
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3002 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i423

Machine Learning Based Recommendation

Systems

Mrs G.S Geethamani 1 , Mrs A.Kiruthika 2 , Mrs N.Dhanapriya 3

1 Associate Professor , Department Of Computer Science , Hindusthan College Of Arts and Science, Coimbatore .

2 Assistant Professor , Department Of Computer Science, Hindusthan College Of Arts and Science, Coimbatore.

3 Assistant Professor , Department Of Computer Technology , Hindusthan College Of Arts and Science,

Coimbatore.

Abstract—Recommender systems are a subclass of information filtering systems. These systems are

specialized software components, which usually make part of a larger software system, but can also be

standalone tools. A recommender system's main goal is to provide the user software suggestions for items

that can be useful. The suggestions are related to different decision-making mechanisms, different

techniques, such as, what product to buy, what movie to watch, or what vacation to reserve. In the context

of recommender systems, the general term "item" refers to what the system is actually recommending to its

users. The paper presents the development and the comparison of multiple recommendation systems,

capable of making item suggestions, based on user, item and user-item interaction data, using different

machine learning algorithms. Also, the paper deals with finding different ways of using machine learning

models to create recommendation systems, training, evaluating and comparing the different methods in

order to provide a general but accurate solution for ranking prediction.

Keywords—recommendation systems, machine learning algorithms, decision-making mechanisms,

ranking prediction.

INTRODUCTION

Given a system that has a huge amount of users and a similar amount of content to present for them,
the filtering process becomes crucial. Nobody can expect a user to search manually through thousands or
even hundreds of thousands of different items, whether these are movies, products or news, in order to
find what he is looking for. Without recommendations, the users would come in contact only with the
direct search result, that in the case of a tremendous amount of items, would limit the number of returned
data to tens, maybe hundreds of items if the user looks through multiple pages. Even in the case of
smaller e-commerce websites or news sites, where items are categorized properly, the number of items
may exceed a user's ability to find what he is looking for. Recommender systems usually focus only on a
unique type of item, for example, videos, music, and with respect to their design, their main
recommendation method used to make decisions and their graphical user interface are all tailored to that
specific type of item [1, 2]. Different users or groups of users receive various suggestions because
recommendations are usually made by taking into account the unique properties of the users. Non-
personalized recommendations are easier to create and can be found mainly in magazines or newspapers
[3].

Users may find some specific items a system has to offer compelling, but the problem is that they
might never find out their existence if the system contains too many items. The goal of the recommender is
to show the user a new set of items and possibilities, which they would not look up on their own. A
significant amount of world-leading companies are already using recommender systems in their
everyday operations to make users spend more time or money on their websites [4, 5, 6].

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3002 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i424

One of the main problems is that most recommender systems are built by many researchers and
developers for performing extremely well in a specific task. This means both a huge time and financial
investment for anyone who is looking for such a system to integrate.The paper presents a solution that
uses different pre- trained machine learning models and traditional approaches as well and applies them on
a dataset in order to provide such a recommender. The results are compared in order to identify possible
problems, tradeoffs, shortcomings but also advantages these systems can have. An online dataset was
used in order to train different models both on the local machine, using ML.NET and in the cloud with
Azure Learning Studio. Once the models have been trained, the system should be able to recommend
different movies for users, by predicting what rating the user would have given if he had already seen
that specific movie.

The rest of the paper is organized as follows: chapter II presents theoretical information in the field,
in chapter III describes the proposed solutions, and chapter IV exposed some future improvements and
conclusions.

I. STATE OF THE ART

Nowadays artificial intelligence (AI), machine learning (ML) and deep learning (DL) are trending
fields. These terms are frequently used as alternatives for each other, however, this is not always correct.
It has to be mentioned that from all these terms AI is the most general concept, ML being just a subset of
AI and DL making part of ML [7]. The main objective of any ML algorithm is to generalize beyond the
training samples, to understand and interpret data that it has never ‘seen’ before with success.

There are multiple techniques of creating a recommender system, all based on different aspects of the
collected data and the environment it is part of.

Recommender systems can be broken into three main categories [8]: content-based filtering,
collaborative filtering, and hybrid systems.

Collaborative filtering algorithms are more often implemented than the others and often lead to better
predictive performance. However, each technique has its advantages and disadvantages that must be taken
into consideration before implementation [9].

A. Content-Based Filtering

The basic idea behind content-based filtering is that each item has some features. Recommender
systems applies a content-based recommendation approach analyze, a set of documents and/or
descriptions of items previously rated by the user, and creates a model or profile of user interests based on
the features of the objects rated by that user [10]. Users are associated with a set of preferences related to
item contents. A profile can be created explicitly by the user or automatically generated based upon
his/her past actions. The profile is a structured representation of user interests, used to recommend new
interesting items. The recommendation process can be described as comparing the attributes of the user
profile with the attributes of an item. The outcome is a relevance score that represents how interested is the
user in that given item. If a user profile precisely models user interests, it is of huge advantage for the
effectiveness of an information retrieval operation. The content-based recommendation requires proper
techniques for representing the items and creating the user profiles, along with some algorithm for
matching a user profile with an item's representation.The use of content-based recommendation has
several advantages, like independence from users, transparency, etc. As with any technique, the content-
based approach also has some serious disadvantages, which must be taken into consideration: limited
content analysis or over-specialization.

Content-based recommender systems are present in a variety of applications. LIBRA [11] uses a naive
Bayes text categorization algorithm for recommending books by using product descriptions gathered
from the Amazon online store. Another good example is Intimate [12], which creates movie
recommendations by applying text categorization methods to learn from movie synopses collected from
IMDB. The user has to categorize a minimum amount of films in order to get suggestions from the
system: terrible, bad, below average, above average, good and excellent. Recommenders are also present
in news suggestions, where Daily Learner has to be mentioned. It keeps two user models, one for short-
term interests and one for long-term interests. The short-term interest profile is based on nearest neighbor
text classification, while for long-term interests a naïve Bayesian model is created. A great web
recommender is Letizia [13], which was developed as a browser extension that creates a model, tailored
to the user. It builds from keywords from the user's interests by following the user’s browsing. It is based
on implicit observations to learn the user’s interests. By putting a page in the bookmarks shows a strong
sign that the user is interested in the content of that page.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3002 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i425

The research of "mainstream" recommender systems conducted in the last 10-15 years shows that
the keyword-

based representation for users and items as well offer very good results, given that the necessary amount
of user interest is available. The majority of content-based recommenders are created as text classifiers
using training sets of documents, which represent user interests or the lack of it. As a result, for achieving
high accuracy the training sets must contain a large amount of data. The main problem with this approach
is the lack of "intelligence". If more complex characteristics have to be taken into account, keyword-based
techniques meet their limits.

B. Collaborative Filtering

Collaborative filtering is realized by analyzing the behavior of a group of users to make provide
suggestions to other users. The preferences of other users influence the recommendation. The main idea
behind the collaborative filtering-based technique is that if a person has the same opinion as another
person on a topic, then he is more likely to share that other person's opinion on another topic than that of a
randomly chosen person. One of the simplest examples would be if a user gets a movie recommendation
because his friend positively rated that movie and they have a similar history in rating movies.Using a
matrix the set of interactions can be visualized, where each entry (i, j) on the matrix represents the
interaction between the user “i” and item “j”. From another perspective, collaborative filtering can be
viewed as a generalization of regression and classification.

Using collaborative filter-based recommendation has several advantages compared to content-based
systems, like no domain knowledge necessary, serendipity, affinity to nuances, benefits of large user
bases. Collaborative filtering- based approaches also come with some drawbacks, like complexity and
expense, cold start (the system needs enough information (user-item interactions) to work properly).

Collaborative filtering is currently one of the most frequently used approaches and usually provides better
results than content-based recommendations. A perfect example would be YouTube's recommendation
system. As it is presented in [14], their system is composed of two neural networks working together to
provide recommendations, one for candidate generation and one for ranking.

C. Hybrid Systems

The simplest and most direct way to build a hybrid recommender system is to take the independent
result of content and a collaborative-based recommender system, then using a voting scheme combine
their predictions (fig. 1).

Fig. 1 Hybrid recommender system's basic architecture

[15] presents a method where the combination is done by choosing items that correspond to the user's

profile and at the same time having positive ratings from the user's neighbors. In [16], the technique used
compares users according to their content-based profiles and uses a collaborative filtering system where
the generated similarity measures are used. In [17], the predictions based on the content are used to
enrich the rating matrix, and then collaborative filtering is run. In [18], item-based collaborative filtering
is run, but before that uses the item's content descriptions and their associated rating vectors to calculate
the similarity between them.

I. PROPOSED SYSTEM

In this paper, two different movie recommender system designs are going to be presented, each based
on a different recommendation method. The goal of the designed system is to predict what rating would a
user give to a movie and based on this predicted rating to recommend movies.

The first type of system is implemented as an executable console application using the .NET Core and
.NET Standard frameworks. It will be based on matrix factorization to provide recommendations. This is
going to be a pure collaborative filtering approach.The second approach will use Microsoft's cloud
service, namely Azure Machine Learning Studio (AMLS). AMLS offers the possibility to create different
machine learning models and train them directly in the cloud using Microsoft's immense cloud
infrastructure [19]. Once a model is constructed it can be made available by exposing its functionality
through a REST API. The model will use Microsoft's pre-trained hybrid model for the recommendation,

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3002 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i426

Matchbox recommender.

A. Prerequisites of a Recommender System

The most important part of any machine learning model is data [20]. Typically some information about
the users and items must be at disposal. Content-based filtering is a good start if only metadata is
available about the users and items. If a sufficiently high amount of user-item interactions are accessible
then more powerful collaborative or hybrid recommender systems can be implemented.As a consequence
of this, if more data is available then the system more probably becomes better. Also from a human
resource perspective, one has to be sure that development team members are capable of understanding
the data and manipulating it in a way to make it compatible with the methods that will be used to build the
recommender system.

Interactions have to be defined with respect to the system so that data can be extracted easily.

B. Implementation

1) Structure of the Dataset
There are two main aspects of data that has to be taken into consideration: quantity and quality. First and

foremost the dataset must contain enough entries to serve a learning algorithm well. The second aspect,
quality, defines that data gathered and stored has to contain meaningful information in some way, even if
its form is not directly compatible with machine learning algorithms, different transformations can be
applied to achieve the desired structure.

Both of the recommendation systems are going to use the same dataset for training and evaluation.
MovieLens 20M movie rating dataset is used from grouplens.org [21]. The dataset contains 20 million
movie ratings and 465,000 tag applications applied to 27,000 movies by 138,000 users. It also includes
tag genome data with 12 million relevance scores across 1,100 tags.

The dataset contains the following files in .csv format:

 movies.csv: Stores the movie entities with movieId, title and genres fields;

 ratings.csv: Stores the rating entities with userId, movieId, rating and timestamp fields;

 tags.csv: Stores the tags added to movies by users with userId, movieId, tag and timestamp fields;

 genome-tags.csv: Stores the tag type entities with tagId and tag fields;

 genome-scores.csv: Stores the tag relevance score for each movie with movieId, tagId and
relevance fields

 links.csv: Stores the link entities between imdb and tmdb databases with movieId, imdbId, and
tmdbId fields.

The data provided by MovieLens20M is already structured very well, only some features have to be
transformed from text to numbers in order to be compatible with machine learning algorithms. Also, the
amount of data is more than enough for training and evaluating the model.

2) Collaborative Filtering in ML.NET
The first application is a console application built using

.NET Core and C# programming language. The main goal of this application is to construct, train and
tune a machine learning algorithm in order to make predictions of a specific data format.

The data comes from the MovieLens20M datasets ratings.csv file. It contains 20 million movie rating
entries that will be used by the model during the learning phase and also for evaluation. A movie rating
entry consists of the ID of the user who made the rating, the ID of the film that was rated, the rating itself
and a timestamp when the rating happened. Since the prediction will return results in the form of movie
IDs, a secondary file is necessary to make the recommendations human-readable, i.e. list the name of the
movies instead of their IDs. As was mentioned in the previous section MovieLens20M contains such a
file, movies.csv. This file holds the ID of the movie, its title and a list of tags that describe to what
category the movie belongs to.In order to be able to work with the data that comes from the data sources,
specific classes must be created. Another class is also necessary to hold the predictions. It is having two
fields, Label and Score.

After the necessary data structure is defined the next step is to import the data into the memory. Since
the application is using only one data source for ratings, after it is loaded in the memory it must be split
into two sets. The goal of this is to use the same file for both training and testing purposes. Once the data is
in the memory the model configuration can be started. ML.NET offers several different options when it
comes to recommendations, like one class matrix factorization, matrix factorization, and field-aware
matrix factorization.

Figure 2 represents what data one should have in order to be able to use various matrix factorization

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3002 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i427

methods. In this case, MovieLens database provides userId, movieId and rating fields. This makes it perfect
for the simple matrix factorization method to use.

Number Of Iterations and Approximation Rank. The first three options will tell the trainer algorithm which
columns (fields of classes) represent the users, the items and were the result. The Number Of Iterations and
Approximation Rank options can be used to tune the training of the model.

Fig. 2 Matrix factorization techniques available in ML.NET

After the options of the matrix factorization trainer are set up only the pipeline has to be configured.

ML.NET works by the idea of the pipeline, the way of dataflow has to describe in order to be able to train a
model. Figure 3 shows the complete structure of the pipeline.

Fig. 3 The complete structure of the pipeline.

As can be seen, it consists of three elements:

 First Map Value To Key: reads the userId column and builds a dictionary of unique Ids. Then
creates an output column user Id Encoded containing an encoding for each Id. This step converts the
Ids to numbers that the model understands;

 Second Map Value To Key: reads the itemId column and builds a dictionary of unique Ids. Then
creates an output column itemId Encoded containing an encoding for each Id. This step converts the
Ids to numbers that the model understands;

 Matrix Factorization: performs matrix factorization on the encoded Id columns and the ratings. It
uses the previously configured options to create the trainer. It is responsible for the calculation of item
rating predictions.

The final step is evaluating the system. Evaluations are different for every system, and they depend
only on the main objective of the system. For example, if a top n items recommender is implemented,
there is no need to take into consideration the remaining items prediction score. The selected evaluation
method can greatly influence the system's architecture.There are two main types of evaluations in the case
of recommender systems, offline and online methods. The presented model is evaluated using offline
methods. As it was previously configured, 15% of the available data is going to be used for evaluation. In
order to assess the performance of

the system, the root means squared error (RMSE) value of the predictions will be taken into consideration.
A comparison is presented in table 1 for a different number of training iterations of the model. These
experiments were conducted on a laptop with Windows 7 64-bit operating system, with an Intel Core i5-
3230M processor and 6GB of RAM.The "Train Matchbox Recommender" component uses a dataset of
user-item-rating triple and can also handle user and item features if there are any. In this case, item features
are available in the form of movie genres. These item features will help to solve the cold-start problem. This
component has the options to configure the number of training iterations, which is set to 5 and the number
of training batches, i.e. the number of batches to divide the data during training, which is set to 4 and the
number of traits, set to 4, which is the number of latent traits that should be learned for every user and item.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3002 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i428

Fig. 5 Structure of the complete model

The evaluation module compares the test dataset ratings with the predicted ratings of the scored

dataset. It offers some metrics about the results, namely the mean absolute error (MAE) and the RMSE.
The results of the evaluation are presented in figure 6.

Fig. 6 Results of the evaluation component

Pocahontas is an animated children's movie tagged with the following genres in the dataset:

animation, children, drama, musical, romance. Based on all this information the expected
recommendations should include similar movies that are mainly animated and address children. The top ten
recommendations are presented in the next figure.

Fig. 7 Top 10 movie recommendations

As can be observed the results are perfectly in balance with the expectations, as most of the

recommendations are indeed animated children movies. As a conclusion, it can be said that all the
recommendations are completely relevant regarding the given input.

3) Comparison of the Systems
Even though both of the implemented approaches addressed the sample problem, two different ways

of implementation were presented each with its advantages and disadvantages.

The first approach of directly implementing a collaborative filtering model had the main advantage of
coding the model itself, having control over every single parameter regarding the preprocessing, training
and evaluation of the data. At the same time, it also leverages the power of the open-source ML.NET
framework, which is constantly growing. Also, the model created with ML.NET can be exported in
ONNX format to be later used by other applications. On the other hand, one of the main disadvantages is
that C# coding skills are required, and since the ML.NET project is very new, it is exposed to frequent
changes, making refactorization of old code a must in order to use the features of the newest versions.

The best way of comparing the performances of the two models would be to deploy them in as part of
an already released system and observe their impact on user behavior, performing this way online
evaluation. However such a system is not available for the sake of this research and also gathering the
necessary data would take a considerable amount of time, the results of offline evaluations are going to be
compared. Using the RMSE values obtained during validation can offer some insight. It must be noted that
the two systems implement two different approaches, so the final decision cannot be based completely on

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3002 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i429

the RMSE value.

The pure collaborative approach yielded a lower RMSE value than the model trained in Azure, 0.81
for 45 iterations vs. 1.03 from Azure, but it must be taken into account that it suffers from the cold start
problem.

The hybrid approach of the matchbox recommender eliminates this problem and at the same time can
make use of additional features that come from the datasets. Using extra features in the first approach
would have required a field aware matrix factorization model and more work to process the data.

II. CONCLUSION

The systems were tested on the MovieLens20M database, which contains 20 million movie ratings and
user and movie data. The tests were performed multiple times to adjust the parameters of the training
algorithm in order to achieve better results. A collaborative filtering-based recommendation model was
created, using a new and open-source machine learning framework, ML.NET.The second model was
built by using Microsoft's Azure Machine Learning Studio, which allowed a completely different
approach towards developing machine learning solutions.Although the first approach of a pure
collaborative filtering method reached a better RMSE value, it does not mean that it is better. The
matchbox recommender is a hybrid model, which solves the cold start problem. This in itself can mean a
huge real-life difference, which cannot be measured with synthetic tests. The best recommendation
method can be chosen by carefully observing what type of data is available and what problem should the
recommendation address.One of the biggest improvements of the above-mentioned systems would be to
modify them to be capable of continuous training, i.e. learning continuously from the new data as it
comes. The current systems must be retrained periodically in order to incorporate information from freshly
delivered data.

An additional feature would be the implementation of a big data module, that would hold all the user,
item and user- item interaction related information. This module then could be connected to the
recommender system which would perform online learning, continuously improving and adapting to users.

REFERENCES

[1] G.C. Capelleveen, C. Amrit, D.M. Yazan, W.H.M. Zijm, “The recommender canvas: A model for
developing and documenting recommender system design”. Expert systems with applications, pp.
97-117, 2019.

[2] F. Ricci, L. Rokach, B. Shapira, Introduction to Recommender Systems Handbook. Boston,
Massachusetts, United States of America: Springer, 2010.

[3] Y. Lim, “A Primer to Recommendation Engines”, Sep 10, 2019.

[4] J. Erickson and S. Wang. (2017, June) www.alizila.com. [Online]. https://www.alizila.com/at-
alibaba-artificial-intelligence-is-changing- how-people-shop-online/

[5] I. MacKenzie, C. Meyer, and S. Noble. (2013, Oct.) www.mckinsey.com. [Online].
https://www.mckinsey.com/industries/retail/our-insights/how- retailers-can-keep-up-with-
consumers

[6] C.A. Gomez-Uribe and N. Hunt, "The Netflix Recommender System: Algorithms, Business Value,"
ACM Transactions on Management Information Systems (TMIS), vol. VI, no. 4, p. 7, Jan. 2016.

[7] J. Schmidt, M.R.G. Marques, S. Botti, et al. “Recent advances and applications of machine learning
in solid-state materials science”. npj Comput Mater 5, 83, 2019.

[8] F. Ricci, L. Rokach, B. Shapira, “Recommender Systems: Introduction and Challenges”. In: Ricci F.,
Rokach L., Shapira B. (eds) Recommender Systems Handbook. Springer, Boston, MA, 2015.

[9] F.O. Isinkaye, Y.O. Folajimi, B.A. Ojokoh, “Recommendation systems: Principles, methods and
evaluation”. Egyptian Informatics Journal, Volume 16, Issue 3, pp. 261-273, November 2015.

[10] P. Lops, M. Gemmis, G. Semeraro, “Content-based Recommender Systems: State of the Art and
Trends”. In book: Recommender Systems Handbook, pp. 73-105, 2011.

[11] E. Cano and M. Morisio, “Hybrid Recommender Systems: A Systematic Literature Review”.
Intelligent Data Analysis, vol. 21, no. 6, pp. 1487-1524, 2017.

[12] H. Mak, I. Koprinska, and J. Poon, "INTIMATE: A Web-Based Movie Recommender Using Text
Categorization," Proceedings of the 2003 IEEE/WIC International Conference on Web Intelligence,
2003.

[13] L.H. Li, R. Hsu, F. Lee, “Review of Recommender Systems and Their Applications”. Computer
Science, 2012.

[14] P. Covington, J. Adams, and E. Sargin, "Deep Neural Networks for YouTube Recommendations,"

http://www.ijcrt.org/
http://www.alizila.com/
http://www.alizila.com/at-alibaba-artificial-intelligence-is-changing-
http://www.alizila.com/at-alibaba-artificial-intelligence-is-changing-
http://www.mckinsey.com/
http://www.mckinsey.com/industries/retail/our-insights/how-

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 3 March 2024 | ISSN: 2320-2882

IJCRT24A3002 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org i430

Mountain View, California, 2016.

[15] A. Bellogín, P. Castells, I. Cantador, “Neighbor Selection and Weighting in User-Based
Collaborative Filtering: A Performance Prediction Approach”. ACM Transactions on the Web, No.
12, 2014.

[16] S.C. Stephen, H. Xie, and S. Rai, “Measures of Similarity in Memory- Based Collaborative Filtering
Recommender System: A Comparison”, 4th Multidisciplinary International Social Networks
Conference, 2017.

[17] G.S. Milovanovic, “Hybrid content-based and collaborative filtering recommendations with
{ordinal} logistic regression (1): Feature engineering”, Data Science Central, 2017.

[18] M.G. Vozalis and K.G. Margaritis, "On the Enhancement of Collaborative Filtering by Demographic
Data," in Web Intelligence and Agent Systems, Vol. 1, 2006

[19] A.M. Caulfield, E.S. Chung, A. Putnam, H.Angepat, J. Fowers, M. Haselman, S. Heil, M.
Humphrey, P. Kaur, J. Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S.
Lanka, D. Chiou, D. Burger, “A Cloud-Scale Acceleration Architecture”. MICRO-49: The 49th
Annual IEEE/ACM International Symposium on Microarchitecture, No. 7, pp 1–13, 2016.

[20] J. Mizgajski and M. Morzy, “Affective recommender systems in online news industry: how emotions
influence reading choices”, User Model User-Adap Inter 29, pp.345–379, 2019.

[21] F. Maxwell Harper and J. A. Konstan, “The MovieLens Datasets: History and Context”. ACM
Transactions on Interactive Intelligent Systems (TiiS), No. 19, 2015.

http://www.ijcrt.org/

