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ABSTRACT 

 

Probabilistic graphical models, often known as PGMs, provide a strong framework for modelling 

intricate interactions between various components. Through the incorporation of data about the elemental 

composition and structural characteristics, these models make it possible to deduce the attributes of 

materials from a probabilistic point of view. This technique bears promise attempts towards expediting 

the design of materials discovery, as it makes it easier to predict the characteristics of a wide variety of 

materials, including their electrical and mechanical properties, as well as their thermal and optical 

behaviour. The use of PGMs in the field of materials science is an example of a sophisticated approach 

that is used to harness data-driven insights in order to direct the discovery of novel materials that have 

specific functions. The objective of this study is to conduct a literature review with the intention of 

examining the possible applications of data science ideas, big data, and machine learning in the context of 

the production of artificial intelligence. This is a strategy that involves reviewing the existing literature in 

order to get an understanding of the use and application of computational intelligence in the cutting-edge 

research and innovation in materials science. Using machine learning to solve complex chemical issues 

that would otherwise be intractable is shown by the results of this study. Predicting the characteristics of 

novel materials based on their composition and structure may be accomplished via the use of PGMs, 

which provides a potential route within this field.  
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1.   INTRODUCTION 

The search for new materials with desirable characteristics has been a continuous difficulty in 

materials research. Conventional approaches used over the years to identify new materials, such 

empirical trial and error and the density functional theory (DFT)-based methods are unable of keeping up 

with the fast pace of the development of new materials today because of their long development cycles, 

low efficiency, and high cost [1]. Applied for the prediction of material characteristics, acceleration of 

simulations, design novel structures, for the prediction synthesis pathways of new materials [2], machine 

learning has been a subject of interest in many industrial disciplines including material science and 

chemistry. Among the quickly expanding class of machine learning models are PGMs [3]. Because they 

directly deal with graph or structural representations of molecules and materials as such having complete 

access to crucial information necessary to describe materials [4], they are often employed in chemistry 

and materials research. Materials scientists are always working to improve their capacity for 

understanding, prediction, and enhancement of materials characteristics [5]. To grasp and forecast 

materials characteristics throughout the last years, materials scientists have mostly depended on 

simulation and modelling approaches. Scientists have developed new approaches to forecast and enhance 

materials qualities more reasonably priced and less time-consuming as the conventional trial-and-error 

technique in materials research is imitated in certain aspects.  

  Data-driven approaches like machine learning have lately been embraced to anticipate novel 

materials, therefore transforming the field of materials science research [6]. Considered the fourth pillar 

of research, next to the experiment, theory, and simulations, machine learning and data science have 

grown to be a major component of natura science. From the database screening, finding first candidate 

materials property predictions, for material designs, for the prediction of the synthesis conditions and 

automated experimental data analysis as well as experimental planning, machine learning techniques are 

progressively used in all stages of the materials development cycle [7]. From a broad spectrum of 

traditional machine learning algorithms including decision trees, convolutional neural networks, and 

probabilistic graphical models, machine learning approaches employed in material science span.  

  Because of its ability to forecast the properties of newly developed materials depending on their 

inherent composition and structural features, PGMs have attracted great interest. Particularly well-suited 

for uses in chemistry and materials science, PGMs are a fast-changing family of machine learning models 

[8]. Their natural capacity to run directly on graph or structural models of molecules and materials 

provides them complete access to relevant data essential for material characterization. PGMs provide a 

sophisticated knowledge of many features spanning electrical and mechanical properties to thermal and 

optical behaviour by harnessing the intricate interactions between various material components, hence 

enabling probabilistic inference of material attributes [9], [10].  

  Among many disciplines, including bioinformatics, social science, control theory, image 

processing, marketing analysis, among others [11], [12], the graphical models have been used 

extensively. Still, structure learning for graphical models presents a difficult problem as one must 

manage a combinatorial search over the space of all potential structures.  
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Materials research has always been challenged in its search for new materials with particular and desired 

qualities. Discovering new materials has always mostly depended on empirical trial and error techniques, 

which were driven by intuition and a limited knowledge of the fundamental ideas controlling materials 

behaviour [13]. But as materials science has developed, the need for methodical and systematic ways to 

hasten the identification and design of novel materials has been even more apparent. Predicting materials 

propertied by modelling the behaviour of atoms and electrons within materials depended much on density 

functional theory (DFT) and other theoretical approaches in the last decades. These approaches had 

several limits, including being computationally costly, which limited their use to quite small-scale and 

hampered their capacity to keep pace with the fast-changing scene of materials development [14], [15]. 

Although they offered insightful analysis.  

  Materials science underwent a paradigm change as machine learning (ML) methods became 

available. Described by its capacity to identify trends and associations within big datasets, ML offers a 

potential path for material property prediction, fast simulation acceleration, and design guidance for 

novel materials [16]. Starting with hidden relationships between materials composition, structure, and 

characteristics enabling for more informed and effective exploration of the large materials space, 

researchers began using ML algorithms. Within the field of machine learning, PGMs become a 

sophisticated and flexible instrument for material property prediction [17]. PGMs are ideal for illustrating 

complicated interactions in materials as they provide a structure for expressing and evaluating ambiguous 

knowledge. PGMs provide a special benefit in retrieving pertinent information vital for material 

characterisation; they directly deal with graph or structural representations of molecules and materials 

[18].  

  PGMs' capacity to combine many information sources, evaluate uncertainty, and enable 

probabilistic inference of materials characteristics has helped them to become popular in material 

sciences science. This method allows the prediction of a wide range of characteristics, including 

electrical, mechanical, and thermal [19], thus enabling a sophisticated knowledge of the complex 

interaction among many material components.  

 
Fig. 1. Flavours of probabilistic graphical models 
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  Figure 1 presents the two sub-categories of the probabilistic graphical models: (i). both direct and 

indirect graphic models. The direct graphic models are characterized as Bayesian networks often referred 

to as belief networks. Representing a collection of variables and their conditional dependencies using a 

direct acrylic graph (DAG), they are probabilistic graphical models. Every node in a Bayesian network is 

a random variable; the directed edges connecting the nodes capture probabilistic dependencies, therefore 

expressing the casual interactions among the variables.  

  Described as Markov networks, the undirected graphic models form a collection of variables with 

pairwise Markovian dependencies using an undirected graph. Every node in a Markov random field 

(MRF) stands for a random variable; however, the lack of direct edges suggests that the link between the 

variables is undirected and usually denotes the concept of local interactions or spatial closeness [20]. We 

provide in this work a thorough review of the current structure learning methods. This work intends to 

use PGMs' intrinsic probabilistic character to decode complex interactions among structural 

characteristics, material compositions, and consequent properties. This work aims to build and improve 

PGMs able to precisely forecast material properties by combining many datasets including material 

compositions, structural configurations, and related attributes. Such prediction algorithms might hasten 

the creation and research on novel materials. Notwithstanding this introduction, this work consists of four 

additional parts: technique, data collecting, suggestions, and conclusion.  

2. METHOD 

  An illustration of the number of sources that were examined may be seen in Figure 2. The terms 

"PGMs for prediction of materials properties" and "machine learning for prediction of materials 

properties" were used as search criteria in order to extract information from the Materials project, the 

Open Quantum materials database, journals of materials science, computational materials science, 

journals of chemical information and modelling, and the American Chemical Society's applied materials 

and interfaces. This comprises conferences, journals, early access publications, and magazines that were 

chosen for use in this study because they were selected.  

 

 
Fig. 2. Different sources used to conduct this work 
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  While a significant amount of research has been conducted on the use of data-driven and machine 

learning techniques for the purpose of predicting the characteristics of materials, only a small amount of 

study has been conducted on the utilization of PGMs for the purpose of predicting or designing new 

materials for certain functions. The need for the development of unique material characteristics for 

certain capabilities is a difficulty that is faced by a large number of researchers in a variety of fields, 

including medical, aerospace, computer and communication, and energy, among others. It would be 

beneficial for researchers from a variety of fields to collaborate in order to maximize their potential, 

improve the shortcomings of forecasting new features of materials, and make the process more efficient 

and less expensive. Materials project, Open Quantum materials database, journals of materials science, 

computational materials science, journals of chemical information and modelling, and ACS applied 

materials and interfaces were the sources that were consulted and used in the process of carrying out this 

study. This collection of materials included a complete abstract and citation database that was 

meticulously maintained by experts. Data and academic publications from a broad variety of fields have 

been enhanced as a result of this innovation. It delivers a wider variety of outcomes than other methods.  

 

 

3. RESULTS AND DISCUSSION 

  In the field of materials science, researchers in the fields of chemistry and engineering often use 

data-driven models and machine learning in order to make predictions about the characteristics of 

materials. There were no research publications that yielded findings for the use of PGMs for the purpose 

of predicting the properties of materials; however, there were over a million results identified for the use 

of machine learning and data-driven models for the purpose of predicting the characteristics of materials. 

Random forest, Support Vector Machines, Convolutional Neural Networks, Gradient Boosting Machines, 

and Gaussian Process Regression are the machine learning techniques that are used the most often for the 

purpose of predicting the qualities of materials. While a significant amount of literature has been written 

on probabilistic graphical models and the influence they have had on the area of materials science, there 

has been a very little amount of research conducted to actually utilize these models to forecast the 

characteristics of any materials. It is necessary to do more study in order to investigate the potential of 

PGMs for application in the prediction of the characteristics of materials. Our investigation has led to the 

development of a number of suggestions that may be implemented in order to enhance the use of 

probabilistic graphical models (PGMs) in the process of forecasting the characteristics of novel materials. 

The encouragement of data exchange and cooperation among academics is of the utmost importance, first 

and foremost. Within the community of materials scientists, open-access repositories and collaborative 

platforms have the potential to promote the interchange of data pertaining to materials and further the 

development of multidisciplinary cooperation. In addition, it is vital to make investments in the 

development of user-friendly software tools and platforms for the purpose of constructing, training, and 

deploying PGMs. This will enable researchers to properly exploit the potential of these models. In 

addition, the provision of training and educational resources may provide researchers with the knowledge 
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and abilities necessary to make the most of the potential of PGMs in the field of materials science 

research. For the purpose of ensuring that all investigations are rigorous and comparable to one another, 

it is necessary to create standardized methodologies and standards for verifying the efficacy of PGMs in 

predicting material attributes. It is possible to improve the reliability and accuracy of material property 

predictions via the collaboration of computational and experimental researchers in order to combine 

PGMs with improved experimental methodologies. In addition, when it comes to developing the 

profession, it is essential to take into account to take into account ethical issues, long-term financing and 

support, and collaboration with stakeholders from academia, business, government, and the wider 

community. Through the adoption of these suggestions, the community of materials scientists has the 

potential to accelerate the use of PGMs toward the discovery of creative discoveries and breakthroughs in 

the design and engineering of materials.  

4. CONCLUSIONS 

  One of the most interesting new directions in the field of material science research is the 

investigation of PGMs for the purpose of predicting the characteristics of new materials based on their 

composition and structure respectively. PGMs provide a diverse framework for modelling the 

relationships between material components, ranging from Bayesian networks to Markov random fields. 

This allows for a better understanding of the underlying processes that drive the behaviour of materials. 

PGMs make it possible to forecast a wide range of material properties, including those in the electrical, 

mechanical, thermal, and optical domains. This is accomplished by combining information on the 

composition of elements, structural motifs, and ambient conditions. It should come as no surprise that the 

use of PGMs for the purpose of speeding the discovery and design of materials offers immense potential. 

Through the use of data-driven insights and computational intelligence, researchers are able to investigate 

novel materials that possess individualized functions, therefore propelling progress in a variety of 

scientific fields and industrial sectors. When looking into the future, the future of PGMs in the field of 

materials science resides in their continuing refining and application to new possibilities and difficulties 

that are just emerging.  

  Investigating potential future research avenues in the field of PGMs for the purpose of forecasting 

new characteristics of materials presents an exciting opportunity for investigation. The creation of 

dynamic graphical models that are able to capture temporal dependencies and changes in material 

characteristics over time is one of the options that might be pursued. This is especially significant for 

materials that are exposed to variable environmental circumstances or that are experiencing phase 

transition. It is possible to examine the hierarchical modelling technique in order to represent the 

multiscale aspect of material behaviour, which ranges from the atomic and molecular scale to the 

qualities of the material at the macroscale. This would provide insight into the complex material systems. 

The incorporation of uncertainty quantification methodologies into PGMs would make it possible for 

researchers to measure and integrate uncertainty into model predictions, hence improving the resilience 

and reliability of predictions about the properties of materials. The path that research will take in the 
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future has the potential to increase the capacities of PGMs to make predictions and to promote innovation 

in the fields of materials science and engineering.  
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