ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

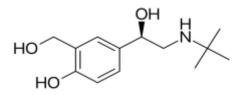
Determination Of Levosalbutamol And Guaiphenesin In Pharmaceutical Dosage Form By Simultaneous And Q-Analysis UV-Spectrophotometric Method

Prof. Prashantsingh Shersingh Utale¹, S A Quazi²

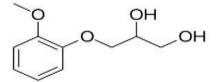
¹Department of Chemistry Science College Congress Nagar Nagpur-440012, India.

²Department of Chemistry,Bapumiya Sirajoddin Patel Arts, Commerce and Science College, Pimpalgaon kale, Tq- Jalgaon Jamod, Dist-Buldhana,India.

ABSTRACT


Two simple, accurate and precise UV methods were developed for the estimation of Levosalbutamol and Guaiphenesin in Bulk drug form. Both the drugs are used in treatment of chronic bronchitis and mild to moderate pneumonia and muscle spasm. Method A is Simultaneous equation method; wavelengths selected for Quantitation are 271.0 nm and 245.5 nm for Levosalbutamol and Guaiphenesin respectively which are the λ max of both the drugs. Method B is Q –Analysis method, wavelengths selected were 245.5nm (λ max of AMB) and 244.0 nm (Isobastic point) for the analysis. In both the methods linearity for detector response was observed in the concentration range of 10-60mcg/ml for 2-12 respectively. The results of bulk drug analysis for method A is found to be 99.66% ± 0.49 S.D for 99.99% ± 0.08 S.D for and results obtained for Method B is 99.75% ± 0.41 S.D for 99.77 % ± 0.44 S.D. The proposed methods were successfully applied for the simultaneous determination of both the drugs in commercial tablet preparation. The results of the analysis have been validated as per ICH rules.

KEYWORDS: Levosalbutamol and Guaiphenesin, UV-Spectrophotometry, Simultaneous equation method, Q-Analysis method, UV method.


I. INTRODUCTION

Levosalbutamol is chemically 4-[(1*R*)-2-(*tert*-butylamino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol antibacterial compound with enhanced affinity for bacterial and is being used for the treatment of respiratory and urinary tract infections, light brown powder, freely soluble in water and slightly soluble in Methanol. Guaiphenesin is chemically, (RS)-3-(2-methoxyphenoxy) propane-1, 2-diol and used to reduce the viscosity of mucous. Literature survey revealed that few analytical method have been reported for the estimation of Guaiphenesin, rapid and sensitive LC method for analysis of Guaiphenesin in human plasma,

spectrophotometric determination of Guaiphenesin in pharmaceutical formulation trough ion-pair complexation and validated stability indicating assay of Levosalbutamol and Guaiphenesin in tablet formulation by capillary electrophoresis.

Structure of Levosalbutamol

Structure of Guaiphenesin

MATERIAL AND METHODS:

Instruments: UV-Visible Spectrophotometer (Double Beam)

Model: UV V-650 Spectrophotometer

Spectral Bandwidth: 5nm

Materials:

Standard gift sample of Levosalbutamol and Guaiphenesin were provided by Hetro Drugs Ltd., H.P

Solvent used: Distilled water used as solvent.

Stock solution:

Stock solution of both the drugs100mcg/ml is prepared by dissolving 10mg each drug in100ml volumetric flask and the volume is make up by distilled water.

Procedure:

Method A - Simultaneous Equation method:

In this method, the stock solution of both the drugs 100mcg/ml is prepared by dissolving 10mg each drug in100ml volumetric flask and the volume is makeup by distilled water. By appropriate dilution of standard stock solutions of both the drugs to 20mcg/ml dilution respectively is scanned in the spectrum mode from 400nm to 200 nm. The absorption spectra thus obtained is selected for analysis, from the overlain spectra of both the drugs (fig.1), wavelength selected for Quantitation are 271 nm and 244 nm for Levosalbutamol and Guaiphenesin and which are the λ max of both the drugs. The calibration curves for Levosalbutamol and Guaiphenesin concentration range of 10-60 mcg/ml for Levosalbutamol and 2-12 mcg/ml for

Guaiphenesin exhibiting the Beer's and Lamberts range. The concentration of individual drug present in the mixture was determined by using the simultaneous equation calculations.

Method B - Q Analysis method:

For the selection of Analytical wavelength, solution of Levosalbutamol and Guaiphenesin (10 mcg/ml, each) were prepared separately by appropriate dilution of standard stock solution and scanned in the spectrum mode from 400 nm to 200 nm. From overlain spectra of both the drugs, wavelengths selected were 271 nm and 244.0 nm (Isobastic point) for the analysis. The Q values of both the drugs were determined at the selected wavelength. The Q value is the ratio of Absorbance of std.1 at 271.0 nm to the Absorbance of std.2 at 244.50 nm. Molar Absorptivities for both the drugs were calculated by Absorbance of std.at 244.0 nm with the concentration in gm/lit. A set of two simultaneous equations obtained by using 'Q' values are given below.

$$C_{LEV} = Q0 - Q_{GUA} / Q_{LEV} - Q_{GUA} \times A / a_{LEV}$$
(1)
$$C_{GUA} = Q0 - Q_{LEV} / Q_{GUA} - Q_{LEV} \times A / a_{GUA}$$
(2)

 $C_{GUA} C_{LEV}$ was concentration of LEV and GUA, respectively. The concentration of LEV and GUA in sample was determined by using the equation (1) and (2).

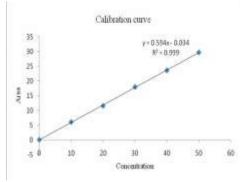


Figure 1: Calibration curve of LEV

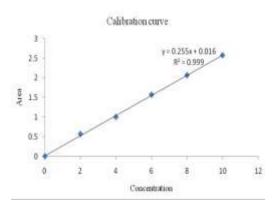


Figure 2: Calibration curve of GUA

RESULTS AND DISCUSSION:

The methods discussed in the present work provide a convenient and accurate way for simultaneous analysis of LEV and GUA. In simultaneous equation method wavelength selected for Quantitation were 277.0 nm for LEV and 244.50 nm for GUA. In Q-Analysis method the wavelength selected were 271.0 nm and 245.50nm (Isobastic point). In both the methods linearity for detector response was observed in the concentration range of 2-12mcg/ml for LEV and GUA both. In method A, concentration of individual drug present in the mixture was determined against calibration curve in Quantitation mode .In method B, Q values were calculated for both the drugs at selected wavelengths and substituted in equations for determining the concentration of LEV and GUA in Bulk drug sample solution. Percent label claim for LEV and GUA analysis by both the methods was found in the range of 99.79% to 100.02%. Standard deviation and coefficient of variance for six determination of tablet sample, by both the methods was found to be less than +2.0 indicating precision of both the methods. Accuracy of both the methods was ascertained by recovery studies and the results are expressed as % recovery. Percent recovery for LEV and GUA by both the methods was found in the range of 99.79% to 101.02%, values of standard deviation and coefficient of variation was satisfactorily low indicating the accuracy of both the methods. The result of analysis shows that the developed methods are accurate, precise, reproducible and economical and can be employed for routine quality control analysis off LEV and GUA in combined dose formulation.

Method	Level of % Recover y	Amt. Present (mcg/ta b)		Amt. of standard added (mcg/tab)		Total Amt. recovered ^(mcg)		% Recovery	
		LEV	GU A	LEV	GUA	LEV	GUA	LEV	GUA
	80	35.6	8.4	28.48	6.72	64.31	15.0	100.3	99.86
Simultaneo							9	7	
us	100	35.6	8.4	35.6	8.4	71.28	16.7	100.1	99.87
equation							7	2	
	120	35.6	8.4	42.42	10.08	77.78	18.5	99.95	100.3
							3		0
	80	35.6	8.4	28.48	6.72	64.06	15.1	99.98	100.1
Q							3		2
Analysis	100	35.6	8.4	35.6	8.4	71.17	16.7	99.97	99.96
							9		
	120	35.6	8.4	42.42	10.08	77.81	18.4	99.99	99.98
							7		

 Table A: Results from Accuracy Recovery studies

Table B:	Result	of V	alidation	Parameters
----------	--------	------	-----------	------------

Parameters	Meth	od A	Method B		
	LEV	GUA	LEV	GUA	
λ_{max}	271	244.5	271	244.5	
Beer s low limit µg/ml	10-60	2-12	10-60	2-12	
Slope(b)	7.4416	18.3972	7.3316	18.4044	
Intercept(a)	0.5849	0.1086	0.5449	0.1405	
coefficient Correlation	0.9989	0.9993	0.9989	0.9995	
Regression	0.594x+0.034	0.255x+0.016	0.494x+0.024	0.245x+0.014	
Equation($y=a+bx$)					
LOD	0.217	0.015	0.220	0.088	
LOQ	0.657	0.047	0.641	0.038	

y= a+bx, where x is concentration in μ g/ml, y is amplitude (Absorbance and ΔA) for Methods,

LOD= limit of Detection, LOQ= limit of quantitation .

REFERENCES:

- Jeffery,G.H., Bassat,J. Mendham,J. Denny,R.C. 1989 :Vogel's Textbook of Qualitative Chemical Analysis. 5thedition. Atkin. ELB Swithlongman Publication. Harlow; 3.
- 2) B. K. Sharma. Instrumental methods of chemical analysis. 2000, Introduction to analytical chemistry. 19th edition. Goel publishing house ; 200-203, 1-4.
- 3) U.S. Pharmacopoeia. United States Pharmacopoeial Convention, Inc. (1994); 1982-84.
- International Conference on Harmonization. Draft Guideline on Validation of Analytical Procedures 1995: Definitions and Terminology. Federal Register. 60: 112-160.
- Reviewer Guidance, Validation of Chromatographic Methods 1994, Center for Drug Evaluation and Research, Food and Drug Administration.
- Guideline for Submitting Samples and Analytical Data for Methods Validation, 1987. Food and Drug Administration.
- Bekett A.H., Stenlake J.B. Practicle Pharmaceutical chemistry. 2004, 4th edition. CBS Publishers New Delhi; Part-II: 275-314.
- 8) Kemp W. Organic Spectroscopy. 2nd edition. ELBS publication (1989); 194.
- Chatwal and Anand. Instrumental methods of chemical analysis. 2007, 5th edition. Himalaya Publishing House; 2.149-2.150.
- 10) Sharma B.K., in: Spectroscopy. 6thedition.Goel Publication Co. Meerut (1983); 1.
- 11) 12. Tony Owen. Fundamentals of modern UV-visible spectroscopy 2000. Agilent technologies. 73.
- 12) The Merck index, 13th edn., Merck and Co Inc., White house station, N.J., USA ,779.