a semi-regular subspace Y of X is also F-normal.

Proof: Let X be a F-normal space and Y be a semi-regular subspace of X. Let $A \in F-C(Y)$ and $B \in F-O(Y)$ containing A. Since Y is semi regular, so $A \in F-C(X)$ and $B \in F-O(X)$. Hence by **Theorem 4.3(4)**, there exists an open set U in X such that $A \subset U \subset cl_X(U) \subset B$. This gives $A \subset (U \cap Y) \subset cl_Y(U \cap Y) \subset B$, where U \cap Y is open in Y and hence Y is F-normal.

5. FUNCTIONS AND F-NORMAL SPACES

- **5.1 Definition:** A function $f : X \rightarrow Y$ is said to be:
- (1) almost Fg-continuous if for any regular open set V of Y, $f^{-1}(V) \in Fg-O(X)$;
- (2) almost Fg-closed if for any regular closed set F of X, $f(F) \in Fg-C(Y)$.

5.2 Definition: A function $f : X Y \rightarrow$ is said to be:

- (1) **F-irresolute (resp. F-continuous)** if for any F-open (resp. open) set V of Y, f⁻¹(V) is F-open in X;
- (2) pre-F-closed (resp. F-closed [1]) if for any F-closed (resp. closed) set F of X, f(F) is F-closed in Y.

almost Fg-closed.

5.3 Theorem: A function $f : X \to Y$ is an almost Fg-closed surjection if and only if for each subset S of Y and each regular open set U containing $f^{-1}(S)$, there exists a Fg-open set V such that $S \subset V$ and $f^{-1}(V) \subset U$. **Proof: Necessity.** Suppose that f is almost Fg-closed. Let S be a subset of Y and U be a regular open set of X containing $f^{-1}(S)$. Put V = Y - f(X - U), then V is a Fg-open set of Y such that $S \subset V$ and $f^{-1}(V) \subset U$. **Sufficiency:** Let F be any regular closed set of X. Then $f^{-1}(Y - f(F)) \subset (X - F)$ and X - F is regular open. There exists a Fg-open set V of Y such that $(Y - f(F)) \subset V$ and $f^{-1}(V) \subset (X - F)$. Therefore, we have $f(F) \supset (Y - V)$ and $F \subset f^{-1}(Y - V)$. Hence, we obtain f(F) = Y - V and f(F) is Fg-closed in Y. This shows that f is

5.4 Theorem: If $f : X \rightarrow Y$ is an almost Fg-closed F-irresolute (resp. F-continuous) surjection and X is F-normal, then Y is F-normal (resp. normal).

Proof: Let A and B be any disjoint F-closed (resp. closed) sets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint F-closed sets of X. Since X is F-normal, there exist disjoint open sets U and V of X such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Put G = int(cl(U)) and H = int(cl(V)), then G and H are disjoint regular open sets of X such that $f^{-1}(A) \subset G$ and $f^{-1}(B) \subset H$. By **Theorem 5.3**, there exist Fg-open sets K and L of Y such that $A \subset K$, $B \subset L$. $f^{-1}(K) \subset G$ and $f^{-1}(L) \subset H$. Since G and H are disjoint, so K and L are also disjoint. It follows from **Theorem 4.3** (resp. **Theorem 4.4**) that Y is F- normal (resp. normal).

5.5 Theorem: If $f : X \to Y$ is a continuous almost Fg-closed surjection and X is a normal space, then Y is normal.

Proof: The proof is similar to that of **Theorem 5.4.**

5.6 Theorem: If $f : X \rightarrow Y$ is an almost Fg-continuous pre-F-closed (resp. F-closed) injection and Y is F-normal, then X is F-normal (resp. normal).

Proof: Let H and K be disjoint F-closed (resp. closed) sets of X. Since f is a pre-F-closed (resp. F-closed) injection, f(H) and f(K) are disjoint F-closed sets of Y. Since Y is F-normal, there exist disjoint open sets P and Q such that $f(H) \subset P$ and $f(K) \subset Q$. Now, put U = int(cl(P)) and V = int(cl(Q)), then U and V are disjoint regular open sets such that $f(H) \subset U$ and $f(K) \subset V$. Since f is almost Fg-continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint Fg-open sets such that $H \subset f^{-1}(U)$ and $K \subset f^{-1}(V)$. It follows from **Theorem 4.3** (resp. **Theorem 4.4**) that X is F-normal (resp. normal).

Acknowledgment

The Third author is grateful to the <u>COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH (CSIR)</u> for financial assistance.

REFERENCES

- 1. Mesfer H. Alqahtani, F-open and F-closed sets in Topological Spaces, *European Journal of Pure and Applied Mathematics*, vol. 16, No. 2, 2023, 819-832.
- 2. S. G. Crossley and S. K. Hildebrand, Semi-closure, *Texas Journal of Science.*, vol. 22, No. 2-3, 1971, 99-112.
- 3. N. Levine, Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo, 19, 1970, 89-96.
- 4. A. Pushpalatha, Studies on Generalizations of Mappings in Topological Spaces, *Ph.D. Thesis, Bharathiar University, Coimbatore,* 2000.
- 5. M. H. Stone, Application of The Theory of Boolean Rings to General Topology, *Trans. Amer. Math. Soc.*, 41, 1937, 375-481.
- 6. Tietze H., Uber Analysis Situs, Abh. Math. Semin. Univ. Hambg., Vol. 2, 1923, 37-68.