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Abstract—Recommender systems are a subclass of information filtering systems. These systems are 

specialized software components, which usually make part of a larger software system, but can also be 

standalone tools. A recommender system's main goal is to provide the user software suggestions for items 

that can be useful. The suggestions are related to different decision-making mechanisms, different 

techniques, such as, what product to buy, what movie to watch, or what vacation to reserve. In the context 

of recommender systems, the general term "item" refers to what the system is actually recommending to its 

users. The paper presents the development and the comparison of multiple recommendation systems, 

capable of making item suggestions, based on user, item and user-item interaction data, using different 

machine learning algorithms. Also, the paper deals with finding different ways of using machine learning 

models to create recommendation systems, training, evaluating and comparing the different methods in 

order to provide a general but accurate solution for ranking prediction. 

Keywords—recommendation systems, machine learning algorithms, decision-making mechanisms, 

ranking prediction. 

 

INTRODUCTION 

Given a system that has a huge amount of users and a similar amount of content to present for them, 
the filtering process becomes crucial. Nobody can expect a user to search manually through thousands or 
even hundreds of thousands of different items, whether these are movies, products or news, in order to 
find what he is looking for. Without recommendations, the users would come in contact only with the 
direct search result, that in the case of a tremendous amount of items, would limit the number of returned 
data to tens, maybe hundreds of items if the user looks through multiple pages. Even in the case of 
smaller e-commerce websites or news sites, where items are categorized properly, the number of items 
may exceed a user's ability to find what he is looking for. Recommender systems usually focus only on a 
unique type of item, for example, videos, music, and with respect to their design, their main 
recommendation method used to make decisions and their graphical user interface are all tailored to that 
specific type of item [1, 2]. Different users or groups of users receive various suggestions because 
recommendations are usually made by taking into account the unique properties of the users. Non- 
personalized recommendations are easier to create and can be found mainly in magazines or newspapers 
[3]. 

Users may find some specific items a system has to offer compelling, but the problem is that they 
might never find out their existence if the system contains too many items. The goal of the recommender is 
to show the user a new set of items and possibilities, which they would not look up on their own. A 
significant amount of world-leading companies are already using recommender systems in their 
everyday operations to make users spend more time or money on their websites [4, 5, 6]. 
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One of the main problems is that most recommender systems are built by many researchers and 
developers for performing extremely well in a specific task. This means both a huge time and financial 
investment for anyone who is looking for such a system to integrate.The paper presents a solution that 
uses different pre- trained machine learning models and traditional approaches as well and applies them on 
a dataset in order to provide such a recommender. The results are compared in order to identify possible 
problems, tradeoffs, shortcomings but also advantages these systems can have. An online dataset was 
used in order to train different models both on the local machine, using ML.NET and in the cloud with 
Azure Learning Studio. Once the models have been trained, the system should be able to recommend 
different movies for users, by predicting what rating the user would have given if he had already seen 
that specific movie. 

The rest of the paper is organized as follows: chapter II presents theoretical information in the field, 
in chapter III describes the proposed solutions, and chapter IV exposed some future improvements and 
conclusions. 

I. STATE OF THE ART 

Nowadays artificial intelligence (AI), machine learning (ML) and deep learning (DL) are trending 
fields. These terms are frequently used as alternatives for each other, however, this is not always correct. 
It has to be mentioned that from all these terms AI is the most general concept, ML being just a subset of 
AI and DL making part of ML [7]. The main objective of any ML algorithm is to generalize beyond the 
training samples, to understand and interpret data that it has never ‘seen’ before with success. 

There are multiple techniques of creating a recommender system, all based on different aspects of the 
collected data and the environment it is part of. 

Recommender systems can be broken into three main categories [8]: content-based filtering, 
collaborative filtering, and hybrid systems. 

Collaborative filtering algorithms are more often implemented than the others and often lead to better 
predictive performance. However, each technique has its advantages and disadvantages that must be taken 
into consideration before implementation [9]. 

A. Content-Based Filtering 

The basic idea behind content-based filtering is that each item has some features. Recommender 
systems applies a content-based recommendation approach analyze, a set of documents and/or 
descriptions of items previously rated by the user, and creates a model or profile of user interests based on 
the features of the objects rated by that user [10]. Users are associated with a set of preferences related to 
item contents. A profile can be created explicitly by the user or automatically generated based upon 
his/her past actions. The profile is a structured representation of user interests, used to recommend new 
interesting items. The recommendation process can be described as comparing the attributes of the user 
profile with the attributes of an item. The outcome is a relevance score that represents how interested is the 
user in that given item. If a user profile precisely models user interests, it is of huge advantage for the 
effectiveness of an information retrieval operation. The content-based recommendation requires proper 
techniques for representing the items and creating the user profiles, along with some algorithm for 
matching a user profile with an item's representation.The use of content-based recommendation has 
several advantages, like independence from users, transparency, etc. As with any technique, the content-
based approach also has some serious disadvantages, which must be taken into consideration: limited 
content analysis or over-specialization. 

Content-based recommender systems are present in a variety of applications. LIBRA [11] uses a naive 
Bayes text categorization algorithm for recommending books by using product descriptions gathered 
from the Amazon online store. Another good example is Intimate [12], which creates movie 
recommendations by applying text categorization methods to learn from movie synopses collected from 
IMDB. The user has to categorize a minimum amount of films in order to get suggestions from the 
system: terrible, bad, below average, above average, good and excellent. Recommenders are also present 
in news suggestions, where Daily Learner has to be mentioned. It keeps two user models, one for short-
term interests and one for long-term interests. The short-term interest profile is based on nearest neighbor 
text classification, while for long-term interests a naïve Bayesian model is created. A great web 
recommender is Letizia [13], which was developed as a browser extension that creates a model, tailored 
to the user. It builds from keywords from the user's interests by following the user’s browsing. It is based 
on implicit observations to learn the user’s interests. By putting a page in the bookmarks shows a strong 
sign that the user is interested in the content of that page. 
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The research of "mainstream" recommender systems conducted in the last 10-15 years shows that 
the keyword- 

based representation for users and items as well offer very good results, given that the necessary amount 
of user interest is available. The majority of content-based recommenders are created as text classifiers 
using training sets of documents, which represent user interests or the lack of it. As a result, for achieving 
high accuracy the training sets must contain a large amount of data. The main problem with this approach 
is the lack of "intelligence". If more complex characteristics have to be taken into account, keyword-based 
techniques meet their limits. 

B. Collaborative Filtering 

Collaborative filtering is realized by analyzing the behavior of a group of users to make provide 
suggestions to other users. The preferences of other users influence the recommendation. The main idea 
behind the collaborative filtering-based technique is that if a person has the same opinion as another 
person on a topic, then he is more likely to share that other person's opinion on another topic than that of a 
randomly chosen person. One of the simplest examples would be if a user gets a movie recommendation 
because his friend positively rated that movie and they have a similar history in rating movies.Using a 
matrix the set of interactions can be visualized, where each entry (i, j) on the matrix represents the 
interaction between the user “i” and item “j”. From another perspective, collaborative filtering can be 
viewed as a generalization of regression and classification. 

Using collaborative filter-based recommendation has several advantages compared to content-based 
systems, like no domain knowledge necessary, serendipity, affinity to nuances, benefits of large user 
bases. Collaborative filtering- based approaches also come with some drawbacks, like complexity and 
expense, cold start (the system needs enough information (user-item interactions) to work properly). 

Collaborative filtering is currently one of the most frequently used approaches and usually provides better 
results than content-based recommendations. A perfect example would be YouTube's recommendation 
system. As it is presented in [14], their system is composed of two neural networks working together to 
provide recommendations, one for candidate generation and one for ranking. 

C. Hybrid Systems 

The simplest and most direct way to build a hybrid recommender system is to take the independent 
result of content and a collaborative-based recommender system, then using a voting scheme combine 
their predictions (fig. 1). 

 

 

Fig. 1 Hybrid recommender system's basic architecture 

 
[15] presents a method where the combination is done by choosing items that correspond to the user's 

profile and at the same time having positive ratings from the user's neighbors. In [16], the technique used 
compares users according to their content-based profiles and uses a collaborative filtering system where 
the generated similarity measures are used. In [17], the predictions based on the content are used to 
enrich the rating matrix, and then collaborative filtering is run. In [18], item-based collaborative filtering 
is run, but before that uses the item's content descriptions and their associated rating vectors to calculate 
the similarity between them. 

I. PROPOSED SYSTEM 

In this paper, two different movie recommender system designs are going to be presented, each based 
on a different recommendation method. The goal of the designed system is to predict what rating would a 
user give to a movie and based on this predicted rating to recommend movies. 

The first type of system is implemented as an executable console application using the .NET Core and 
.NET Standard frameworks. It will be based on matrix factorization to provide recommendations. This is 
going to be a pure collaborative filtering approach.The second approach will use Microsoft's cloud 
service, namely Azure Machine Learning Studio (AMLS). AMLS offers the possibility to create different 
machine learning models and train them directly in the cloud using Microsoft's immense cloud 
infrastructure [19]. Once a model is constructed it can be made available by exposing its functionality 
through a REST API. The model will use Microsoft's pre-trained hybrid model for the recommendation, 
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Matchbox recommender. 

A. Prerequisites of a Recommender System 

The most important part of any machine learning model is data [20]. Typically some information about 
the users and items must be at disposal. Content-based filtering is a good start if only metadata is 
available about the users and items. If a sufficiently high amount of user-item interactions are accessible 
then more powerful collaborative or hybrid recommender systems can be implemented.As a consequence 
of this, if more data is available then the system more probably becomes better. Also from a human 
resource perspective, one has to be sure that development team members are capable of understanding 
the data and manipulating it in a way to make it compatible with the methods that will be used to build the 
recommender system. 

Interactions have to be defined with respect to the system so that data can be extracted easily. 

B. Implementation 

1) Structure of the Dataset 
There are two main aspects of data that has to be taken into consideration: quantity and quality. First and 

foremost the dataset must contain enough entries to serve a learning algorithm well. The second aspect, 
quality, defines that data gathered and stored has to contain meaningful information in some way, even if 
its form is not directly compatible with machine learning algorithms, different transformations can be 
applied to achieve the desired structure. 

Both of the recommendation systems are going to use the same dataset for training and evaluation. 
MovieLens 20M movie rating dataset is used from grouplens.org [21]. The dataset contains 20 million 
movie ratings and 465,000 tag applications applied to 27,000 movies by 138,000 users. It also includes 
tag genome data with 12 million relevance scores across 1,100 tags. 

The dataset contains the following files in .csv format: 

 movies.csv: Stores the movie entities with movieId, title and genres fields; 

 ratings.csv: Stores the rating entities with userId, movieId, rating and timestamp fields; 

 tags.csv: Stores the tags added to movies by users with userId, movieId, tag and timestamp fields; 

 genome-tags.csv: Stores the tag type entities with tagId and tag fields; 

 genome-scores.csv: Stores the tag relevance score for each movie with movieId, tagId and 
relevance fields 

 links.csv: Stores the link entities between imdb and tmdb databases with movieId, imdbId, and 
tmdbId fields. 

The data provided by MovieLens20M is already structured very well, only some features have to be 
transformed from text to numbers in order to be compatible with machine learning algorithms. Also, the 
amount of data is more than enough for training and evaluating the model. 

2) Collaborative Filtering in ML.NET 
The first application is a console application built using 

.NET Core and C# programming language. The main goal of this application is to construct, train and 
tune a machine learning algorithm in order to make predictions of a specific data format. 

The data comes from the MovieLens20M datasets ratings.csv file. It contains 20 million movie rating 
entries that will be used by the model during the learning phase and also for evaluation. A movie rating 
entry consists of the ID of the user who made the rating, the ID of the film that was rated, the rating itself 
and a timestamp when the rating happened. Since the prediction will return results in the form of movie 
IDs, a secondary file is necessary to make the recommendations human-readable, i.e. list the name of the 
movies instead of their IDs. As was mentioned in the previous section MovieLens20M contains such a 
file, movies.csv. This file holds the ID of the movie, its title and a list of tags that describe to what 
category the movie belongs to.In order to be able to work with the data that comes from the data sources, 
specific classes must be created. Another class is also necessary to hold the predictions. It is having two 
fields, Label and Score. 

After the necessary data structure is defined the next step is to import the data into the memory. Since 
the application is using only one data source for ratings, after it is loaded in the memory it must be split 
into two sets. The goal of this is to use the same file for both training and testing purposes. Once the data is 
in the memory the model configuration can be started. ML.NET offers several different options when it 
comes to recommendations, like one class matrix factorization, matrix factorization, and field-aware 
matrix factorization. 

Figure 2 represents what data one should have in order to be able to use various matrix factorization 
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methods. In this case, MovieLens database provides userId, movieId and rating fields. This makes it perfect 
for the simple matrix factorization method to use. 

Number Of Iterations and Approximation Rank. The first three options will tell the trainer algorithm which 
columns (fields of classes) represent the users, the items and were the result. The Number Of Iterations and 
Approximation Rank options can be used to tune the training of the model. 

 

 

Fig. 2 Matrix factorization techniques available in ML.NET 

 
After the options of the matrix factorization trainer are set up only the pipeline has to be configured. 

ML.NET works by the idea of the pipeline, the way of dataflow has to describe in order to be able to train a 
model. Figure 3 shows the complete structure of the pipeline. 

 

 

Fig. 3 The complete structure of the pipeline. 

 

As can be seen, it consists of three elements: 

 First Map Value To Key: reads the userId column and builds a dictionary of unique Ids. Then 
creates an output column user Id Encoded containing an encoding for each Id. This step converts the 
Ids to numbers that the model understands; 

 Second Map Value To Key: reads the itemId column and builds a dictionary of unique Ids. Then 
creates an output column itemId Encoded containing an encoding for each Id. This step converts the 
Ids to numbers that the model understands; 

 Matrix Factorization: performs matrix factorization on the encoded Id columns and the ratings. It 
uses the previously configured options to create the trainer. It is responsible for the calculation of item 
rating predictions. 

The final step is evaluating the system. Evaluations are different for every system, and they depend 
only on the main objective of the system. For example, if a top n items recommender is implemented, 
there is no need to take into consideration the remaining items prediction score. The selected evaluation 
method can greatly influence the system's architecture.There are two main types of evaluations in the case 
of recommender systems, offline and online methods. The presented model is evaluated using offline 
methods. As it was previously configured, 15% of the available data is going to be used for evaluation. In 
order to assess the performance of 

the system, the root means squared error (RMSE) value of the predictions will be taken into consideration. 
A comparison is presented in table 1 for a different number of training iterations of the model. These 
experiments were conducted on a laptop with Windows 7 64-bit operating system, with an Intel Core i5-
3230M processor and 6GB of RAM.The "Train Matchbox Recommender" component uses a dataset of 
user-item-rating triple and can also handle user and item features if there are any. In this case, item features 
are available in the form of movie genres. These item features will help to solve the cold-start problem. This 
component has the options to configure the number of training iterations, which is set to 5 and the number 
of training batches, i.e. the number of batches to divide the data during training, which is set to 4 and the 
number of traits, set to 4, which is the number of latent traits that should be learned for every user and item. 
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Fig. 5 Structure of the complete model 

 
The evaluation module compares the test dataset ratings with the predicted ratings of the scored 

dataset. It offers some metrics about the results, namely the mean absolute error (MAE) and the RMSE. 
The results of the evaluation are presented in figure 6. 

 

 
 

Fig. 6 Results of the evaluation component 

 

 
Pocahontas is an animated children's movie tagged with the following genres in the dataset: 

animation, children, drama, musical, romance. Based on all this information the expected 
recommendations should include similar movies that are mainly animated and address children. The top ten 
recommendations are presented in the next figure. 

 

 

Fig. 7 Top 10 movie recommendations 

 
As can be observed the results are perfectly in balance with the expectations, as most of the 

recommendations are indeed animated children movies. As a conclusion, it can be said that all the 
recommendations are completely relevant regarding the given input. 

3) Comparison of the Systems 
Even though both of the implemented approaches addressed the sample problem, two different ways 

of implementation were presented each with its advantages and disadvantages. 

The first approach of directly implementing a collaborative filtering model had the main advantage of 
coding the model itself, having control over every single parameter regarding the preprocessing, training 
and evaluation of the data. At the same time, it also leverages the power of the open-source ML.NET 
framework, which is constantly growing. Also, the model created with ML.NET can be exported in 
ONNX format to be later used by other applications. On the other hand, one of the main disadvantages is 
that C# coding skills are required, and since the ML.NET project is very new, it is exposed to frequent 
changes, making refactorization of old code a must in order to use the features of the newest versions. 

The best way of comparing the performances of the two models would be to deploy them in as part of 
an already released system and observe their impact on user behavior, performing this way online 
evaluation. However such a system is not available for the sake of this research and also gathering the 
necessary data would take a considerable amount of time, the results of offline evaluations are going to be 
compared. Using the RMSE values obtained during validation can offer some insight. It must be noted that 
the two systems implement two different approaches, so the final decision cannot be based completely on 
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the RMSE value. 

The pure collaborative approach yielded a lower RMSE value than the model trained in Azure, 0.81 
for 45 iterations vs. 1.03 from Azure, but it must be taken into account that it suffers from the cold start 
problem. 

The hybrid approach of the matchbox recommender eliminates this problem and at the same time can 
make use of additional features that come from the datasets. Using extra features in the first approach 
would have required a field aware matrix factorization model and more work to process the data. 

II. CONCLUSION 

The systems were tested on the MovieLens20M database, which contains 20 million movie ratings and 
user and movie data. The tests were performed multiple times to adjust the parameters of the training 
algorithm in order to achieve better results. A collaborative filtering-based recommendation model was 
created, using a new and open-source machine learning framework, ML.NET.The second model was 
built by using Microsoft's Azure Machine Learning Studio, which allowed a completely different 
approach towards developing machine learning solutions.Although the first approach of a pure 
collaborative filtering method reached a better RMSE value, it does not mean that it is better. The 
matchbox recommender is a hybrid model, which solves the cold start problem. This in itself can mean a 
huge real-life difference, which cannot be measured with synthetic tests. The best recommendation 
method can be chosen by carefully observing what type of data is available and what problem should the 
recommendation address.One of the biggest improvements of the above-mentioned systems would be to 
modify them to be capable of continuous training, i.e. learning continuously from the new data as it 
comes. The current systems must be retrained periodically in order to incorporate information from freshly 
delivered data. 

An additional feature would be the implementation of a big data module, that would hold all the user, 
item and user- item interaction related information. This module then could be connected to the 
recommender system which would perform online learning, continuously improving and adapting to users. 
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