
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j987

Intelligent Python Code Analyzer [IPCA]

1Christie Thottam, 2Nigel Fernandes, 3Rehan Joseph, 4Imran Mirza
1Student, 2Student, 3Student, 4Professor
1Department Of Computer Engineering,

1Don Bosco Institute of Technology, Mumbai, India

Abstract: A revolutionary improvement in Python code development tools is the Intelligent Python Code

Analyzer (IPCA). IPCA pushes the boundaries of conventional static analysis tools by utilizing state-of-the-

art artificial intelligence approaches to improve efficiency and code quality. In contrast to traditional methods,

IPCA offers context-aware and dynamic code analysis, giving developers smart insights. IPCA’s primary goal

is to optimize Python codebases by pointing out problems and making suggestions for fixes. By utilizing

sophisticated algorithms, the tool offers developers practical suggestions for problem discovery and code

optimization that go beyond superficial examination. IPCA can comprehend complex code links and

dependencies because to the incorporation of artificial intelligence, and it can provide insightful

recommendations that go beyond grammatical accuracy. Because IPCA integrates easily with well-known

Python Integrated Development Environments (IDEs), it has the potential to completely transform the

development workflow. The coding process is streamlined for developers by providing them with intelligent

ideas and real-time feedback in their comfortable working environment. With the introduction of a

revolutionary tool that not only finds inefficiencies but also makes it easier to take a proactive approach to

bug avoidance, this project epitomizes a dedication to code perfection. IPCA becomes a valuable tool for

Python developers, promoting a continuous development mindset and establishing a new benchmark for

intelligent, context-aware code analysis.

Index Terms - IPCA, code analysis, software development, Abstract syntax tree, command-line-

interface (CLI)

I. INTRODUCTION

Efficient code analysis tools are becoming essential in the ever changing software development world. There

is an increasing demand for intelligent solutions that can understand, optimize, and improve Python code as

projects get more complicated. The goal of this project is to develop an intelligent Python code analyzer by

using modern approaches that were motivated by the latest IEEE research in the area. A new age of code

analysis, characterized by creative methods for software understanding and optimization, has been brought

about by the explosion of machine learning and artificial intelligence. Current IEEE papers—published after

2019—have been significant in influencing the state of intelligent code analyzers, especially in the context of

Python programming. A notable trend in computer science education over the past few years has been the

creation of more tools with the goal of improving the learning process for inexperienced programmers. IPCA

is a static code analysis tool that has been carefully crafted to offer automatic feedback to students taking

beginner Python classes. This study explores the IPCA module in response to the growing need for scalable

and effective ways to evaluate student code, promote a better understanding of programming principles, and

expedite the learning process. Static code analysis tools like as IPCA are essential for analyzing student code

because they use algorithms to navigate code structures, identify syntactic and semantic problems, and produce

detailed results. By closely examining the underlying algorithms for static code analysis, file validation,

command-line interface processing, and server communication, this paper significantly adds to the overall

functionality and efficacy of the tool. The research aims to shed light on the essential elements driving IPCA’s

success in the educational landscape. Static code analysis tools like as IPCA are essential for analyzing student

code because they use algorithms to navigate code structures, identify syntactic and semantic problems, and

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j988

produce detailed results. By closely examining the underlying algorithms for static code analysis, file

validation, command-line interface processing, and server communication, this paper significantly adds to the

overall functionality and efficacy of the tool. The research aims to shed light on the essential elements driving

IPCA’s success in the educational landscape.

II. RESULTS

There are some existing systems closely related to the proposed idea of developing an obscene content

blocker. A literature review of the proposed systems or the existing systems was performed to analyze these

systems. It gives an idea of how the already existing systems were made or developed, the different

implementation methods used to establish software according to the required requirements and issues faced by

the developers during the period of development and the most convenient or possible outcomes of each method.

The article titled ‘Software Modernization Using Machine Learning Techniques’ was published by Norbert

Somogyi, Gabor Kovesdan proposes a novel approach of using machine learning for software modernization,

which has not been explored much before. This could open up new possibilities for improving automation and

precision in legacy code transformations. Presents a concrete case study demonstrating how machine learning

can be applied to a specific problem in pointer conversion between C and Java. Provides a proof of concept

implementation showing feasibility. Shows through experimentation that the machine learning approach

significantly outperforms traditional static analysis for the pointer conversion problem, improving accuracy

from 58 to 74 percent Demonstrating clear benefits. Well structured paper that gives good background on

software modernization challenges, analyzes related work, and motivates the need for new techniques like

machine learning. The sample data set used for training and testing the machine learning model is relatively

small at 378 examples. More data would be needed to make the results more robust. The process of manually

gathering accurate training data through code transformation and observation seems time consuming and limits

the overall automation level. The improvements shown are on a narrow test case of pointer conversion. Benefits

for larger scale modernization tasks are still unclear. No direct comparison to other machine learning techniques

for this problem. Unclear if this deep learning approach is optimal. The convergence of the training process

and optimal network parameters could be analyzed more thoroughly. Overall the paper makes a nice

contribution demonstrating the potential of machine learning for software modernization. But more work

would be needed to expand the approach and evaluate benefits more conclusively. The pros highlight the

promising possibilities, while the cons indicate limitations and areas for improvement.[1]

The article titled ‘Code Vulnerability Identification and Code Improvement using Advanced Machine

Learning’ was published by Laneesha Ruggahakotuwa,Lakmal Rupasinghe,Pradeep Abeygunawardhana

focuses on an important problem of identifying vulnerabilities in source code to prevent exploits and security

breaches. This could have high practical impact. Proposes using a combination of static and dynamic analysis

to detect vulnerabilities, providing complementary approaches. Aims to not just detect vulnerabilities but also

automatically suggest fixes to correct the code. This could save significant developer time. Leverages machine

learning and deep learning techniques which are well suited for automatically identifying patterns and issues

in code. Provides concrete examples of detecting and fixing SQL injection and cross-site scripting

vulnerabilities. Developing as an open source plugin makes it accessible and extensible. The machine learning

approaches are discussed at a high level without details on specific models, algorithms, or training process.

Limited evaluation with only two vulnerability examples. More thorough evaluation needed. Unclear how

effective the automatic fix suggestions would be across a broad range of vulnerabilities. Additional comparison

to existing tools would be useful to benchmark performance. Lacks analysis of false positive and false negative

rates. Uncertain how the approach would handle new types of vulnerabilities not seen during training. Overall

the paper explores an important direction of using ML to secure code. But more algorithmic and evaluation

details would strengthen the approach. The pros highlight promising possibilities while cons indicate areas

needing further development.[2]

The article titled ‘Machine Learning based Static Code Analysis for Software Quality Assurance’ was

published by Gergana Vladova, Stefan Konopik, Andr´e Ullrich, Eldar Sultanow Capgemini addresses the

important practical problem of improving code quality and reducing bugs in large mission-critical software

systems. Proposes a novel approach of using machine learning for static code analysis to find hidden flaws not

detectable by standard tools. Provides a concrete case study demonstrating the approach on a large 800,000+

lines of code system used by the German Federal Employment Agency. Explains the algorithms and techniques

in sufficient technical detail, including association rule mining. Shows examples of actual code quality issues

identified that led to bugs in production. Prototype integration with Eclipse provides accessible implementation

for developers. The training data relies on existing hand-written code which may also contain flaws. Only

evaluates on a single proprietary system, more case studies needed. Limited explanation for how new/changing

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j989

code influences the trained model over time. Additional comparison to traditional static analysis tools would

be useful. No quantitative evaluation of issues found or improvements measured. Focused only on code quality,

could expand to security, performance, etc. Overall the paper demonstrates a promising usage of machine

learning for an important software engineering problem. The pros show it tackles a real-world issue with an

innovative approach, while the cons suggest ways the techniques could be expanded and evaluated more

thoroughly.[3]

III. EXISTING SYSTEM

3.1 Findings in the existing system

A number of systems are available in the current computer science education tool landscape that are

designed to improve the learning process for inexperienced programmers. These technologies use static code

analysis to create interactive learning experiences, enhance code quality, and provide automatic feedback. The

main conclusions from a comparative study of several systems, each making a distinct contribution to the field

of programming instruction, are examined in this part. One goal that many systems have in common is to

increase the quality of the code. These programs find and fix problems with coding standards, style infractions,

and possible flaws using static code analysis techniques. The focus on code quality is in line with the main

objective of encouraging developers and learners to adopt best coding techniques. Interactive learning is

prioritized on a number of platforms. These solutions give real time feedback while coding activities are being

performed by incorporating static code analysis. By giving users instant feedback on the style and accuracy of

their code, this interactive method facilitates iterative learning and improves the learning process. Some sites

use a gamified strategy for their coding tasks. Users take part in coding challenges and tournaments, which

promotes teamwork and competitiveness within a community. This gamification technique promotes users to

hone their coding abilities through entertaining and stimulating exercises, which enhances the learning

environment. A unique feature of some systems is their support for several programming languages, which

gives users access to a single online development environment. Because of its inclusivity, Python is just one

of the many languages that developers and students can experiment with and learn. This kind of customization

helps the platform meet a wide range of learning requirements. Numerous platforms clearly state that they are

meant to be instructive. To help students learn programming, these platforms include structured courses,

interactive activities, and exams. These systems strive to improve the educational landscape by making coding

more accessible, especially for novices, by offering guided educational content. Online coding communities

encourage users to report problems and discuss them in a group setting, which promotes cooperation. This

collaborative feature encourages peer learning and knowledge exchange. By participating in conversations

about code quality, efficiency, and other possible solutions, users help learners feel more connected to one

another. Coding challenges are an integral part of the platforms of these groups. Users take on real-world issues

and provide solutions for review. In addition to strengthening coding abilities, this method offers a real-world

setting in which to apply programming ideas, enhancing the overall educational process. Some programs

function as integrated tools inside the workflows of developers, with an emphasis on code quality analysis.

These resources support developers in upholding coding standards and seeing any problems early on in the

process. The industry’s emphasis on integrating code quality techniques throughout the development lifecycle

is in line with the smooth integration of these technologies.

3.2 Limitations

Although current static code analysis tools offer useful information about the style, quality, and possible

problems in the code, they frequently have drawbacks in terms of user interest and educational focus. A lot of

technologies don’t specifically focus on helping inexperienced programmers in an educational environment.

Furthermore, the learning process might not be interactive or customized to meet the needs of each particular

student, and the feedback that is given could be general.

3.3 Proposed Work

In order to overcome these constraints, IPCA focuses on meeting the requirements of inexperienced

programmers taking beginning Python classes. Its architecture makes use of instructional concepts to provide

focused and helpful feedback, which improves the learning process. By providing users with in-depth analysis

of their code, IPCA’s interactive feedback system guarantees that users gain a deeper comprehension of

programming principles. The tool stands out for its emphasis on customization and user-friendly interactions,

which makes it an invaluable resource in the field of education. Using this framework, you can emphasize

IPCA’s benefits in resolving the constraints that have been found, as well as its function in facilitating efficient

learning and offering customized feedback to inexperienced programmers.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j990

IV. METHODOLOGY

The study project’s technique entails a methodical analysis of the IPCA codebase. The first step in the

investigation is a thorough codebase inspection, where each component is examined in detail to determine

its function and contribution. The goal of this phase is to provide a fundamental understanding of IPCA’s

architecture by emphasizing important elements and how they work together. After the preliminary analysis,

the paper concentrates on the algorithmic underpinnings of IPCA, with specific attention to tree architectures,

visitor patterns, and code duplication verification. An essential component of IPCA’s capabilities, static code

analysis, is examined in detail using these algorithmic foundations. The study then moves on to the IPCA

feedback creation processes, including the approaches for producing feedback messages and grouping them

logically. This stage seeks to understand how IPCA gives users constructive feedback, which is in line with

the overarching objective of improving the learning process for inexperienced programmers. A thorough

investigation of server connection methods is also included in the process, with a focus on safe data transfer

and the possible input of anonymized data. This feature demonstrates IPCA’s dedication to privacy concerns

and data integrity in educational settings. The study also examines the setup and configuration procedures,

including loading IPCA setups. Comprehending IPCA’s customization and configuration capabilities is

essential to appreciating its versatility in accommodating a range of user preferences and educational

environments. We look closely at the validation techniques used in IPCA, including decorator functions,

special exceptions, and set ends transformations. The purpose of this phase is to clarify how IPCA maintains

the robustness and dependability of the validation of its teaching tools. Drawing on findings from prior

studies, the investigation also addresses cross-platform compatibility problems within IPCA. Evaluating

IPCA’s practical utility requires an understanding of how it handles issues and maintains consistency across

various operating systems. Lastly, an examination of the HTML and Markdown reporting formats used by

IPCA is part of the methodology. This stage assesses how well IPCA’s reporting systems enable user

interpretation and interaction with the findings of analysis. By using this methodology, the research hopes

to provide a deeper understanding of IPCA’s architecture and functionality, which will be of great value to

the field of computer science teaching tools. The methodical inspection of every component guarantees a

thorough and in-depth analysis, setting the stage for well-informed conversations and possible advancements

in the field of static code analysis for educational objectives.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j991

V. FLOWCHART

The initialization of the IPCA module paves the way for the thorough examination of Python code in the

first stage. This stage creates the fundamental framework required for further assessments. IPCA comes with

a plethora of configuration choices that cover a wide range of parameters. By taking this step, users can

customize the tool to meet their own needs and preferences while also ensuring flexibility and adaptability. A

thorough file validation procedure is carried out before analysis begins. This ensures that the input files are

legitimate Python files, averting possible problems and guaranteeing a seamless analysis procedure. This step,

which is the core of IPCA, entails running sophisticated algorithms for static code analysis. The identification

of syntactic and semantic problems in the code helps to provide a comprehensive picture of its structure and

quality. Carefully designed, the output reporter improves user experience. This stage makes sure that the code

analysis results are presented in a way that makes it easy to understand the issues that have been found. Strong

logic for server communication is incorporated into IPCA, potentially enabling the submission of anonymized

data. This feature supports data-driven and cooperative changes in line with modern methods. The creation of

thorough analysis reports marks the culmination of the IPCA procedure. These reports help users make well-

informed decisions by giving them insightful information about possible areas for improvement and the quality

of the code.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j992

VI. ALGORITHMS USED

Tree Traversal Algorithm

Through its navigation of the Abstract Syntax Tree (AST), the technique makes hierarchical exploration of

Python code easier. Using pre-order, in-order, and post-order tree traversal techniques, IPCA analyses code

constructions in a methodical manner. This algorithm makes sure that the AST is thoroughly examined, which

lays the groundwork for further analysis.

Syntactic Analysis Algorithm

Python code is parsed to determine syntactic components and grammatical structure. Using the ast module

that comes with Python, the algorithm analyses and parses code in a methodical manner to identify syntactic

patterns. Comprehending the syntactic structure facilitates further analyses and improves IPCA’s

comprehension of code composition.

Semantic Analysis Algorithm

Putting more emphasis on the correctness and meaning of the code than just its syntax. By analyzing

variables, functions, and their relationships, IPCA uses semantic analysis techniques to understand the code’s

intent. Semantic analysis improves IPCA’s ability to recognize logical mistakes and offer thorough feedback.

Error Checking Algorithm

Recognizing and disclosing frequent style infractions and programming faults. The code is regularly

checked by the algorithm, which ensures adherence to coding standards by using established rules and patterns.

By identifying problems with variable naming standards, indentation, and other style-related issues, IPCA

ensures code quality.

Feedback Generation Algorithm

Producing insightful feedback messages based on findings from static code analysis. The algorithm

improves user interpretation by grouping feedback into logical sets like the MessageSet structure. The goal of

IPCA is to provide newbie programmers with feedback that is both actionable and understandable, hence

improving their learning process.

Server Communication Algorithm

Establishing safe channels of communication between a centralized server and IPCA. Secure data transfer

can be facilitated by implementing protocols, possibly with the use of HTTPS or other secure techniques.

permits IPCA to send anonymized data to a central server, which aids in the development of tools and

instructional methods.

File Validation Algorithm

Before analysis, make sure the input files are legitimate Python files. Verifies file extensions, formats, and

basic syntax to avoid problems with further analysis. IPCA relies heavily on file validation to prevent needless

errors and guarantee correct code analysis.

Configurability and User Interaction Algorithm

Putting into practice algorithms that manage user interactions and setups, improving user experience.

involves loading configuration files, handling user preferences for an intuitive interface, and processing

command-line arguments. Because of this algorithmic feature, IPCA is more user-friendly overall and can

adjust to different preferences.

VII. TOOLS AND TECHNOLOGIES USED

To guarantee resilience, effectiveness, and maintainability, a variety of techniques and technologies are

heavily employed in the creation of the Intelligent Python Code Analyzer (IPCA). An outline of the essential

elements that make up the IPCA codebase is given below: Python, a popular programming language renowned

for its clarity and conciseness, is mostly used in the development of IPCA. Python is a good choice for teaching

tools since it supports the objective of giving inexperienced programmers a user-friendly environment. IPCA’s

fundamental functionality, which uses well-established methods and approaches, is mostly dependent on code

analysis libraries. Notable libraries are Tokenize, which is used to tokenize Python source code—a critical step

in static code analysis—and Astroid, which is used for manipulating and analyzing abstract syntax trees

(ASTs). To improve its functionality, IPCA incorporates external libraries. Distinguished instances comprise

Click, which is employed to generate an intuitive command-line interface (CLI) for IPCA, and Requests, which

is crucial for managing HTTP requests and enabling server interaction. ConfigParser is used to handle

configuration settings, allowing configuration files to be loaded and parsed. This gives configuration flexibility

for IPCA parameters based on particular needs. IPCA uses Sphinx, a program that makes it easier to create

excellent documentation from Python code, for documentation needs. This makes the codebase more

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j993

understandable. Git is used by IPCA to administer version control, which guarantees effective code tracking,

versioning management, and collaboration. This makes it possible for coordinated development, teamwork,

and efficient code management. Incorporating this extensive array of instruments and technologies into the

account of IPCA’s evolution affords openness regarding the technological basis. Readers, researchers, and

developers can better grasp the various interconnected tools that make IPCA function by using this information.

Changes can be made to ensure clarity and relevancy based on the particular technologies utilized in the

codebase.

VIII. CODE QUALITY METRICS

For any educational tool to be effective and maintainable, the code must be of a high quality. Multiple code

quality criteria are used to conduct a thorough evaluation of the Intelligent Python Code Analyzer (IPCA). The

main measures used to evaluate the stability and effectiveness of IPCA’s codebase are highlighted in this

section. One basic metric used to measure code complexity is cyclomatic complexity. In order to maintain low

cyclomatic complexity numbers, IPCA designs sophisticated algorithms with simplicity in mind. These

algorithms are used for server communication, file validation, and static code analysis, which results in reduced

complexity scores. Duplication of code can cause problems and make it harder to maintain. By utilizing

algorithms to detect and reduce code duplication, IPCA tackles this issue. Regular audits are performed on the

codebase to reduce redundancy and improve readability. A composite metric called the Maintainability Index

takes into account a number of variables that affect the maintainability of code. High maintainability index

values are emphasized by IPCA, which encourages readability, clarity, and adherence to best practices in code

design. This is especially important for a learning tool meant for inexperienced programmers. In-depth testing

is essential to the advancement of IPCA. An large suite of unit tests is included with the codebase to ensure

thorough coverage in a variety of scenarios. High test coverage is the goal of IPCA, which is in line with best

practices in software development and improves robustness and dependability. One of the main components

of IPCA’s code quality policy is adherence to PEP 8, the official Python style standard. The naming standards,

code formatting, and general stylistic coherence receive special attention. PEP 8 compliance is enforced by

automated tools, which helps maintain a standardized and clean codebase. Finding chances for refactoring is

one way to approach continuous improvement. Periodic code reviews and component analysis, particularly for

static code analysis and feedback creation, aid in identifying areas that need improvement. The main goals of

refactoring are to increase code clarity and optimize algorithms. For documentation to be comprehensible, it

must be of high quality. IPCA creates well-organized, succinct, and lucid documentation using Sphinx. Regular

assessments of the documentation guarantee its relevance and accuracy, which helps to maintain the high

caliber of the documentation overall. The assessment of these code quality criteria demonstrates IPCA’s

dedication to providing a reliable, efficient, and maintainable learning resource. By upholding strict guidelines

and regularly evaluating the codebase, IPCA seeks to offer a dependable environment for improving the

education of inexperienced programmers. Based on changing best practices and the demands of the educational

technology sector, these criteria may need to be adjusted.

IX. EDUCATIONAL PLATFORM INTEGRATION

The incorporation of IPCA (Intelligent Python Code Analyzer) into educational platforms signifies a

revolutionary step in augmenting students’ entire learning experience, specifically in classes focused on coding.

IPCA creates a responsive and dynamic learning environment by giving students immediate feedback on their

programming assignments through real-time code analysis. Teachers can use IPCA’s automated code checking,

style enforcement, and fault discovery features to easily integrate it into their curricula. This integration makes

it easier for teachers to evaluate student work, making it possible for them to evaluate and comment on coding

projects more quickly. The capacity of IPCA to automate the code verification process is one of its primary

features. In addition to saving teachers a great deal of time, this feature guarantees that students receive

assessments quickly, allowing them to revise their work and quickly learn from their mistakes. IPCA enforces

coding style, which goes beyond basic code inspection. Students who are taught good programming methods

from the start have a solid basis for developing clear, maintainable code. In addition to helping students with

their coursework, this proactive approach to coding standards also gets them ready for real-world coding

challenges. Additionally, IPCA is a useful tool for error detection. Students can improve their coding skills and

learn from typical blunders by identifying faults in the code. Programmers are becoming more skilled and self-

aware as a result of this iterative learning process, which IPCA facilitates. In summary, students taking coding

classes benefit greatly from the incorporation of IPCA into educational systems. With features like style

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j994

enforcement, automated checking, real-time code analysis, and error detection, IPCA enables teachers and

students to promote a culture of excellence in programming abilities and continual progress.

X. SECURITY CONSIDERATIONS

The IPCA server ought to use secure coding techniques since it is in charge of processing and examining

student code. It is essential to have secure data storage methods, output encoding, and input validation in place

to stop common web-based vulnerabilities like SQL injection and cross-site scripting (XSS) attacks.

Encryption techniques should be used since IPCA processes and stores user data, protecting sensitive data both

during transmission and storage. You can use Secure Sockets Layer (SSL) or its descendant Transport Layer

Security (TLS) to create secure channels of communication. Code execution vulnerabilities may arise because

IPCA assesses code created by students. In order to isolate and restrict student code execution and stop

unwanted access to system resources, strong sandboxing techniques are used. There is a chance of code

execution vulnerabilities because IPCA assesses student generated code. In order to avoid unauthorized access

to system resources, it is important to implement strong sandboxing mechanisms that isolate and contain

student code execution. To find and fix such vulnerabilities, the IPCA codebase and server architecture undergo

routine security audits. Both manual code reviews and automated methods can improve IPCA’s security

posture. It is imperative that the IPCA server and related components adopt secure configuration procedures.

To reduce the attack surface, this entails setting up firewalls, access controls, and server hardening techniques.

XI. SCALABILITY AND PERFORMANCE

The architecture of IPCA is made to grow smoothly with the volume and complexity of codebases seen in

learning environments. By utilizing the Astroid library to manipulate abstract syntax trees (ASTs), IPCA can

now analyze code hierarchies more effectively and manage multi-file projects without sacrificing

performance. The IPCA’s modular design makes it simple to incorporate new checks and transforms and

guarantees that it may be adjusted to meet changing educational needs. Several important criteria, such as

analysis time and resource consumption, are taken into account in order to quantify IPCA’s performance.

The application is designed to give quick feedback, so teachers and students can get the results of their

analyses right away. Performance benchmarks show how effectively IPCA processes code, which makes it

a useful tool in instructional settings where time is of the essence. When tokenization techniques are applied

during static code analysis, IPCA can process code more quickly, which improves overall performance.

During code analysis, IPCA makes a number of optimizations to increase its effectiveness. To minimize

redundant computations and speed up subsequent analyses, caching mechanisms are utilized to store code

that has already been analyzed. This optimization is especially helpful when handling assignments that need

iterations or frequent changes to the code. Furthermore, IPCA distributes analytic jobs using parallelization

techniques, which maximizes resource utilization and reduces analysis time, particularly in situations

involving large-scale codebases. IPCA’s performance and scalability match the various needs of both

individual students and educational institutions. IPCA’s architecture assures consistent performance, making

it ideal for usage in both advanced software engineering and basic programming courses. This facilitates

learning. Because of its versatility, the tool can be used by instructors to handle a wide range of student

assignments with varying degrees of difficulty.

XII. CONCLUSION

In conclusion, the Intelligent Python Code Analyzer (IPCA) proves to be a crucial instrument for teaching

programming and demonstrates a dedication to effectiveness and flexibility. By utilizing the Astroid and

Tokenize libraries for code analysis, IPCA guarantees a stable educational setting. User interaction and

server communication are improved by the incorporation of the Click and Requests libraries. Effective

version control and documentation are facilitated by Sphinx and Git. IPCA empowers teachers by supporting

several codebases and providing quick, multifile project analysis. Its incorporation into courses is expected

to improve students’ coding skills and provide a deeper understanding of programming. Transparency in

technology is a hallmark that provides developers and researchers with information. The flexibility of IPCA

to adjust to new pedagogies and technological developments is essential. The evolution of IPCA may be

accelerated by the incorporation of machine learning, interoperability with learning management systems,

and customization opportunities. IPCA welcomes open-source contributions and is based on community

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j995

engagement. Its success comes from motivating skilled programmers as much as from technological

prowess. The article outlines how IPCA will develop further and influence programming education around

the world. Receipts convey appreciation to those who have contributed. The scholarly foundation is

established by references, and author biographies demonstrate knowledge. Contact details encourage

cooperation and guarantee PyTA’s continuous development. This final section summarizes IPCA’s journey

and looks forward to a dynamic programming education landscape. The story of the tool is created through

group contributions, encouraging international cooperation for continued progress.

XIII. ACKNOWLEDGEMENTS

We would like to convey our deep thanks to the organization of Don Bosco Institute of Technology who

assisted in the creation of this project for the insightful recommendations and inspiration they provided as they

led us through the process.

We also want to express our gratitude to Don Bosco Institute of Technology for providing all the facilities

needed to complete this project. Finally, as one of the team members, let me express my gratitude to every

member of my group for their cooperation and support.

REFERENCES

[1] N. Somogyi and G. K¨ovesd´an, ”Software Modernization Using Machine Learning Techniques,” 2021

IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl’any, Slovakia,

2021, pp. 000361- 000365, doi: 10.1109/SAMI50585.2021.9378659. keywords: Automation;Machine

learning;Static analysis;Tools;Maintenance engineering;Aging;Software;code modernization;static

analysis;machine learning,

[2] L. Ruggahakotuwa, L. Rupasinghe and P. Abeygunawardhana, ”Code Vulnerability Identification and

Code Improvement using Advanced Machine Learning,” 2019 International Conference on Advancements in

Computing (ICAC), Malabe, Sri Lanka, 2019, pp. 186-191, doi: 10.1109/ICAC49085.2019.9103400.

keywords: Machine learning;Software;Tools;Feature extraction;Security;Static analysis;Neural

networks;Vulnerability;Machine learning;Deep learning;CVE,

[3] E. Sultanow, A. Ullrich, S. Konopik and G. Vladova, ”Machine Learning based Static Code Analysis for

Software Quality Assurance,” 2018 Thirteenth International Conference on Digital Information Management

(ICDIM), Berlin, Germany, 2018, pp. 156-161, doi: 10.1109/ICDIM.2018.8847079. keywords: Machine

learning;Data mining;Software;Tools;Prototypes;Employment;association rule mining;Machine

Learning;Static Code Analysis;German Federal Employment Agency,

[4] M. Feathers, Working Effectively with Legacy Code. USA: Prentice Hall PTR, 2004.

[5] M. S. Harrison and G. H. Walton, “Identifying high maintenance legacy software,” Journal of Software

Maintenance, vol. 14, no. 6, p. 429–446, Nov. 2002.

[6] H. Huijgens, A. van Deursen, and R. van Solingen, “Success factors in managing legacy system evolution:

A case study,” in 2016 IEEE/ACM International Conference on Software and System Processes (ICSSP),

2016, pp. 96–105.

[7] A. Cockburn, Agile Software Development: The Cooperative Game (2nd Edition) (Agile Software

Development Series). Addison-Wesley Professional, 2006.

[8] H. M. Sneed and T. Dombovari, “Comprehending a complex, distributed, objectoriented software system:

a report from the field,” in Proceedings Seventh International Workshop on Program Comprehension, 1999,

pp. 218–225.

[9] Xiaomin Wu, A. Murray, M. . Storey, and R. Lintern, “A reverse engineering approach to support software

maintenance: version control knowledge extraction,” in 11th Working Conference on Reverse Engineering,

2004, pp. 90–99.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j996

[10] Jelber Sayyad Shirabad, T. C. Lethbridge, and S. Matwin, “Mining the maintenance history of a legacy

software system,” in International Conference on Software Maintenance, 2003. ICSM 2003. Proceedings.,

2003, pp. 95–104.

[11] A. Terekhov and C. Verhoef, “The realities of language conversions,” IEEE Software, vol. 17, no. 6, pp.

111–124, 2000.

[12] mtSystems, “mtSystems documentation,” https://www.mtsystems.com/, 2020, accessed: 2020-10-05.

[13] H. M. Sneed, “Migrating pl/i code to java,” in 2011 15th European Conference on Software Maintenance

and Reengineering, 2011, pp. 287–296.

[14] P. Newcomb and G. Kotik, “Reengineering procedural into objectoriented systems,” in Proceedings of

2nd Working Conference on Reverse Engineering, 1995, pp. 237–249.

[15] H. Gall and R. Klosch, “Program transformation to enhance the reuse potential of procedural software,”

in Proceedings of the 1994 ACM Symposium on Applied Computing, ser. SAC ’94. New York, NY, USA:

Association for Computing Machinery, 1994, p. 99–104.

[16] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,”

Journal of Machine Learning Research - Proceedings Track, vol. 9, pp. 249–256, 01 2010.

[17] H. Rathore, S. Agarwal, S. K. Sahay, and M. Sewak, “Malware Detection using Machine Learning and

Deep Learning.,” Cryptography and Security (cs.CR); Machine Learning (cs.LG), vol. 11297, pp. 402-411,

2018.

[18] H. K. Dam, T. Tran, T. T. M. Pham, S. W. Ng, J. Grundy, and A. Ghose, “Automatic feature learning for

predicting vulnerable software components,” IEEE Transactions on Software Engineering, Institute of

Electrical and Electronics Engineers Inc., 2018.

[19] J. Jurn, T. Kim, and H. Kim, “An automated vulnerability detection and remediation method for software

security,” Sustain., vol. 10, no.5, May 2018.

[20] N. Shakhovska, “Advances in Intelligent Systems and Computing,” Ukraine: Springer, Cham, 2016.

[21] I. P. L. Png, C.-Y. Wang, and Q.-H. Wang, “The Deterrent and Displacement Effects of Information

Security Enforcement: International Evidence”, Journal of Management Information Systems , vol. 25, Taylor

Francis, Ltd., pp. 125144.

[22] H. Nguyen, H. Dang, T. Le, and S. Le, “Innovative Mobile and Internet Services in Ubiquitous

Computing - Proceedings of the 11th International Conference on Innovative Mobile and Internet Services in

Ubiquitous Computing (IMIS-2017)”, Torino, Italy, 10-12 July 2017, vol. 612, 2018.

[23] C. M. Chase and S. A. Jacob Abraham, Ernest A Emerson II Vijay K Garg Aleta M Ricciardi “Testing

Concurrent Software Systems Committee.”

[24] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the Art,” IEEE Trans. Reliab., vol.

67, no. 3, pp. 11991218, Sep. 2018.

[25] HT. B. Lee, Which Languages Are Bug Prone tim@vox.com, 2014.[Online]. Available: https://www.i-

programmer.info/news/98-languages/11184-whichlanguages-are-bug-prone.html

[26] T. Abraham and O. De Vel, “A Review of Machine Learning in Software Vulnerability Research,”,

Defence Science and Technology Group, Australia, 2017.

[27] R. Amankwah, P. K. Kudjo, and S. Y. Antwi, “Evaluation of Software Vulnerability Detection Methods

and Tools: A Review,” Int. J. Comput. Appl., vol. 169, no. 8, pp. 2227, 2017.

http://www.ijcrt.org/
https://www.i-programmer.info/news/98-languages/11184-whichlanguages-are-bug-prone.html
https://www.i-programmer.info/news/98-languages/11184-whichlanguages-are-bug-prone.html

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3183 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j997

[28] M. Dowd, J. McDonald, and J. Schuh, “An automated vulnerability detection and remediation method

for software security”, Pearson Education, 2006.

[29] F. Yamaguchi, “Pattern-Based Vulnerability Discovery”, University of G¨ottingen, 2015.

[30] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose, “Automatic feature learning for

vulnerability prediction”,arXiv Prepr.arXiv1708.02368, 2017.

[31] T. B. Lee, “The Heartbleed Bug”, explained - Vox,

tim@vox.com,2014.[Online].Available:https://www.vox.com/2014/4/8/5593654/ heartbleedexplainer-big-

new-web-security-flaw-compromiseprivacy

[32] C. Fenton, “How to Check Open Source Code for Vulnerabilities DZone Security” Security Zone

Analysis, 2017. [Online]. Available:https://dzone.com/articles/how-tocheck-open-sourcecodefor-

vulnerabilities.

[33] R. Russell, “Automated vulnerability detection in source code using deep representation learning,” in

2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 2018, pp.757762.

[34] K. Nishizono, S. Morisakl, R. Vivanco, and K. Matsumoto, “Source code comprehension strategies and

metrics to predict comprehension effort in software maintenance and evolution tasks,” an empirical study with

industry practitioners, in 2011 27th IEEE International Conference on Software Maintenance (ICSM), 2011,

pp.473481.

[35] Q. Zoubi, I. Alsmadi, and B. Abul-Huda, “Study the impact of improving source code on software

metrics”, in 2012 International Conference on Computer, Information and Telecommunication Systems

(CITS), 2012,

[36] M. Nadeem, ”Why SonarQube: An introduction to Static Code Analysis” 2015. Online available from:

https://dzone.com/articles/ why-sonarqube-1 (accessed 24 February 2018)

[37] N. DuPaul, ”Static Testing vs. Dynamic Testing” 2017. Online available from:

https://www.veracode.com/blog/2013/12/statictesting-vs-dynamic-testing (accessed 24 February 2018)

[38] B. McCorkendale, T. Xue Feng, G. Sheng, Z. Xiaole, M. Jun, M. Qingchun, H. Ge Hua, and E.H.Wei

Guo, “Systems and methods for combining static and dynamic code analysis.” U.S. Patent 8,726,392, issued

May 13, 2014.

[39] A. Marchenko, and P. Abrahamsson, ”Predicting Software Defect Density: A case Study on Automated

Static Code Analysis.” in Proceedings of 8th International Conference, XP 2007. Agile Processes in Software

Engineering and Extreme Programming, Lecture Notes in Computer Science, 4536, DOI: 10.1007/978-3-540-

73101-6

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, and J. Vanderplas, “Scikit-learn: Machine learning in Python”. Journal of machine

learning research, 12(Oct) 2011, pp. 2825-2830.

http://www.ijcrt.org/

