
www.ijcrt.org                                                     © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882 

IJCRT24A3178 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j957 
 

 Enhancing SQL Injection Security Through 

Cryptographic Measures 

1D. Bhagya Sree, 2 G. Kotireddy, 3B. Pavan Kalyan Dinesh, 4 B. Sashi Kiran, 5 S. Nikhila 
                                                            1 Cyber Security 2Cyber Security, 3Cyber Security,4 Cyber Security, 5 Cyber Security 

                                                                              Raghu Engineering College,   India 

 

Abstract:  This paper discusses the critical matter of SQL Injection Attacks (SQLIA), which are widely 

recognized as a prevalent vulnerability in web applications and are among the top 10 web security concerns 

identified by the Open Web Application Security Project. As social networking and e-commerce have 

proliferated, so have assaults such as spamming and phishing, which pose grave risks to the security of user 

data. SQLIA permits unauthorized database access, modification, and deletion; therefore, hackers must 

exploit details such as table and field names. In order to address this issue, we suggest implementing a divide-

and-conquer strategy that utilizes randomization-based encryption algorithms and the Hirschberg algorithm 

to bolster security while decreasing the complexity of time and space. By substantially enhancing security 

and resilience against prevalent attack techniques such as dictionary and brute force assaults, our solution 

outperforms current methodologies. Through the implementation of cutting-edge encryption methods and 

algorithmic improvements, our objective is to construct a resilient collection of tools that can effectively 

protect databases against unauthorized entry. This will consequently guarantee an elevated level of security 

for both users and their data. 

 

Key Words - SQL, SQLIA, Hirschberg, encryption. 

I. INTRODUCTION 

The significant incidence of SQL Injection Attacks (SQLIA) in web applications emphasizes the urgent 

requirement for increased vigilance and strong safeguards against these susceptibilities. SQLIA comprises 

an estimated 14-15% of web application assaults, as stated in the White Hat report on web security 

vulnerabilities for 2011. ( Gupta, H., Mondal) Consequently, it is imperative to adopt proactive measures 

in order to mitigate the associated risks. In a time when online transactions and interactions predominate, it 

is critical to comprehend and effectively mitigate diverse attack vectors, such as denial of service attacks, 

social engineering, and phishing.( Selvamani, K) Notwithstanding progress made in the implementation of 

encryption methods and defensive coding practices, SQL Injection Prevention (SQLIA) continues to pose 

a substantial risk as a result of inadequate input validation and the continuous evolution of sophisticated 

attack strategies. It is important to highlight that conventional defensive programming methods struggle to 

fully mitigate SQLIA threats. (Namdev, M ) These methods frequently concentrate on particular attack 

subsets and present difficulties when it comes to retrofitting legacy software.In order to effectively address 

SQLIA, innovative approaches are suggested that utilize randomized techniques and encryption algorithms. 

Our contribution is the creation of a Secure Hashing Algorithm-based encryption strategy that is specifically 

designed for web applications. This approach provides improved resilience against SQLIA attacks. In order 

to validate the effectiveness of our proposed solution, we also present a Java-based utility for ciphertext 

generation and perform empirical analyses. In addition, the growing dependence on web-based services 

underscores the need for a comprehensive strategy towards safeguarding web applications. This strategy 

should go beyond conventional security measures like intrusion detection systems and firewalls. The critical 

nature of comprehensively addressing SQLIA is underscored by the widespread use of vulnerable database 

technologies and dynamic scripting languages (e.g.,php, ASP.net). Despite the fact that numerous 

mitigation strategies have been investigated in prior research, a number of them have practical and efficacy-

http://www.ijcrt.org/


www.ijcrt.org                                                     © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882 

IJCRT24A3178 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j958 
 

limiting deficiencies. With the intention of protecting sensitive data and reducing potential risks presented 

by malicious entities, our strategy is to fortify web applications against SQL Injection assaults through the 

implementation of a combinational approach that incorporates randomized techniques, defensive coding 

practices, and encryption. 

 

II. Literature Survey 

 

SQL Injection Attacks (SQLIAs) present a substantial peril to the security of databases as they facilitate illicit 

data manipulation and access via susceptible web applications. Intentions underlying SQLIA encompass 

unauthorized entry into databases, extraction and modification of data, escalation of user privileges, and 

malfunctioning applications. These malicious attacks capitalize on the susceptibility of web application 

parameters, inadvertently infiltrating the database in the absence of the administrator.  

An innovative strategy for identifying and thwarting SQLIA attacks entails the creation of a randomization-

based encryption algorithm tailored to each application. ( Som, S., Sinha) Although SQLIA can be utilized to 

exploit databases in a variety of ways, current solutions generally only mitigate a subset of these attack 

methods. Prior to the development of a tool, it is essential to conduct an exhaustive literature review, taking 

into account organizational capabilities, economic viability, and schedule constraints. It is consequently 

critical to ascertain the appropriate programming language and operating system. Throughout the 

development process, programmers necessitate external assistance from seasoned colleagues, reference 

materials, and online resources. (Ezumalai, R.) The SQLIA can have a significant influence on database 

security, potentially leading to unauthorized modification of records and tables, deletion of databases, or both, 

all without the knowledge of the user or administrator. The compromise of confidential data by these attacks 

frequently goes undetected for an extended period of time following the intrusion. SQL Injection attacks are 

readily executable through the use of basic web browsers. To detect SQLIA nodes, it is critical to comprehend 

the architecture of web applications. The 3-tier logical view architecture consists of the following components: 

the user interface tier (frontend), which is where user interactions take place; the business logic tier 

(intermediate layer), which processes user requests and executes server-side programming; and the database 

tier (backend), which utilizes the database server to facilitate data storage and retrieval. In order to bolster the 

overall security of web applications, mitigation strategies must sufficiently target vulnerabilities that span 

these architectural layers. 

 

                                            Fig.1 Web 3-tier architecture 

 

III. Proposed System Architecture 

This methodology utilizes runtime monitoring to identify and avert SQL Injection Attacks (SQLIA) through 

dynamic analysis of the login page redirection of every application to a specialized verification page. The 

underlying principle of its operation is to detect and prevent SQLIA attempts, while permitting authorized 

accesses to continue without interruption. SQL Injection Attack (SQLIA) refers to the malevolent injection 

of SQL statements into concealed parameters or input fields of web applications. This allows for unauthorized 

access or manipulation of data. Given the increasing frequency of SQLIA incidents, which present substantial 

security vulnerabilities, the suggested remedy combines the Secure Hashing Algorithm and Hirschberg 

Algorithm to ensure a strong defense. The technique strengthens application security by employing 

http://www.ijcrt.org/


www.ijcrt.org                                                     © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882 

IJCRT24A3178 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j959 
 

cryptographic mechanisms and utilizing Secure Hashing Algorithm, thereby increasing resilience against 

SQLIA attempts. Furthermore, the integration of the Hirschberg Algorithm facilitates effective runtime 

monitoring through the utilization of a divide-and-conquer strategy to examine incoming requests in search 

of possible SQL injection patterns. By taking this proactive approach, SQLIA can be detected and prevented 

in real-time, without causing any disruption to legitimate user interactions. The effectiveness of the technique 

resides in its capacity to dynamically evaluate and address incoming queries, thus reducing the growing risk 

presented by SQL injection attacks. By leveraging the combined capabilities of algorithmic analysis and 

cryptographic hashing, the suggested solution offers an all-encompassing defense mechanism against SQLIA. 

This ensures the protection of sensitive data and the ongoing integrity of web applications. 

 

By employing client-side script validation, specifically with JavaScript, a multitude of SQL injection attacks 

against web applications can be thwarted. Although it fails to encompass every possible attack vector, it 

implements essential security protocols to prevent unauthorized ingress. The procedure entails implementing 

measures such as restricting the quantity of inputs and special characters, although it may not be practical to 

apply these constraints universally to all applications. Additionally, client-side security measures are readily 

circumvented. While this methodology successfully mitigates assaults incorporating tautology or erroneous 

queries, it continues to be susceptible to blind injection techniques. As a result, server-side validation 

techniques are favored owing to their extensive scope and ability to withstand sophisticated attack 

methodologies. 

 

A. Software System Architecture 

 

During the development phase, the first stage is design, which involves defining the techniques and principles 

necessary to precisely construct a physical implementation of a device, process, or system. The design phase, 

which ensues after the analysis and specification of software requirements, encompasses three critical 

technical tasks: design, coding, implementation, and testing. These activities are essential for the construction 

and validation of the software. The design process encompasses crucial decisions that have a significant 

impact on the success of software implementation and the simplicity of its maintenance, which in turn affects 

the dependability and maintainability of the system.  By bridging the gap between customer specifications 

and the final software or system implementation, design promotes quality throughout the development 

process. The process enables the conversion of specifications into a concrete software model, which is carried 

out in two stages: preliminary design, which concentrates on the conversion of specifications into data. 

Component diagrams in the Unified Modeling Language (UML) depict the structural composition of larger 

software systems by illustrating how components interconnect. In the context of UML, deployment diagrams 

depict the tangible placement of artifacts on nodes. They distinguish between software and hardware 

components (artifacts), which are represented by nodes, and the ways in which they are interconnected (e.g., 

REST, RMI) for systems such as websites. By doing so, they illustrate how components are distributed and 

interact throughout the physical infrastructure. 

  

http://www.ijcrt.org/


www.ijcrt.org                                                     © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882 

IJCRT24A3178 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j960 
 

 
 

Fig.2 Component Diagram of SQL attack. 

 

 

 

 

IV. Research Methodology  

  

SQL injection attacks are a common web security risk that compromises the confidentiality and integrity of 

sensitive user data by exploiting input elements in web forms that have been inadequately designed. It 

transpires within the application between the business logic and user interface layers. (Karunanithi, J. S ) 

An illustrative instance exemplifies the fundamental concept of SQL injection: an intruder can obtain illicit 

access by inputting SQL statements such as 'OR '1'='1'' in place of valid credentials. This is due to the fact 

that '1=1' is invariant and '--' designates the remaining statement as a remark, thereby circumventing 

authentication.  

 

There are numerous varieties of SQLi attacks:  

1) Tautology: the manipulation of input in order to validate logical expressions.  

2) Illicit/Incorrect queries: extracting information from a database by utilizing error messages.  

3) Piggy-Backed Queries: utilizing special characters such as ';' to append malevolent queries.  

4) Blind Injection: To circumvent conventional attacks by concealing database information, hackers must 

infer data using true/false queries and frequently employ timing attacks for analysis.  

 

Every category presents unique vulnerabilities, including unauthorized entry, data manipulation, and 

deletion. Effectively preventing SQL injection attacks requires solutions to mitigate the vulnerabilities 

introduced by un validated inputs. 

 

http://www.ijcrt.org/


www.ijcrt.org                                                     © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882 

IJCRT24A3178 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j961 
 

 

 

Fig.3 Sample Login form 

 

The cryptographic method under consideration utilizes randomization to convert input data into ciphertext, 

supplemented with cryptographic salt for heightened security. Web form input fields customarily consist of 

numeric values, capital and small letters, and a maximum of ten special characters. For a 6-character input, 

there are a total of 72^6 combinations per character, comprised of 26 lowercase letters, 26 uppercase letters, 

0-9 numerals, and 10 special characters. In order to ensure the confidentiality of the input, four random values 

are assigned to each character from a predefined lookup table. The nature of the character that follows each 

character in the input sequence determines the random value assigned to that character. For instance, the 

algorithm selects R[1] from the retrieval table if the following character is a lowercase letter and the current 

character is 'a'. An alternative approach would be to select R[2] if the following character were capitalized, 

R[3] if it were a digit, and R[4] if it were a special character or no character. Ensuring security is improved 

by tailoring these random values to individual applications, as this decreases the probability of decryption by 

malicious entities. By tailoring the cryptographic scheme to specific applications, its robustness against 

potential assaults is enhanced, thereby guaranteeing comprehensive protection for sensitive data that is 

transmitted via web forms. 

 

 

Fig.4 Lookup table for Cryptography Approach 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                     © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882 

IJCRT24A3178 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j962 
 

 

Fig.5 Framework for Cryptography Approach 

 

 

V. RESULTS AND DISCUSSION 
  

During the unit testing phase, a comprehensive manual review of field entries and activation of pages via 

identified links was performed; functional tests were scripted with great attention to detail. The primary goals 

encompassed guaranteeing the accurate operation of input fields, facilitating the smooth activation of 

webpages via specified hyperlinks, and ensuring prompt responses devoid of any delays. The testing primarily 

aimed to validate the accuracy of entry formats, ensure that duplicate entries were prohibited, and verify that 

users were redirected to the appropriate pages upon activating links. The objective of system testing was to 

detect and redress any software errors. The process involved testing the software in order to detect any 

potential flaws or vulnerabilities, guaranteeing compliance with specifications and user anticipations, and 

averting undesirable malfunctions. The exhaustive testing procedure encompassed a multitude of test 

varieties, each designed to fulfill distinct testing criteria. The primary objective of integration testing was to 

identify interface defects through the incremental integration of software components. The aim was to ensure 

that the interactions between integrated components were error-free and seamless. The test outcomes 

demonstrated that every test case was executed successfully, with no defects encountered; this validates the 

integrity and dependability of the integrated software components. During the course of these testing phases, 

a comprehensive evaluation was undertaken to substantiate the software system's functionality, performance, 

and dependability. The lack of detected defects throughout the integration testing process serves as evidence 

of the testing procedures' efficacy and the superior quality of the integrated software components. 

 

II. CONCLUSION 

 

The significant prevalence of SQL Injection Attacks (SQLIA) highlights the urgent requirement for enhanced 

security protocols in order to protect user information within web applications. The development and 

evaluation of an application-specific randomized encryption algorithm designed to detect and prevent SQLIA 

have been the subject of this paper. By conducting a thorough examination, we have evaluated its 

effectiveness in comparison to established methodologies, quantifying its performance metrics to illustrate 

its efficacy. A thorough examination of the diverse attack vectors linked to SQLIA reveals the substantial 

security risk it presents, underscoring the need for resilient defensive approaches. User data stored in web 

applications is of the utmost sensitivity and confidentiality; therefore, it is critical to strengthen security 

measures in order to prevent potential breaches.By utilizing randomized encryption algorithms that are 

customized for particular applications, our proposed solution provides a proactive method for preventing 

SQLIA attempts. By means of empirical comparisons with alternative methodologies, we have successfully 

illustrated the superior performance and effectiveness of our strategy in reducing SQLIA vulnerabilities.  

http://www.ijcrt.org/


www.ijcrt.org                                                     © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882 

IJCRT24A3178 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org j963 
 

In conclusion, ensuring the security of web applications continues to be contingent upon addressing SQLIA. 

The significance of employing customized encryption solutions to effectively counter this ubiquitous threat 

is emphasized by our findings. Ongoing efforts to strengthen defenses against SQLIA and other cyber threats 

are crucial in maintaining user confidence and data integrity in web environments, given the dynamic nature 

of the digital environment. 

 

REFERENCES 

[1] Gupta, H., Mondal, S., Ray, S., Giri, B., Majumdar, R., & Mishra, V. P. (2019, December). Impact of SQL 

injection in database security. In 2019 International Conference on Computational Intelligence and 

Knowledge Economy (ICCIKE) (pp. 296-299). IEEE. 

[2] Selvamani, K., & Kannan, A. (2011, April). A Novel Approach for Prevention of SQL Injection Attacks 

Using Cryptography and Access Control Policies. In International Conference on Power Electronics and 

Instrumentation Engineering (pp. 26-33). Berlin, Heidelberg: Springer Berlin Heidelberg. 

[3] Namdev, M., Hasan, F., & Shrivastav, G. (2012). A Novel Approach for SQL Injection Prevention Using 

Hashing & Encryption (SQL-ENCP). Int J Comput Sci Informat Technol (IJCSIT), 3(5), 4981-7. 

[4] Madhusudhan, R., & Ahsan, M. (2022, March). Prevention of SQL Injection Attacks Using Cryptography 

and Pattern Matching. In International Conference on Advanced Information Networking and 

Applications (pp. 624-634). Cham: Springer International Publishing. 

[5] Karunanithi, J. S. (2018). SQL injection prevention technique using cryptography. 

[6] Avireddy, S., Perumal, V., Gowraj, N., Kannan, R. S., Thinakaran, P., Ganapthi, S., ... & Prabhu, S. (2012, 

June). Random4: An application specific randomized encryption algorithm to prevent SQL injection. 

In 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and 

Communications (pp. 1327-1333). IEEE. 

[7] Som, S., Sinha, S., & Kataria, R. (2016). Study on sql injection attacks: Mode detection and 

prevention. International journal of engineering applied sciences and technology, 1(8), 23-29. 

[8] Jemal, I., Cheikhrouhou, O., Hamam, H., & Mahfoudhi, A. (2020). Sql injection attack detection and 

prevention techniques using machine learning. International Journal of Applied Engineering 

Research, 15(6), 569-580. 

[9] Ezumalai, R., & Aghila, G. (2009, March). Combinatorial approach for preventing SQL injection attacks. 

In 2009 IEEE International Advance Computing Conference (pp. 1212-1217). IEEE. 

[10] Aliero, M. S., Ardo, A. A., Ghani, I., & Atiku, M. (2016). Classification of Sql Injection Detection And 

Prevention Measure. IOSR Journal of Engineering, 6(02). 

[11] Aliero, M. S., Ghani, I., Zainudden, S., Khan, M. M., & Bello, M. (2015). Review on SQL injection 

protection methods and tools. Jurnal Teknologi, 77(13), 49-66. 

[12] Balasundaram, I., & Ramaraj, E. (2011). An authentication mechanism to prevent SQL injection 

attacks. International Journal of Computer Applications, 19(1), 30-33. 

[13] Kar, D., & Panigrahi, S. (2013, February). Prevention of SQL Injection attack using query transformation 

and hashing. In 2013 3rd IEEE International Advance Computing Conference (IACC) (pp. 1317-1323). 

IEEE. 

[14] Kar, D., & Panigrahi, S. (2013, February). Prevention of SQL Injection attack using query transformation 

and hashing. In 2013 3rd IEEE International Advance Computing Conference (IACC) (pp. 1317-1323). 

IEEE. 

[15] Rajeswari, K. C., & Amsaveni, C. (2016). SQL injection attack prevention using 448 blowfish encryption 

standard. International Journal of Computer Science Trends and Technology (IJCST), 4, 325. 

[16] Bangre, S., & Jaiswal, A. (2012). SQL Injection Detection and Prevention Using Input Filter 

Technique. International Journal of Recent Technology and Engineering (IJRTE), 1(2), 145-150. 

[17] Yunus, M. A. M., Brohan, M. Z., Nawi, N. M., Surin, E. S. M., Najib, N. A. M., & Liang, C. W. (2018). 

Review of SQL injection: problems and prevention. JOIV: International Journal on Informatics 

Visualization, 2(3-2), 215-219. 

[18] Temeiza, Q., Temeiza, M., & Itmazi, J. (2017, August). A novel method for preventing SQL injection 

using SHA-1 algorithm and syntax-awareness. In 2017 Joint International Conference on Information and 

Communication Technologies for Education and Training and International Conference on Computing in 

Arabic (ICCA-TICET) (pp. 1-4). IEEE. 

http://www.ijcrt.org/

