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Abstract: 

In the contemporary era, cardiovascular diseases, including heart attacks, remain a leading cause of mortality. 

Identifying heart attack risk in its early stages and accurately assessing such risks related to cardiovascular 

conditions are crucial for proactive patient management and preventive interventions. This research introduces a 

pioneering deep learning architecture termed "CardioGraphVision" for the early detection of heart attack risks 

and cardiovascular conditions using retinal images. The proposed methodology integrates Graph Convolutional 

Networks (GCNs) and Vision Transformers (ViTs) to incorporate both local structural information and global 

contextual understanding from retinal scans. A comprehensive simulation analysis is conducted to assess the 

performance of CardioGraphVision, which is compared against existing algorithms, and its predictive accuracy 

is measured using pertinent simulation metrics. By conceptualizing retinal images as graph nodes and leveraging 

self-attention mechanisms, the proposed algorithm achieves precise and efficient feature extraction, essential for 

early detection of heart attack risk and cardiovascular conditions. To gauge CardioGraphVision's efficacy, diverse 

simulation experiments are carried out using an extensive dataset of retinal images. Through these comparisons, 

the predictive accuracy, sensitivity, specificity, and computational efficiency of CardioGraphVision are 

established. Simulation results demonstrate that CardioGraphVision surpasses existing algorithms in terms of 

accuracy and sensitivity for early detection of heart attack risk and cardiovascular conditions. Moreover, the 

algorithm's ability to effectively analyze retinal images with reduced computational overhead further augments 

its practical relevance. 

Index Terms - CardioGraphVision, Cardiovascular Disorders, Deep Learning Architecture, Early 

Detection, Graph Convolutional Networks, Retinal Images, Vision Transformers. 

INTRODUCTION 

The burgeoning field of medical image processing has increasingly leveraged deep learning techniques in 

recent years, offering diverse opportunities for risk assessment and non-invasive diagnostics. This study 

endeavors to predict heart health status using retinal images and proposes a novel deep learning architecture 
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A. Understanding the Risk of Heart Diseases and the Importance of Cardiovascular Conditions 

Heart diseases impose a substantial burden on healthcare systems, causing widespread illness and mortality. 

Identifying individuals at risk of heart attacks early on is crucial for implementing appropriate interventions and 

improving patient outcomes. Furthermore, comprehending cardiovascular conditions such as atherosclerosis and 

hypertensive retinopathy can provide valuable insights into a patient's overall cardiovascular health status. Retinal 

imaging, due to its association with systemic vascular diseases, offers a non-invasive and accessible means of 

assessing cardiovascular health. 

B. Assessing Heart Conditions through Retinal Images 

The retina, functioning as an extension of the central nervous system, is susceptible to vascular changes that 

signify broader systemic health issues [1]. Subtle alterations in retinal vessels and structures can serve as 

indicators of underlying cardiovascular conditions, offering a potential diagnostic avenue for early detection of 

heart attack risk. Analyzing retinal images to extract relevant features associated with cardiovascular health has 

emerged as an effective non-invasive screening method. 

C. Deep Learning Framework Models 

The efficacy of deep learning mechanisms in automatically extracting nuanced representations from vast volumes 

of data has established them as the prevailing standard in medical image analysis. The proposed deep learning 

framework, CardioGraphVision, integrates advanced models such as Graph Convolutional Networks (GCNs) and 

Vision Transformers (ViTs) to capitalize on their individual strengths. GCNs are utilized to model complex 

relationships in retinal scans as graph structures, facilitating the abstraction of spatially informative features. 

Concurrently, ViTs process retinal images as sequences of patches and incorporate self-attention mechanisms to 

capture long-range contextual information. By amalgamating GCNs and ViTs, CardioGraphVision aims to 

effectively scrutinize retinal images, thereby enabling early detection of heart attack risk and cardiovascular 

conditions with improved accuracy. 

RELATED WORKS 

In recent forays into medical image analysis, researchers have embarked on groundbreaking investigations aimed 

at early detection of cardiovascular conditions through the examination of retinal images. The work by Malik et 

al. introduced innovative applications of swarm intelligence and transform functions [2] for blood vessel 

detection, showcasing the formidable potential of computational methods in refining feature extraction. Similarly, 

the review by Barros et al. on machine learning in retinal image processing, while primarily focused on glaucoma 

[3], offers invaluable insights into the broader spectrum of machine learning algorithms in medical image 

analysis, extending their utility to the timely identification of heart attack risks. The focused research of Perumal 

et al. on feature extraction and classification techniques for glaucoma detection [4] underscores their relevance 

to the development of novel frameworks for comprehensive cardiovascular health assessments. Additionally, the 

work by Venkateswararao et al. highlights the importance of geometric priors in deep learning models for precise 

retinal image segmentation [5], while the utilization of cloud computing and mobile technologies by Alves et al. 

for diabetic retinopathy identification [6] introduces an innovative paradigm for expedited retinal image analysis. 

The introduction of MobileNets by Howard et al. emphasized an efficient CNN [8] tailored for mobile vision, 

highlighting model efficiency for real-world deployment. Kooi et al. corroborated the proficiency of inclusive 

deep learning in mammographic lesion detection [9], while Litjens et al. explored cutting-edge deep learning 

techniques for cardiovascular image analysis, illuminating their transformative potential in early detection efforts 

[10]. Beyond the realm of retinal images, the work by Yu et al. presented dynamic CNNs for fetal heart 

segmentation [11], while Zreik et al.'s deep learning analysis of myocardium in coronary CT angiography [12] 

underscored the extensive role of deep learning in cardiac image analysis. 

The prospective study by Chen et al. on retinal nerve fiber layer thinning suggested a plausible connection 

between retinal modifications and cardiovascular measures, emphasizing the influential role of retinal images in 

prognosis. Moreover, Balakumar et al.'s research on cardiovascular disease prevention [14] communicated 

pivotal insights into preventative measures for overall cardiovascular well-being, while the proposition of an 

adjustment algorithm by Thakur et al. [15] for suboptimal optical coherence tomography scans highlighted the 
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necessity for robust image processing methods, contributing significantly to the overarching landscape of medical 

imaging progressions. 

PROPOSED METHODOLOGY 

A robust deep learning framework, named "CardioGraphVision," is proposed for the early detection of heart 

attack risk and cardiovascular conditions using retinal images. The system employs a combination of Graph 

Convolutional Networks (GCNs) and Vision Transformers (ViTs) to effectively scrutinize retinal scans and 

extract relevant features indicative of heart health status. By leveraging the strengths of both algorithms, GCNs 

and ViTs, the proposed framework, CardioGraphVision, enhances the accuracy and efficiency of cardiovascular 

disease prediction through non-invasive retinal imaging.   

A. Graph Convolutional Networks (GCNs) 

Graph Convolutional Networks are a category of deep learning models designed to handle data represented as 

graphs. In the context of CardioGraphVision, the retinal image is conceptualized as a graph, where each pixel or 

region corresponds to a node, and the relationships between neighboring nodes are defined by edges. Through 

the propagation of information via graph convolution, GCNs capture spatial dependencies among adjacent 

regions in the retinal image. 

Mathematical Expression:  

Let G = (V, E) represent the retinal image as a graph, where V is the node set and E is the edge set denoting their 

connections. The node features, denoted by X ∈ ℝ^(N × D), are extracted from the retinal image, with N being 

the number of nodes and D being the feature dimension. 

The graph convolution operation is expressed as: 

H^{(l+1)} = \sigma(D^{-1/2} A^ D^{-1/2} H^{(l)} W^{(l)}) \quad ---(1)  

where: 

 H(l) represents hidden features at layer l 

 A^ is the adjacency matrix with self-loops (A=A+I N ) 

 D^ is the diagonal node degree matrix of A^ 

 W(l) is the learnable weight matrix 

 σ denotes the activation function. 

B. Vision Transformers (ViTs) 

Vision Transformers have exhibited remarkable efficacy in capturing global contextual information from images 

via self-attention mechanisms. In CardioGraphVision, retinal images are partitioned into patches and linearly 

embedded to form a sequence. The self-attention mechanism enables ViTs to learn the relative importance of 

each patch compared to others, facilitating the extraction of critical global features. 

Mathematical Expression:  

Let X ∈ RN×D denote the input retinal image divided into patches, where N represents the number of patches and 

D signifies the patch embedding dimension. 

The self-attention operation is expressed as:  

Z=Softmax(XWQ(XWK) 
T / D1/2) XWV  ---(2)   
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where: 

 WV, WK, and WQ are learnable weight matrices used to compute the value, key, and query representations, 

respectively. 

 Z denotes the output after self-attention. 

C. Analysis of Retinal Images 

Retinal images offer valuable insights into cardiovascular health, as various vascular and structural changes can 

indicate heart attack risk and cardiovascular conditions. By leveraging GCNs and ViTs, CardioGraphVision 

effectively extracts both local structural information and global contextual understanding from retinal images, 

facilitating accurate identification of subtle signs associated with heart health. 

D. Proposed Algorithm 

Algorithm for Predicting Heart Attack Risk and Cardiovascular Condition from Retinal Images using 

CardioGraphVision: 

 Input: Retinal image I 

Output: Probability of heart attack risk and cardiovascular condition prediction 

1. Divide the retinal image I into patches to obtain X ∈ RN×D with patch embedding dimension D. 

2. Apply Self-Attention operation to the patches to obtain the global contextual representation Z ∈ RN×D. 

3. Construct a graph G=(V,E) using the retinal image I, where each node corresponds to a patch in Z and 

edges represent relationships between adjacent patches. 

4. Perform Graph Convolution operation on G to obtain the hidden features H(l) with learnable weight matrix 

W(l). 

5. Aggregate the hidden features H(l) across nodes to obtain the final retinal representation H. 

Classify the retinal representation H to predict the probability of heart attack risk and cardiovascular. 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE I CARDIOGRAPHVISION – PSEUDO CODE 

FUNCTION CardioGraphVision(I): 

    # Step 1: Divide retinal image into patches 

    X = DivideIntoPatches(I) 

    # Step 2: Apply Self-Attention mechanism to patches 

    Z = ApplySelfAttention(X) 

    # Step 3: Construct a graph using the patches 

    G = ConstructGraph(Z) 

    # Step 4: Perform Graph Convolution operation on the 

graph 

    H = PerformGraphConvolution(G) 

    # Step 5: Aggregate hidden features across nodes 

    retinal_representation = AggregateFeatures(H) 

    # Step 6: Classify retinal representation to predict 

probability 

    probability = Classify(retinal_representation) 

    # Return the predicted probability 

    RETURN probability 

END FUNCTION 
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Fig.1. CardioGraphvision - Deep Learning Framework – Architecture Diagram 

SYSTEM ARCHITECTURE OVERVIEW 

The CardioGraphVision system architecture is designed for the early detection of heart attack risk and 

cardiovascular conditions using retinal images. It combines Graph Convolutional Networks (GCNs) and Vision 

Transformers (ViTs) to efficiently extract features and enhance predictive accuracy. 

1. Retinal Image: 

 Input: Retinal image containing crucial information about the patient's eye structure. 

2. Patching: 

 Division of the retinal image into smaller patches or regions, preparing the data for further 

analysis. 

3. Vision Transformers: 

 Processing of patch embeddings using Vision Transformers, capturing global contextual 

information through self-attention mechanisms. 

4. Self-Attention: 

 Utilization of self-attention to focus on significant characteristics and connections among various 

patches within the retinal vision. 

5. Graph Convolution: 

 Treating the retinal image as a graph with patches as nodes and performing graph convolution to 

extract spatially informative features from neighboring patches. 

6. Retinal Representation: 

 Combination of hidden features obtained from graph convolution to form the final retinal 

representation, incorporating both local and global features. 

7. Classification: 

 Feeding the retinal representation into a classifier to predict the probability of heart attack risk and 

cardiovascular condition. 
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8. Prediction: 

 Final output representing the early detection results for heart attack risk and cardiovascular 

conditions. 

Workflow: 

 The process begins with the input of a retinal image. 

 The retinal image undergoes patching to divide it into smaller regions. 

 Vision Transformers process the patch embeddings, capturing global contextual information. 

  Self-attention mechanisms focus on significant characteristics and connections among patches. 

 Graph convolution extracts spatially informative features from neighboring patches. 

 Hidden features are combined to form the final retinal representation. 

 The retinal representation is fed into a classifier to predict heart attack risk and cardiovascular 

condition probability. 

 The process concludes with the final output representing the early detection results 

EXPERIMENTAL SETUP 

The simulation experiments are carried out on a high-performance computing platform equipped with 

compatible hardware to ensure fair comparisons between the algorithms. The deep learning models are 

implemented using standard libraries and trained on the same dataset with consistent training 

hyperparameters. The simulation environment for the analysis is detailed in Table II below: 

 

 

 

 

 

 

 

 

 

 

 

TABLE II: SIMULATION ENVIRONMENT FOR ANALYSING FRAMEWORKS 

Predictive Accuracy:  

The primary metric for assessing the performance of CardioGraphVision and existing algorithms is 

predictive accuracy, expressed as the percentage of correct predictions made by each model on the test 

dataset. The formula for accuracy is given as: 

Simulation Environment Description 

Hardware High-performance computing platform 

Graphics Card AMD Radeon RX 6900 XT 

Memory (RAM) 64 GB DDR4 

CPU Intel Core i9-10900K 

Software PyTorch 1.9.0, Python 3.8.5 

Frameworks CardioGraphVision, Residual Networks, 

Capsule Networks 

Dataset Diverse retinal images (healthy and at-

risk) 

Training Data Size 1,000 images (randomly split into training 

and validation sets) 

Test Data Size 200 images 

Training Hyperparameters Learning rate: 0.001, Epochs: 50, Batch 

size: 32 

Evaluation Metrics Predictive accuracy, Sensitivity, 

Specificity, Computational Efficiency 

Operating System Ubuntu 20.04 LTS 
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  Accuracy (%) =
Number of Correct Predictions

Total Number of Predictions
×100 ---(3) 

Sensitivity and Specificity:  

Sensitivity and specificity are crucial metrics in medical diagnostics. Sensitivity measures the 

percentage of correctly identified positive cases (individuals at risk), while specificity measures the 

percentage of correctly identified negative cases (healthy individuals). The formulas are: 

  Sensitivity (%) = 
True Positive

(True Positive+False Negative)
×100 ---(4) 

  Specificity (%) = 
True Negative

(True Negative+False Positive)
×100 ---(5) 

Computational Efficiency: 

 Computational efficiency is evaluated by comparing training and inference times. Training time refers to 

the duration of model training on the training set, while inference time is the time taken to make 

predictions on the test dataset. 

Simulation Results:  

The simulation analysis provides quantitative results for each metric (accuracy, sensitivity, specificity, 

and computational efficiency) for all three algorithms - CardioGraphVision, Residual Networks, and 

Capsule Networks. These results are presented in tabular format to facilitate comprehensive comparison. 

Results and discussion: 

The simulation analysis aimed to assess the performance of the proposed "CardioGraphVision" deep 

learning framework for early detection of heart attack risk and cardiovascular conditions using retinal 

images. This evaluation compared CardioGraphVision with two existing algorithms - Residual Networks 

and Capsule Networks. The evaluation criteria included predictive accuracy, sensitivity, specificity, and 

computational efficiency to determine the effectiveness of each algorithm in accurately identifying 

individuals at risk and efficiently processing retinal images. 

A. Predictive Accuracy Analysis: 

CardioGraphVision demonstrated the highest predictive accuracy among the three algorithms, achieving 

an accuracy of 90.5% on the test dataset. Residual Networks and Capsule Networks followed closely with 

accuracy values of 87.2% and 88.6%, respectively. 

The superior predictive accuracy of CardioGraphVision highlights its ability to make precise predictions, 

making it a promising tool for early detection of heart health issues using retinal images. 

The simulation implementation details are provided in Table III and illustrated in Fig 2. 

TABLE III: PREDICTIVE ACCURACY (%)                                                                 FIG. 2.  PREDICTIVE 

ACCURACY 

 

 

 

 

 

 

 

Algorithm Data 

Size 

Accuracy 

CardioGraphVision 1,000 90.5 

Residual Networks 1,000 87.2 

Capsule Networks 1,000 88.6 
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B. Sensitivity Analysis: 

CardioGraphVision exhibited the highest sensitivity of 88.2%, outperforming Residual Networks (82.5%) 

and Capsule Networks (84.7%). Sensitivity measures the ability of an algorithm to correctly identify 

individuals at risk of heart attacks, making it a critical metric in medical diagnostics. 

CardioGraphVision's higher sensitivity demonstrates its proficiency in detecting true positive cases, 

indicating its potential in identifying patients with elevated heart attack risk based on retinal images. 

The sensitivity analysis results are tabulated in Table IV and illustrated in Fig 3. 

  Table IV: Sensitivity (%)        Fig. 3. Sensitivity 

 

 

 

 

 

C. Specificity Analysis: 

In terms of specificity, CardioGraphVision also excelled, achieving a specificity of 92.3%. Residual 

Networks and Capsule Networks attained specificity values of 89.6% and 90.1%, respectively. Specificity 

measures the ability to correctly identify healthy individuals, and CardioGraphVision's higher specificity 

highlights its accuracy in recognizing true negative cases, further affirming its potential as an effective 

tool for cardiovascular health assessment. 

The specificity analysis results are tabulated in Table V and illustrated in Fig 4. 

  Table V: Specificity (%)     Fig. 4. Specificity 

 

 

 

 

 

 

D. Computational Efficiency Analysis: 

CardioGraphVision exhibited notable computational efficiency, with training and inference times of 120 

seconds and 1.5 seconds, respectively. Residual Networks and Capsule Networks showed slightly higher 

training times (140 seconds and 135 seconds) and inference times (2.0 seconds and 1.8 seconds). 

The reduced computational overhead of CardioGraphVision enhances its practical applicability, making 

it an efficient choice for real-world deployment in cardiovascular healthcare. 

The computational efficiency analysis is tabulated in Table VI. The graphical illustration for training time 

is shown in Fig 5 and for inference time is shown in Fig 6. 

 

 

 

Algorithm Data 

Size 

Sensitivity 

CardioGraphVision 1,000 88.2 

Residual Networks 1,000 82.5 

Capsule Networks 1,000 84.7 

Algorithm Data 

Size 

Specificity 

CardioGraphVision 1,000 92.3 

Residual Networks 1,000 89.6 

Capsule Networks 1,000 90.1 
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   Table VI: Computational Efficiency (seconds) 

 

 

 

 

   

 Fig. 5. Computational Efficiency – Training time           Fig. 6. Computational Efficiency – Inference 

time 

 

 

Overall, the simulation results confirm the superiority of the proposed CardioGraphVision deep learning 

framework over existing algorithms, with higher predictive accuracy, sensitivity, specificity, and 

computational efficiency. The integration of Graph Convolutional Networks and Vision Transformers in 

CardioGraphVision enables effective modelling of complex relationships within retinal images and 

leveraging global contextual patterns for accurate predictions. The results and findings observed further 

strengthen the consequence of CardioGraphVision in transfiguring the field of medical image analysis 

and enhancing cardiovascular disease diagnosis. 

CONCLUSION AND FUTURE SCOPE 

The integration of Graph Convolutional Networks (GCNs) and Vision Transformers (ViTs) in the 

proposed research framework CardioGraphVision effectively captures both local structural information 

and global contextual understanding from retinal scans. The simulation analysis confirms 

CardioGraphVision's superiority over existing algorithms in terms of predictive accuracy, sensitivity, 

specificity, and computational efficiency. Its ability to efficiently analyze retinal images with reduced 

computational overhead enhances its practical applicability in cardiovascular healthcare. 

While CardioGraphVision shows promise, future research directions include: 

 Integrating diverse medical data modalities to enhance the framework's versatility and applicability. 

 Embracing interpretable AI techniques to facilitate critical feature identification and enhance the 

interpretability of the model's predictions. 

 Leveraging expansive datasets to further train and validate CardioGraphVision, improving its robustness 

and generalization capabilities. 

 Optimizing real-time deployment of CardioGraphVision to enable swift and efficient diagnosis and 

intervention in clinical settings. 

 Conducting rigorous clinical validation studies to validate CardioGraphVision's performance and ensure 

its suitability for widespread adoption in clinical practice. 

Addressing these future research avenues will not only advance the capabilities of CardioGraphVision 

but also contribute significantly to the field of medical image analysis and cardiovascular disease 

diagnosis. 

Algorithm Data 

Size 

Trainin

g Time 

Inference Time 

CardioGraphVision 1,000 120 1.5 

Residual Networks 1,000 140 2.0 

Capsule Networks 1,000 135 1.8 
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