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Abstract:  In this paper, we have studied the boundary layer flow past a constant wedge through porous 

media. Here, the two-dimensional MHD flow of a viscous fluid is considered. Governing equations are 

transformed to a well-known Falken-Skan type equation by using similarity transformations. Solutions in the 

form of velocity profiles and Skin frictions are obtained through Galerkin Method for a wide range of 

parameters involved 
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I. INTRODUCTION 

 The geophysical and engineering applications are available in large variety which presents many 

applications of fluid flows and mass transfer problems. Example can be visibly presented from flow of chemical 

reactors and ground water energy storage. Fixing of small holes can be done by materials like sintered bronze 

or metal sheet in porous medium. If such materials are added to a region boundary of fluid flow, it is observed 

that the free stream velocity is continued apart from the flow and the sucked fluid is obtained at the boundary. 

The normal component of the relative velocity of fluid and surface of the boundary conditions is the value 

determined by the porosity that is represented by the normal relative velocity α [3] further studied the analytical 

solutions through the medium of the Falkner-Skan flow, just to analyze the method of Homotopy. The 

magnetohydrodynamic mixed boundary layer flow through porous media along vertical flat plate are analyzed 

by Guedda et al.[10]. He Observed that for specific parameters multiple solutions exist. 

A Homotopy analysis method was used by Xu et al.[6] to investigate the behavior of boundary layer 

and heat transfer in an electrically conducting incompressible viscous fluid due to impulsive stretching of the 

surface. This process further showed that as magnetic parameter is reducing the boundary layer thickness 

while the thermal boundary layer thickness is enhanced. Pavlov [9] carefully added incompressible viscous 

fluid into boundary layer flow by reason of deformation to an elastic surface homogeneously applied to 

magnetic field. Andersson [5] described that when a viscous fluid of a stretching surface is passed through a 

boundary layer flow of MHD then the same effect of external magnetic field was seen on the flow as the 

viscoelasticity. In literature, abundant papers are available to study classical MHD boundary layer flows 

[11],[12]. Joneidi et al.[1] has observed one decrement in boundary layer thickness while analyzing the effects 

of heat and mass transfer on the viscous electrically conducting fluid. Maxwell’s fluid representing the two-

dimensional MHD boundary layer flow through porous wall was studied by Hayat et al by using Homotopy 

analysis method. Exact solution for the boundary layer flow with the presence of magnetic field was delivered 

by Pantokratoras [2].  
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In this paper we study behavior of the two-dimensional magneto hydrodynamic flow of a viscous fluid 

over a constant wedge immersed in a porous medium. Using similarity transformations, the Falkner-Skan 

equation is derived from the governing nonlinear boundary layer equation, which is solved by Galerkin 

method using MATLAB programming for many parameters involved. Numerical results in the form 

dimensionless velocity profiles and skin frictions for the Hartmann number, permeability, pressure gradient 

and suction parameter. It is observed that the Galerkin method [4],[7] method gives a very satisfactory and 

accurate results. 

 

II. MATHEMATICAL FORMULATION 

 

Here we consider the incompressible two-dimensional viscous MHD through porous media [13]. It is 

assumed that the half-space y > 0 is occupied by the flowing fluids and the measurement of x - axis & y - axis 

are in the direction of the wedge surface and normal to the flow respectively. The viscosity effects of a large 

Reynolds numbers are confined with the wedge surface near field, where major role is played by viscosity 

and also at the far field where zero shear viscosity is important. In the presence of magnetic field B(x), the 

constant wedge is completely immersed inside a porous matrix. Let we define the velocity vector ( , )q u v=  

with velocity components u and v are in x and y directions. When the electromagnetic field exists within the 

porous medium, we found some development in the velocity field. The governing equations for the two-

dimensional MHD flow are given by 
 0q  =                          (1)  

( ) 2

2

1 1 1
  eq q p q q J B

K

 

    
 = −  +  − + 

                      (2) 

where p represents the pressure,  represents the fluid density,  represents the porosity, e  represents the 

effective viscosity, K represents the permeability of the porous medium and body force is represented by 

 (  ( ) ) = +  J B E q B B . The Lorentz force exists due to the interaction between the magnetic field and the fluid 

motion. As magnetic Reynolds number is very dense hence to which the induced magnetic field is negligible. 

It is observed in some applications of engineering that the conductivity is not large when an externally applied 

field is absent. So that E = 0 and hence the Lorentz force is represented by  
2

  = −J B B q                                                                                                                                                                                     (3) 

As a body force acted on the moving fluid only due to Magnetic drag, the right-hand side of equation (3) is 

multiplied by the factor 1


− . Hence from (2) and (3) we obtain that 

 ( )
( )2

2

2

 1 1
  

 

   
 = −  +  − −

e
B x

q q p q q q
K

                                                                           (4)                                                    

Outside the boundary layer, U(x) represents mainstram flow velocity in x - direction. The key idea elaborated 

in making the boundary layer approximation is that the effects of viscosity are dominant in the neighbouring 

to the surface.   represents the thickness of the boundary layer, with L  , where the characteristic horizontal 

length is L. Therefore, v is smaller in comparison of u. Also, the elementary approximation is 
u u

y x

 


 
. 

Suppose 
p p

y x

 


 
then equation (4) describes that the pressure p in the boundary layer is a function of x simply. 

Through L  , the term 
2

2

u

x




can be ignored in assessment with 

2

2

u

y




.By these suppositions’ equivalent 

momentum and continuity equations are specified by 

0=



+





y

u

x

u                                                                                                                                                                                        (5) 
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+ = − + − −

   

 
 
                                                                                                                                  (6) 

0
p

y


=

                                                                                                    (7) 

At the edge of the boundary layer, the velocity and the mainstream flow U(x) are equal for defining the 

pressure distribution. Also the porous media and applied magnetic field were influenced the constant viscid 

flow by Bernoulli’s theorem.  

( ) ( )
( ) ( )

2

2

1   

 
= − − −

U x dU x dp B
U x U x

dx p dx K
                                                                                                                                       (8) 

Putting (8) in (6),  the MHD boundary layer equation is obtained as 
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B xu u dU x u v
v U x v u U x u U x

x y dx y K
                                                                            (9) 

The effects of the mainstream forcing, the viscous forces, the porous medium and the magnetic interaction on 

the boundary layer flow are represented by the terms on the right-hand side. ( )U x is projected to follow the 

power-law relation ( ) =


m
U x U x , where U  is constant and m represents the strength of pressure gradient. Later 

on, we discussed the variations of m. The appropriate boundary conditions for the above model are given by 

at  

0 :     0 ,   = = =y u v V
w

 as :      ( )→ →y u U x                       (10) 

In equation (10), the condition regarding u the surface indicates that the wedge surface is inactive, and wV

represents the mass transpiration parameter. At infinity, far-away from the wedge surface, the velocity 

approach the mainstream flow by using the following similarity transformations. 
2

2 ( )
( )

1
 =

+

vxU x c
f

m
 and 

( ) 2

2

1  ( )

2




+
=

m U x c
y

vx
                                                                                     (11) 

where the ( , ) x y  is defined as, ( ),     ,
  

= −
 

 
 
 

x y
y x

                                    (12) 

from the system (9) to (10) we get, 

( )( ) ( ) ( )( )2 2''' '' ' '
( ) ( ) ( )  1 1 0     + + − −  + − =f f f f M f                                                     (13) 

with boundary conditions 

( ) ( )' '
(0) , 0 0    1= =  =f f and f   

                                                                         (14)  

III. SOLUTION BY GALERKIN METHOD 

Let consider a third order differential equation (13) with the boundary conditions (14). We take ( ) f   

as before to satisfy the boundary conditions (five term solution).  

( ) 2 3 4 5

0 1 2 3 4 5
 ( ) ( ) ( ) ( ) ( )f C C x C x C x C x C x = + + + + +                                                                                                                             (15) 

The residue is,  

( )
2 2 2

2 21 10 10 ''' ' ''
2

5 5 10 50 25
( ) f f M f f MR x

     
 

+ +
+ − + + + − + + + +

    
         

=  

We choose trail functions 
2 3 4

1 2 3

10 75 500
, ,

10 75 500

x x x  
  

+ + +
= = =
     
     
     

 

We compute the unknown coefficients by considering the integral of the weighted residual to zero. 

 

5

0

 ( ) ( ) 0 ;    0,  1,  2,.....,
j

x R x dx j n = =
 

Numerical simulation is done using mathematical software, MATLAB.  

 

Table 1 Values of  𝒇 ′′(𝟎) for M = 1 and Various Values of β, Ω and 𝛂 
 

M = 1 

𝛂 𝛃 

Ω = 0.1 Ω = 0.5 Ω = 1.0 

Galerkin 

Method 

 

Exact 

Solution 

Galerkin 

Method 

 

Exact 

Solution 

 

Galerkin 

Method 

 

Exact 

Solution 

 

-2.5 

0.5 0.5616 0.5540 0.7062 0.6649 0.7968 0.7946 

1.5 0.9155 0.8627 1.0754 0.9616 1.0949 1.0736 

2.5 1.2629 1.1399 1.3383 1.2241 1.3449 1.3274 

 

-1.5 

0.5 0.7800 0.7768 0.9065 0.9221 1.0571 1.0530 

1.5 1.2303 1.1470 1.3239 1.2527 1.4278 1.3848 

2.5 1.6471 1.4605 1.7122 1.5516 1.6790 1.6608 

 

1.5 

0.5 2.4697 2.3886 2.4461 2.5024 2.5925 2.6361 

1.5 3.0586 2.7601 2.9884 2.8567 2.9832 2.9704 

2.5 3.0351 3.0754 3.4342 3.1429 3.2741 3.2614 

 

2.5 

0.5 3.2974 3.1865 3.4094 3.2856 3.5114 3.5006 

1.5 3.4214 3.5184 3.7981 3.6042 3.7146 3.7052 

2.5 3.9521 3.8064 3.9512 3.8761 3.9857 3.9730 
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IV. DISCUSSION OF RESULTS    

                                           

In this paper we use Galerkin method to solve the equation.  The numerical results obtained for wall shear 

stress for three special cases, namely 0.1, 0.5 =  =  and 1.0 =  are presented in Table 1. The results clearly 

indicates an increase in the values of wall shear stress ''
(0)f  with increasing values of permeability parameter 

( ), injection parameter ( ) and pressure gradient (  ). Some of the results from both methods are compared 

with the results obtained by kudenatti, Kirsur, Anchala and Bujurke. 

 

Table 2 gives result for velocity profiles '
( )f   for 0   for fixed , M  and   by Galerkin Method. Fig.1 

represents '
( )f   with 𝜂 for different values of   while other parameters are constant. The results obtained by 

Galerkin Method is included in numerically as well as graphically. The results obtained indicate the reliability 

of the numerical method.  

 

Table 2 Velocity Profiles 𝒇 ′(𝛈)  by Galerkin Method for β > 0 

 

Ω = 1.5                    M = 0.5                         𝛂 = -1.5 

𝛈 
𝛃 = 0.5 𝛃 = 1.5 𝛃 = 2.5 𝛃 = 3.5 

𝒇 ′(𝛈) 𝒇 ′(𝛈) 𝒇 ′(𝛈) 𝒇 ′(𝛈) 

0 0.0000 0.0000 0.0000 0.0000 

1 0.6644 0.8382 0.9707 1.0750 

2 1.0180 1.1940 1.3200 1.4160 

3 1.1400 1.2310 1.2840 1.3180 

4 1.1080 1.1120 1.0980 1.0800 

5 1.0000 1.0000 1.0000 1.0000 

 

 

Figure 1. Velocity Profiles f ′(η)  for β > 0 with 𝛂 = -1.5, M = 0.5 and  Ω = 1.5 by Galerkin Method 

 

Table 3 gives result for velocity profiles '
( )f   with 0   for slightly fixed bigger values of other constant 

parameters M ,  and   by Galerkin method. It is observed that when pressure gradient   is increased, the 

thickness of the momentum boundary layer [
0

'
(1 ( )) f d  



= − ] is decreased. The same thing is plotted in fig. 2 

for slightly bigger values of other constant parameters and shows that the velocity curves made the boundary 

layer thickness still thinner. 
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Table 3. Velocity Profiles 𝒇 ′(𝛈)  by Galerkin Method for β > 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

The velocity profile ( )'f  for which the solution exists, is presented in fig. 2 for 5.0,5.1,5.2,5.3,5.4= , 0.1= ,

0.1=M and 5.1= by Galerkin method. It is observed that as pressure gradient   increases velocity profile

( )'f  increases.  

 

Figure 2.  Velocity profiles ( )'f  with   for different value of 0 for fixed M, and  by 

Galerkin Method 

Table 4 represents the velocity profiles ( )'
f   for various value of   for unchanged  ,  M and  by Galerkin 

method. The tabulated values indicate an insignificant difference between the solutions. In fig.3, we examine 

the effect of injection parameter (𝛼 < 0) when other parameters , M and  are constant and found that the 

boundary layer thickness is decreased by the mass transfer. Fig. 4, it shows that the suction parameter (𝛼 > 0) 

further reduces boundary layer thickness which is more prominent wherein the effect of permeability is also 

taken into account (   = 2). 

 

 

 

 

 

 

 

 

 

Ω = 1.0                    M = 1.0                         𝛂 = 1.5 

𝛈 
𝛃 = 4.5 𝛃 = 3.5 𝛃 = 2.5 𝛃 = 1.5 𝛃 = 0.5 
𝒇 ′(𝛈) 𝒇 ′(𝛈) 𝒇 ′(𝛈) 𝒇 ′(𝛈) 𝒇 ′(𝛈) 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

1 2.0280 1.9560 1.8640 1.7420 1.5730 

2 2.2450 2.1830 2.1040 1.9990 1.8510 

3 1.5480 1.5330 1.5130 1.4850 1.4430 

4 0.8342 0.8550 0.8809 0.9136 0.9560 

5 1.0000 1.0000 1.0000 1.0000 1.0000 
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Table 4. Velocity Profiles 𝒇 ′(𝛈)  by Galerkin Method for α < 0 

 

𝛃 = 1.5                                     M = 0.5                               Ω = 

1.0 

   𝛈 
𝛂 = -1.5 𝛂 = -2.0 𝛂 = -2.5 𝛂 = -3.0 𝛂 = -3.5 

𝒇′(𝛈) 𝒇′(𝛈) 𝒇′(𝛈) 𝒇′(𝛈) 𝒇′(𝛈) 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.8142 0.7424 0.6747 0.6135 0.5592 

2 1.1790 1.1070 1.0370 0.9710 0.9095 

3 1.2370 1.2010 1.1620 1.1220 1.0800 

4 1.1290 1.1300 1.1250 1.1150 1.1000 

5 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Figure 3. Velocity Profiles 𝒇 ′(𝛈) for Various Value of 𝛂 with Ω = 1, M = 0.5 and β = 1.5 by Galerkin 

Method 

Fig. 3 shows the velocity profile curves for fixed Ω, M,  and different value of 0   . It is observed that as 

suction parameter   increases, velocity profile ( )'
f   increases. 

 

Table 5. Velocity Profiles 𝒇 ′(𝛈)  by Galerkin Method for α > 0  

 

𝛃 = 1.5                              M = 0.0                              Ω = 2.0 

𝛈 
𝛂 = 6.0 𝛂 = 5.0 𝛂 = 4.0 𝛂 = 3.0 𝛂 = 2.0 

𝒇′(𝛈) 𝒇′(𝛈) 𝒇′(𝛈) 𝒇′(𝛈) 𝒇′(𝛈) 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

1 3.5800 3.0090 2.5370 2.1490 1.8460 

2 3.4380 3.0000 2.6310 2.3231 2.0810 

3 1.6060 1.5850 1.5570 1.5242 1.4930 

4 0.1158 0.3804 0.5888 0.7499 0.8697 

5 1.0000 1.0000 1.0000 1.0000 1.0000 
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Fig. 4 shows the velocity profile curves for unchanged Ω, M, β and dissimilar value of α > 0. It is 

observed that as suction parameter α increases, velocity profile ( )'
f   increases. 

 
 

Figure 4. Velocity Profiles 𝒇 ′(𝛈)  by Galerkin Method for Various Value of 𝛂 with β = 1.5, M = 0.0 

and Ω = 2.0 

The velocity profiles ( )'
f   for different values of   with fixed  ,  M and   by Galerkin method are shown 

in Table 6 and Table 7. For different values of permeability parameter  , results interchanging has been done 

in fig. 5 and fig. 6 for injection shows that effect of permeability, decreases the boundary layer thickness.  

 

When permeability increases, the boundary layer thickness decreases. And as permeability increases, the 

velocity profiles get closer to the thin boundary layer region, all velocity curves are confined within the thin 

region. Thus, the suction and permeability of the medium together have a pronounced effect on the velocity 

profiles. 

Table 6. Velocity Profiles 𝒇 ′(𝛈)  by Galerkin Method for Various Value of Permeability 

Parameter Ω (β < 0) 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Velocity Profiles 𝒇 ′(𝛈)  by Galerkin Method for Various Value of Permeability 

Parameter Ω (β > 0) 

 

 

 

 

 

 

 

 

 

 

 

0.0

0.2
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0.6

0.8

1.0

1.2

1.4

0 1 2 3 4 5

α = 2

α = 3

α = 4

α = 5

α = 6

f '(η)

η

β = -1.5                M = 1.0                    𝛂 = 1.8 

𝛈 
Ω = 2.5 Ω = 2.0 Ω = 1.5 Ω = 1.0 Ω = 0.5 

𝒇 ′(𝛈) 𝒇 ′(𝛈) 𝒇 ′(𝛈) 𝒇 ′(𝛈) 𝒇 ′(𝛈) 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

1 1.0740 1.0620 1.0480 1.0330 1.0320 

2 1.3560 1.3530 1.3520 1.3540 1.3800 

3 1.2000 1.2130 1.2320 1.2600 1.3120 

4 0.9625 0.9823 1.0080 1.0430 1.0960 

5 1.0000 1.0000 1.0000 1.0000 1.0000 

β = 1.0                M = 0.5                  𝛂 = -1.8 

  𝛈 
Ω = 2.5 Ω = 2.0 Ω = 1.5 Ω = 1.0 Ω = 0.5 

𝒇 ′(𝛈) 𝒇 ′(𝛈) 𝒇 ′(𝛈) 𝒇 ′(𝛈) 𝒇 ′(𝛈) 

0 0.0000 0.0000 0.0000 0.0000 0.0000 

1 0.7809 0.7527 0.7184 0.6756 0.6200 

2 1.1250 1.1030 1.0750 1.0380 0.9857 

3 1.1790 1.1780 1.1730 1.1620 1.1410 

4 1.0890 1.1010 1.1140 1.1250 1.1310 

5 1.0000 1.0000 1.0000 1.0000 1.0000 

β = 1.5, M = 0.0, Ω = 2.0 
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The behaviour of the velocity profiles ( )'
f   for different value of   and for fixed ( ) 0 ,   M and  is 

shown in fig. 5     

 
Figure 5. Velocity Profiles 𝒇 ′(𝛈)  by Galerkin Method for Various Value of Permeability 

Parameter Ω with 𝛂 = 1.8, M = 1.0 and 𝛃 = -1.5 

The behaviour of the velocity profiles ( )'
f   for different value of   and for fixed ( ) 0 ,   M and  is 

shown in fig.6. 

     
Figure 6. Velocity Profiles 𝒇 ′(𝛈)  by Galerkin Method for Various Value of Permeability 

Parameter Ω with 𝛃 = 1.0, M = 0.5, 𝛂 = -1.8 

 

The velocity profiles ( )'
f   for different values of   and for fixed  ,  M and  , by Galerkin method is 

shown in fig.5 and fig. 6. Therefore, the impact of permeability is to lessen boundary layer thickness. We can 

see that when permeability parameter   increases, the thickness of the boundary layer decreases. The 

numerical results obtained for wall shear stress for two special cases, namely 0.3 =  and 1.5 =  are presented 

in Table 8. The results clearly indicated an increase in the values of wall shear stress ''
(0)f  with increasing 

values of permeability parameter (  ), injection parameter ( ) and pressure gradient (  ). All these results 

are in good agreement with exact solutions. 

 

 

 

 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882 

IJCRT24A4176 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org k344 
 

 

Table 8. Wall-Shear Stress Value 𝒇′′(𝟎) 

 

M = 2.0 

𝛂 𝛃 

Ω = 0.3 Ω = 1.5 

Galerkin 

Method 

 

Exact 

Solution 

Galerkin 

Method 

 

Exact 

Solution 

 

-1.5 

1.0 1.6364 1.9406 1.7794 2.0145 

2.5 2.0361 2.4526 2.1299 2.5148 

3.0 2.1623 2.6058 2.5413 2.6651 

-1.0 

1.0 2.1133 2.1406 2.1485 2.2156 

2.5 2.2397 2.6596 2.3206 2.7224 

3.0 2.3738 2.8144 2.6384 2.8744 

1.0 

1.0 2.8939 3.1757 3.4463 3.2488 

2.5 3.1032 3.6843 3.5141 3.7462 

3.0 3.0717 3.8370 3.6261 3.8961 

 

The numerical values of velocity profiles '
( )f   by Galerkin method for different values of permeability 

parameter   and for fixed , M and   are presented in Table 9 and Table 10 are shown in fig. 7 and fig. 8 

for some values of the parameter  and for an adverse pressure gradient  (< 0). 

These results are distinct from  > 0 which is shown in fig. 1 and fig.2. It is observed that for permeability 

parameter  , the velocity curves oscillate finite number of times and ultimately satisfy the end condition, 

hence the oscillatory behaviour reveals to these solutions. 

 

Table 9. Velocity Profiles 𝒇 ′(𝛈)  by Galerkin Method for Various Values of Permeability 

Parameter Ω with 𝛂 = -2.5, M = 0.0 and 𝛃 = -3.0  

 

𝛃 = -3.0                                     M = 0.0                          𝛂 = -2.5 

𝛈 
Ω = 2.2 Ω = 1.8 Ω = 1.4 

𝒇 ′(𝛈) 𝒇 ′(𝛈) 𝒇 ′(𝛈) 

0 0.0000 0.0000 0.0000 

1 -0.7361 -0.9781 -1.3540 

2 0.6298 0.3311 0.0058 

3 2.4570 2.2290 2.1430 

4 3.1230 3.0180 3.1200 

5 1.0000 1.0000 1.0000 
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Table 10. Velocity Profiles 𝒇 ′(𝛈) by Galerkin Method for Various Values of Permeability 

Parameter Ω with 𝛂 = -2.0, M = 0.0 and 𝛃 = -4.0 

 

𝛃 = -4.0                                M = 0.0                                  𝛂 = -2.0 

𝛈 
      Ω = 1.0        Ω = 1.4       Ω = 1.8        Ω = 2.2 

𝒇 ′(𝛈) 𝒇 ′(𝛈) 𝒇 ′(𝛈) 𝒇 ′(𝛈) 

0  0.0000  0.0000 0.0000         0.0000 

1 -4.3370 -2.6650 -1.7860 -1.2450 

2 -2.3950 -1.1960 -0.5540 -0.1444 

3 1.8160 1.7050 1.6700 1.6790 

4 4.2850 3.3370 2.8630 2.6020 

5 1.0000 1.0000 1.0000 1.0000 

 

 
Figure 7. Velocity Profiles 𝒇 ′(𝛈) for Various Values of Permeability Parameter Ω with 𝛂 = -2.5, M = 

0.0 and 𝛃 = -3.0 by Galerkin Method 

 

 
 

Figure 8. Velocity Profiles 𝒇 ′(𝛈) for Various Values of Permeability Parameter Ω with 𝛂 = -2.0, M = 

0.0 and 𝛃 = -4.0 by Galerkin Method 
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CONCLUSIONS 

This paper illustrates a numerical simulation of the Falkner-Skan boundary layer equation using the 

Galerkin method. Numerical results for the velocity profile and the wall shear stress for various values of 

permeability parameter  , injection parameter , pressure gradient  and 𝑀 the magnetic (Hartmann number) 

parameters are shown in tables and graphs. Comparisons of results for certain values of parameters are made. 

The wall shear stress ( )''
0f  increases with increasing values of permeability parameter (  ), injection 

parameter ( ) and pressure gradient (  ). When the pressure gradient   increase the thickness of the 

momentum boundary layer is decrease. The injection parameter (𝛼 < 0 and 𝛼 > 0) when other parameters 

, M and   are held constant, we can say that the boundary layer thickness is decreased by the mass transfer. 

When permeability parameter   increase and other parameters , M and   being constant then the thickness 

of the boundary layer is decrease. As pressure gradient  , permeability parameter   and suction parameter 

𝛼 increase, the velocity profile ( )'
f   increases. For   > 0 and M > 0, the boundary layer becomes thin which 

is directed entirely towards the wedge surface. But if pressure gradient  (< 0), the finite number of times 

oscillations are found for velocity curves in permeability parameter  . 

 

Another important outcome of the concerned work is the applicability of the Galerkin method which gives 

very satisfactory and accurate results. Hence, this chapter gives an insight to an alternate numerical method 

that could deal with problems of this type and if altered to perfection can provide even a better result than 

those obtained at present. It is also observed that when h is small, Galerkin method gives accurate results.  
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