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    Abstract: This paper presents an integrated approach to enhance software defect prediction and sentiment 

analysis using advanced machine learning techniques. For software defect prediction, we employ a 

Support Vector Machine (SVM) model to identify potential defects in software components. The SVM 

model is trained on historical software metrics and defect logs, incorporating feature selection and 

engineering to improve prediction accuracy. Additionally, we address sentiment analysis by using an 

optimized Logistic Regression model. Text data is preprocessed and transformed using a Count 

Vectorizer, with hyper parameters fine-tuned via Grid Search to enhance model performance. This dual 

approach demonstrates the versatility and effectiveness of machine learning in various applications, 

showcasing significant improvements in both software defect prediction and sentiment analysis. The 

combined methodologies not only improve defect prediction in software development but also provide 

valuable insights into textual data analysis, illustrating the broad applicability and robustness of machine 

learning techniques. 
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I. INTRODUCTION 

 

Predicting defect-prone modules during the soft- ware development process is crucial because it helps the 

quality assurance team put more effort into modules with a high probability of defect-proneness. It also 

helps the management team assign and distribute re- sources efficiently during testing, thus reducing 

devel- opment costs (Wang and Yao (2013), Xu et al. (2022)). The process of manually reviewing the 

code usually leads to a detection rate between 35% - 60% in most cases, but this rate is in-creased when 

defect prediction tools are used. Furthermore, the time needed to detect defect-proneness modules is 

reduced (Tosun (2010)). Software Defect Prediction (SDP) is performed by extracting static code metrics 

from bug log files of pre- vious versions of the program, then using these static metrics for building 

models to predict the possible de- fects in future releases of the program (Wang and Yao (2013), Yang et 

al. (2014)). This process helps detect the location of the parts of the program that are likely to induce 

defects. It is used in a software system with a limited project budget or too large to be tested ex- 

haustively. SDP can be primarily used in two ways: within a project or cross-project. The first approach 

implies using the same data as training and testing during the empirical validation process. In the second 

approach, one release of the project data is used as training, and the subsequent release is used as testing. 
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Both approaches are acceptable and depend on data availability (Lie et al. (2012)). Any SDP model 

comprises four main elements:1) independent features representing static code metrics, 2) output features 

representing the presence of a defect or its absence. 3) The learning approach, and finally 4) the 

performance measures that are used to judge the accu- racy of the built learning model (Huda (2017)). 

The current studies on SDP models focus on four research aspects. The first aspect examines the 

importance of- static code metrics for defect prediction and which metrics are more predictive than 

others (Lie et al. (2012), Bowes et al. (2018), He et al. (2015), Okutan and Yildiz (2014). The second 

aspect focus on building defect prediction models from within data or across data (Son et al. (2019)). The 

third aspect studies the effect of imbalanced data on the accuracy of defect prediction models (Wang and 

Yao (2013), Choei- kiwong and Vateekul (2015), Sheppered et al. (2014), Sun et al. (2012)). Finally, the 

fourth aspect focuses on using ranking techniques to predict the correct rank of the defected modules 

based on their number of defects (Yang et al. (2014), Li (2011)). This study focuses on the second research 

aspect and attempts to study the performance of support vector machine with different kernel techniques 

for software defect prediction prob- lems. Support Vector Machine (SVM) is an efficient machine leaning 

method that is suited for classification problems, as in our case (Hassan (2009), Kumudha and Venkatesan 

(2016), Chen et al. (2019)). The SVM has not been studied thoroughly in previous papers because of the 

instability of its accuracy over multiple datasets and it is easily influence by the choice of kernel func- 

tions (Ni et al. (2017), Ryu et al. (2019), Wei et al. (2019)). This study attempts to bridge that research 

gap. Different Kernel functions will be used to test the ac- curacy of SVM for defect prediction 

problems (Al-Jamimi and Ghouti (2011), Ryu et al. (2016)). This pa- per aims to study the impact of 

different Kernel func- tions in support vector machine for the problem of software defect prediction. Six 

public datasets will be used to empirically validate and test our hypothesis and assumptions. These 

datasets were obtained from PROMISE data repository. 

The rest of paper is structured as follows: Section 2 presents related work. Section 3 presents datasets. 

Section 4 shows methodology of our research. Section 5 presents results and discussion. Finally, section 

6 presents conclusion. 

 

II. RELATED WORK 

 

Sheppard et al. (2014) examined the factors that affect the prediction of software defects. 42 studies out of 

600 studies were used for the meta-analysis. The challenges were examined by the NOVA model so that 

the prediction process was divided into the groups: (1) Classifier family: in this group, the defect 

prediction techniques were divided to 7 main sections; Decision Tree, Recognition, SVM, Neural 

Network (ANN), Na- ive Bayes, CBR, Search and Benchmark. (2) Data set family: In this group, the 

Dataset had been divided into 24 this group, the Dataset had been divided into change or static metrics. (4) 

Researcher Group: There are two clusters of researchers; the most significant cluster is 8-10 researchers. 

The meta-analysis revealed strong evidence that current experiments in predicting defects are in-adequate 

and ineffective. Okutan et al. (2014) used Bayesian Network to find the relationships among metrics and 

defect proneness in different datasets. The PROMISE data repository used many public datasets for this 

experiment, such as Ant, Tomcat, Jedit, Veloci- ty, Synapse, Poi, Lucene, Xalan, and Ivy. The static 

metrics used were LOC, CBO, LOCQ, WMC, RFC, LCOM, LCOM3, DIT, and NOC. Each of these da- 

tasets has a version number and instance number. The results show that the Lack of Coding Quality 

(LOCQ) has been evaluated as one of the best scores in the ex- periments. Son et al. (2019) studied the 

prediction of soft- ware defects through systematic mapping and estab- lishing a protocol for the mapping. 

The processes of systematic mapping have been done in four stages :(1) Application of Inclusion-

Exclusion Criteria: this stage is divided into two stages Inclusion Criteria and Exclu- sion Criteria. 

Inclusion Criteria: In this stage of the study, the defect predication used software metrics provided by the 

analysis of statistical, search-based and machine learning techniques. Exclusion Criteria: In this stage 

study, the defect prediction does not use depend- ent variable and non-empirical nature. (2) Quality 

Analysis: at this stage, choose the evaluation meth- od-ology used (3) Data Extraction: what kind of 
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data is used (4) Data Synthesis: involves the accumulation of facts from the collected data during the data 

extraction process. This experiment used the techniques: Decision Tree, Support Vector Machine, Neural 

Network, Re- gression and Bayesian Learning. The Dataset was taken from different resources such as 

NASA, Eclipse, Mozilla, etc. The result indicated good accuracy when using a large Dataset with different 

metrics. He et al. (2015) used the Dataset from PROMISE, they selected 34 releases; each one has a 

number of instances files and number of defects. This study used 1) several independent variables which 

represent the in- puts that will affect the dependent variable. The study used 20 static code metrics 

including CK suite, Mar- tin's metrics, QMOOM suite, Ex-tended CK suite, McCabe's CC, and LOC. 

2) Dependent variables: which represents the outputs and effect, it was studied to see how much it 

varies as the independent variables change. It used different machine learning algorithm; in order to 

evaluate the result such as J48, Decision Tree, Support Vector Machine, Logistic Regression, and Na- ïve 

Bayes. The result showed that the simple metrics could be helpful to predict software defect. 

Yang et al. (2014) proposed a new approach of learning to rank using the rank task. The study used 

11 different types of Dataset such as Eclipse, Lucene, Mylyn, PDA and other data. The study used 

different method (RF, RP, BART, NBR, ZINBR, ZIPR, HNBR, and HPR) to Compare

 the results for the 11-datasetsusing three different metrics. The study used 10 Cross-

Validation. The result showed two benefits (1) learning to rank just do rank defects and does not need to 

predict defects for each module (2) these expected numbers were used to predict which modules are 

more flawed than others in project. Wang et al. (2013) ex- amined the problem of imbalance 

distribution, which may be a problem or can help to predict defect in soft- ware; through using 10 

datasets from PROMISE; each one of these datasets has different number of features, different language 

and has a different percent of defect. This Dataset uses in different techniques in two top-ranked 

predictors machine learning. Naive Bayes and Random Forest and compare the result with other 

techniques PD, PF, balance, G-mean and AUC. The result showed that the balance and G-mean is the 

best result, which mean that it could use the imbalance dis- tribution to help in predict defect. Hassan 

(2009) used predict the defect of program based on the change cod of complexity. There are many 

processes that can be associated with code change, in- cluding the pattern of source code modification, 

rec- orded by the source control systems, and a log that saves all dates that have been changed. Statistical 

Lin- ear Regression (SLR Model) was built to predict faults in subsystem. Different models and different 

applica- tion were used. The result showed that complex code change process negatively affects the 

software system, and the more complex changes to a file, the higher the chance the file will contain fault. 

 

III. DATASETS 

 

To evaluate the effectiveness of defect prediction, we are conducting experiments on a set of data availa- 

ble on the PROMISE website and which have been collecting data from NASA. The data from NASA 

come from different project. These public datasets in- clude the information on space craft 

instrumentation, satellite flight control, and ground data for storage management. In this research we will 

use six public datasets that are most widely used in among research- ers from this repository (CM1, 

JM1, KC1, PC1, Class-level data for KC1version 1 and Class-level data for KC1 Version 2). Each of 

these datasets possesses several software modules with input as the quality met- rics. the outputs of each 

models are whether the pro- gram is defective or non- defective. The features are divided into two main 

parts: McCabe and Halstead measure. This measure defines "modules" as the smallest functional units. 

All these datasets were de- veloped in either C or C++ language as shown in Table 1. From Table 2, can 

be noted that, for all the consid- ered six datasets, JM1, CM1, KC1 and PC1 have 22 attributes. Each of 

this Dataset have been including one output attributes which represent the goal of filed (de- fect as 1, non-

defect as 0) other attributes represent the quality metrics for the project acting as input attributes. These 

attributes can be classified in to McCabe metrics, 9 Halstead measures, and 8 are derived Halstead 

measures. 
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Table 1. Summary of Dataset 

 

 

Dataset # 
Attribute

s 

# 
instance

s 

#defect
ed 

Langua
ge 

JM1 22 10855 80.65% C 

CM1 22 498 9.83% C 

KC1 22 522 20.5% C++ 

PC1 22 1109 93.05% C 

Class-level KC1 
ver1 

95 145 - C++ 

Class-level KC1 
ver2 

95 145 - C++ 

 

 

 

Table 2. The summary of code metrics 

 

 
Quality metrics Description 
loc (v) line count of code 
v (g) Cyclomatic complexity 
ev (g) Essential complexity 
iv (g) Design complexity 
loCode line count 
loComment Count of lines of comments 
loBlank Count of blank lines 
loCodeAndComment Count of code and comment lines 
uniq_Op Unique operators 
uniq_Opnd Unique operands 
total_Op Total operators 
total_Opnd Total operands 
branchCount Branch count of the flow graphs 

n total operators + operands 
v Volume 
l Program length 
d Difficulty 

i Intelligence 
t Time estimator 
Defect True/False 

 

 

IV. RESEARCH METHODOLOGY 

 

In this paper, we will be exploring a solution to predict the defect in software using Support Vector 

Machine (SVM) with different kernel functions. The datasets that will be used are taken from NASA 

metrics Data Program, the number of features is 22 (4 McCabe met- rics, 9 base Halstead measures, 8 

derived Halstead measures and defect variable as output) as discussed before. Before using the Dataset, the 

Dataset will be pre-processed and cleaned by handling missing values and outliers. The datasets are 

divided to training and testing data. In Software Defect Predication (SDP) the selection of training data 

and testing data will be done in two different ways; the first one, in the same Dataset will be choosing the 
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training and testing data randomly (or may be sequential). In second one, the training will be taking from 

Dataset as previous version and the testing data will be taking from another dataset as next version. We 

will use the first approach. The data will be handled and cleaned before running experiments. The 

proposed models will be validated using 10-cross validation. After that, the SVM with different kernel 

functions will be examined. The last step, the results will be compared and evaluated using classification 

accuracy measures such as: Recall, Precision, Classifi- cation Accuracy, and Balance. The tools that will 

be used are Rapid Miner for the implementation of our proposed solution. The accuracy of each model 

will be measured by the common accuracy measures: Recall, Precision, accuracy, Specificity, F-measure 

and Bal- ance. Software Defect Prediction (SDP) detectors can be assessed according to confusion matrix 

or Error matrix: is a table used to describe the performance of classification model on a set of test data for 

which the true values are known. It is showed the number of cor- rect and incorrect prediction, where is 

summarized with count values and broken down by each class. This is the key to the confusion matrix as 

shown in Table 3 Shepperd et al. (2014). 

 

 

                                                   Table 3. Confusion Matrix 

 

 Predicted as 
defective 

Predicted as non-
defective 

defective TP FN 

Non 
defective 

FP TN 

 

 

 

 

 

Where TP is True positive which means correctly clas- sified as defective module. TN is True negative 

which means correctly classified as non-defective module. FP is False positive which means classifies 

non-defective module as defective module, and FN is False negative which  means  classifies  

defective  module as non-defective module. To correctly identify a defective prediction, the "Preci- 

sion" is used to determine the defective prediction rate, or the extent of the prediction is originally 

defective, or not. Recall is also called sensitivity, probability of de- tection (pd), or true positive rate 

(TPR). There are also many measures called probability of false alarm (pf) or false positive rate (FPR) 

which suggests the percentage of false defective predictions. Based on what has al- ready, an optimal 

predictor should achieve TPR (pd) is 1, FPR (pf) is 0 and the Precision is 1. When the TPR and FPR are 

plotted, the result in Receiver Operating Characteristics (ROC) curve and from ROC the area under the 

curve (AUC) is to be measured. AUC is measured between 0 and 1, with 1 being the optimal solution 

point. Table 4 presents performance measures (Shepperd et al. (2014)). The, the data must be cleaned 

from missing value and outliers. The existing of miss- ing values and outliers hinder the success of 

building accurate learning models therefore researchers sug- gested using some statistical tool to ignore 

these outli- ers such as boxplot. The missing values can be handled by either replacing them with the 

feature average of ignoring them. In this paper we ignore missing values because they are a few. The 

proposed algorithm must be validated using robust validation procedure such as cross validation and 

bootstrapping. During validation procedure the data is divided into training and testing subsets and 

training data is entered to learning the model while the testing data is used to evaluate accu-racy of the 

model. 
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V. EXPERIMENTAL RESULTS 

 

This section presents the results of the experiment study, which has been conducted to validate our 

mod- ule. The evaluation has been performed on Support Vector Machine (SVM) with different Kernel 

functions, using public datasets obtained from PROMISE data repository as described in Dataset section. 

To evaluate the performance of each proposed model, used 10-Folds cross-validation approach. This 

procedure divides the datasets randomly into 10-fold equal size subsets, where in each fold 9 subsets are 

used for training and one subset is used for testing. This process is repeated 10 times until all subsets act 

as testing data as described in section 3. In each experiment SVM model with different kernel function is 

constructed under two perspectives: using all features and using feature subset selected by PCA 

technique. Furthermore, six kernel functions were used: Linear, Quadratic, Cu- bic, Gaussian, RBF, 

Sigmoid. 

 

                                                          

 

                                                        Table 4. Performance measures 

 

metric Definition of the 
measure 

Sensitivity 

 

Precision 

 

False positive rate 

 

Specificity 

 

Accuracy 

 

Balanced 
Accuracy 

 
 

 

 

 

5.1 CM1 DATASET RESULT 

 

It can be noted from Table 5 that the Recall and Preci- sion values are unacceptable for all kernel functions 

because their values are close to zero. Specificity val- ues are very good for all kernel functions, with rela- 

tively similar values. Balance values are not very bad with a range between (0.29 - 0.4). Accuracy values 

are very good, as almost 90% of all kernel functions are good. TRP and FPR values are unacceptable for 

all kernel functions because they are nearly zero. "Area Under Curve" is acceptable for all kernel functions 

ranging from (0.50 - 0.64). With respect to all perfor- mance results, better solutions are observed for 

the Quadratic kernel function than the other five kernel functions with all features in the CM1 Dataset. 
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Table 5. Performance results of the SVM kernel functions on CM1 Datasets, using all Features. 
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Linear 0.0
0 

0.00 1.00 0.29 0.90 0.00 0.00 0.62 

Quadra
tic 

0.1
6 

0.42 0.98 0.41 0.90 0.16 0.02 0.64 

Cubic 0.1
6 

0.22 0.94 0.41 0.86 0.16 0.07 0.61 

Gaussi
an 

0.0
0 

0.02 1.00 0.29 0.90 0.00 0.00 0.57 

RBF 0.0
0 

0.00 1.00 0.29 0.90 0.00 0.00 0.50 

Sigmoi
d 

0.0
8 

0.29 0.98 0.35 0.89 0.08 0.00 0.53 

 

 

                                  Table 6. Performance results of SVM kernel functions on CM1 Datasets, using 

PCA 
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Linear 0.00 0.00 1.00 0.29 0.90 0.00 0.00 0.44 

Quadr
atic 

0.18 0.41 0.97 0.42 0.89 0.18 0.03 0.71 

Cubic 0.20 0.28 0.94 0.44 0.90 0.00 0.00 0.66 

Gaussi
an 

0.00 0.03 1.00 0.29 0.90 0.00 0.00 0.63 

RBF 0.00 0.00 1.00 0.29 0.95 0.00 0.00 0.50 

Sigmoi
d 

0.10 0.19 0.95 0.36 0.87 0.10 0.05 0.53 

 

 

 

 

It can be noted from Table 6 that the Recall and Preci- sion values are unacceptable for all kernel 

functions; specificity values are very good for all kernel functions, with similar values. Balance values 

are not very bad with a range between (0.29 - 0.4). For all kernel func- tions with a range between (0.86 

- 0.95) the accuracy values are so good. TRP and FPR values are unac- ceptable for all kernel functions, 

because they're almost zero. With all kernel functions with a range between (0.50 - 0.71) the values 

"Area Under Curve" are ac- ceptable. With respect to all performance results, better solutions are 

observed for the Quadratic kernel func- tion than the other five kernel functions considered with 

selected features in the CM1 Dataset. It was little improvement in all performance results when using 

selected features in CM1 Dataset. This is because of the features selected that were used. 
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5.2 KC1 DATASET RESULT 

 

From Table 7 we can note that for all kernel func- tions the Recall values and Precision values are ac- 

ceptable. Specificity values are generally good, as they are almost 96% for all kernel functions, with the 

ex- ception for Sigmoid kernel that obtained of the 86%. Balance values with a range of (0.32 -0.55) are 

fairly good. The accuracy values for all kernel functions are relatively good with range between (0.78 - 

0.84); TRP values are acceptable for all kernel functions except for the Cubic kernel function. FPR values 

for all kernel functions are unacceptable, as they are almost zero. "Area Under Curve" values for all kernel 

functions with a range between (0.66 - 0.81) are acceptable. With respect to all performance results, better 

solutions are observed for the RBF kernel function than the other five kernel functions considered with all 

features in the KC1 Dataset. 

 

Table 7. Performance results of SVM kernel functions on KC1 Datasets, using PCA 
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Linear 0.36 0.75 0.97 0.54 0.84 0.36 0.03 0.81 

Quadr
atic 

0.37 0.69 0.96 0.56 0.84 0.37 0.04 0.73 

Cubic 0.37 0.54 0.97 0.55 0.81 0.37 0.08 0.67 

Gaussi
an 

0.37 0.74 0.97 0.56 0.85 0.37 0.03 0.77 

RBF 0.36 0.70 0.96 0.54 0.84 0.36 0.04 0.66 

Sigmoi
d 

0.46 0.46 0.86 0.33 0.78 0.46 0.14 0.66 

 

 

From Table 8 we can note that the values Recall and Precision are acceptable for all functions of the 

kernel. All kernel functions have very good specificity values, with a range between (0.85 - 0.97). Balance 

values with a range between (0.31 - 0.49) are accepta- ble. Accuracy values are so good for all kernel 

func- tions; as they are close to 84% except for RBF is 77%. For all kernel functions, TRP values are 

acceptable; FPR values are unacceptable, as for all kernel functions they are almost at zero. For all kernel 

functions with a range between (0.65 - 0.83) the values "Area Under Curve" are acceptable. With respect 

to all performance results, better solutions are observed for the Quadratic kernel function than the other 

five kernel functions considered with selected features in the KC1 Dataset. When the selected features 

used in KC1 Dataset, all performance results were not improved except for Area Under Curve. This is 

because of the selected fea- tures that have been used, and we do not know how the mechanism of 

selection entities in cross-validation. 
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Table 8. Performance results of SVM kernel functions on KC1 Datasets, using PCA 
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Linear 0.36 0.79 0.98 0.54 0.85 0.36 0.02 0.83 

Quadr
atic 

0.40 0.72 0.96 0.58 0.85 0.40 0.04 0.73 

Cubic 0.43 0.62 0.93 0.59 0.83 0.43 0.07 0.65 

Gaussi
an 

0.36 0.68 0.96 0.55 0.84 0.36 0.04 0.69 

RBF 0.35 0.66 0.95 0.54 0.83 0.35 0.05 0.65 

Sigmoi
d 

0.44 0.44 0.86 0.33 0.77 0.44 0.14 0.65 

 

 

 

5.3 PC1 DATASET RESULT 

 

From Table 9 it can be noted that the Recall values for all kernel functions are Totally unacceptable. 

Preci- sion values for all kernel functions are acceptable, ex- cept the value for the Sigmoid kernel 

function. Speci- ficity values for all kernel functions are very good as they are close to 96 %. Balance 

values with a range of (0.31- 0.49) are acceptable. Accuracy values are good for all functions of the kernel; 

since they are close to 91%. TRP values are unacceptable, as they are almost zero for all kernel functions 

with the exception of the Cubic kernel. FPR values are insufficient for all kernel functions, because they 

are almost zero. "Area Under Curve" values for all kernel functions with a range be- tween (0.53 - 0.73) 

are acceptable. With respect to all performance results, better solutions are observed for the Cubic kernel 

function than the other five kernel functions considered with all features in the PC1 Da- taset. From Table 

10 it can be noted that the Recall val- ues for all kernel functions are totally unacceptable. Except for the 

Sigmoid and Cubic kernel functions, precise values are acceptable for all kernel functions. Specificity 

values are very good for all kernel functions; with the exception of Cubic kernel function, they are close to 

97%. Balance values with a range of (0.31 - 0.49) acceptable. For all kernel functions, accuracy values are 

so good; with a range between (0.90 - 0.93) except for the Cubic kernel function, it is 77%. TRP and 

FPR values are unacceptable, because they are almost zero for all functions of the kernel except for the 

Cubic kernel. "Area Under Curve" values for all kernel functions with a range between (0.51 - 0.75) are 

acceptable. With respect to all performance results, better solutions are observed for the Gaussian kernel 

function than the other five kernel functions considered with selected features in the PC1 Dataset. There 

was no improvement in all per-formance results except in ac- curacy when we used selected features in the 

PC1 Da- taset. This is due to a function of the kernel, the select- ed features that were used and we don't 

know how the process of selection entities in cross-validation. 
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Table 9. Performance results of SVM kernel functions on PC1 Datasets, using PCA 
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Linear 0.03 0.67 1.00 0.31 0.93 0.03 0.00 0.70 

Quadr
atic 

0.13 0.32 0.98 0.39 0.92 0.13 0.02 0.68 

Cubic 0.29 0.39 0.97 0.49 0.92 0.29 0.03 0.67 

Gaussi
an 

0.08 0.55 1.00 0.35 0.93 0.08 0.01 0.73 

RBF 0.08 0.67 1.00 0.35 0.93 0.08 0.00 0.54 

Sigmoi
d 

0.05 0.13 0.98 0.33 0.91 0.05 0.03 0.53 

 

Table 10. Performance results of SVM kernel functions on KC1 Datasets, using PCA 
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Linear 0.20 0.71 0.98 0.42 0.95 0.20 0.00 0.75 

Quadr
atic 

0.12 0.43 0.99 0.38 0.93 0.12 0.01 0.63 

Cubic 0.40 0.10 0.83 0.50 0.75 0.48 0.22 0.55 

Gaussi
an 

0.10 0.67 1.00 0.35 0.93 0.13 0.00 0.69 

RBF 0.08 0.72 1.00 0.37 0.93 0.11 0.00 0.53 

Sigmoi
d 

0.07 0.16 0.97 0.35 0.91 0.07 0.03 0.51 

 

 

5.4 JM1 DATASET RESULT 

 

It can be noted from Table 11 that the Recall val- ues are unacceptable for all kernel functions except 

for the Cubic kernel function; it is 77%. Precision values are acceptable for all functions of the kernel 

except the functions Sigmoid and RBF kernel. Specificity values are very good, as they are similar to 

one% of Linear, Quadratic, and Gaussian kernel functions, becoming nearly 90 % of RBF kernel 

functions and unacceptable for Cubic and Sigmoid kernel functions. Balance val- ues with a range of (0.21 

- 0.36) are acceptable. For linear, quadratic, and Gaussian kernel functions, accu- racy values are so good; 

as they are close to 81 percent, but unacceptable in the functions of Cubic, RBF, and Sigmoid. For all 

kernel functions except the Cubic kernel function, TRP and FPR values are unacceptable because they are 

nearly zero. "Area Under Curve" val- ues are acceptable for all kernel functions with a range between 

(0.51 - 0.75). expect for cubic kernel function. With respect to all performance results, better solutions are 

observed for the Gaussian kernel function than the other five kernel functions with all features considered 

in the JM1 Dataset. It can be noted from Table 12 that the Recall values are unacceptable for all kernel 

func- tions except for the Cubic and Quadratic kernel func- tions, 40% and 61% are in order. Precision 

values are acceptable for all functions of the kernel, with the ex- ception of Cubic and Quadratic functions. 

Specificity value is very good, as it is close to one for Linear, RBF, and Gaussian kernel functions, as it is 

close to 82% for Sigmoid kernel function and unacceptable for Cubic and Quadratic kernel functions. 

Balance values with a range of (0.29 - 0.49) are not that bad. Accuracy values are so good for linear, RBF 
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kernel functions as they are nearly 81%. In Sigmoid kernel function is 77% unac- ceptable in Cubic, 

Quadratic, and Gaussian kernel function. TRP and FPR values are unacceptable for all kernel functions 

except for the Cubic and Quadratic kernel functions, as they are almost zero. "Area Under Curve" values 

are acceptable for all kernel functions with a range between (0.50 - 0.63) expect for Quadratic kernel 

function. With respect to all performance results, better solutions are observed for the RBF kernel func- 

tion than the other five kernel functions considered with selected features in the JM1 Dataset. It was im- 

provement when selected features used in JM1 Dataset, and no improvement in all performance. This is 

due to a function of the kernel, the selected features that were used and we don't know how the process of 

selection entities in cross-validation. 

 

 

Table 11. Performance results of SVM kernel functions on JM1 Datasets, using PCA 
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Linear 0.02 0.71 1.00 0.31 0.81 0.02 0.00 0.65 

Quadr
atic 

0.09 0.54 0.98 0.36 0.81 0.09 0.02 0.64 

Cubic 0.76 0.19 0.21 0.21 0.32 0.76 0.79 0.48 

Gaussi
an 

0.10 0.61 0.99 0.37 0.81 0.10 0.02 0.62 

RBF 0.01 0.34 0.90 0.30 0.18 0.01 0.10 0.55 

Sigmoi
d 

0.06 0.28 0.59 0.27 0.19 0.06 0.41 0.54 

 

Table 12. Performance results of SVM kernel functions on JM1 Datasets, using PCA 
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Linear 0.01 0.63 1.00 0.30 0.81 0.01 0.00 0.63 

Quadr
atic 

0.62 0.18 0.32 0.45 0.38 0.62 0.68 0.45 

Cubic 0.41 0.20 0.60 0.49 0.56 0.41 0.40 0.50 

Gaussi
an 

0.09 0.60 0.96 0.35 0.58 0.09 0.04 0.59 

RBF 0.08 0.58 0.99 0.35 0.81 0.08 0.01 0.53 

Sigmoi
d 

0.34 0.32 0.83 0.52 0.73 0.34 0.17 0.58 

 

 

5.5 CLASS-LEVEL DATA FOR KC1 V1 DATASET RESULT 

From Table 13, it can be noted that the Recall values are acceptable for all kernel functions except the 

RBF and sigmoid kernel functions as they are nearly zero. Precision values are acceptable for all kernel 

functions except the RBF and sigmoid kernel functions, as they are nearly to zero. Specificity values are 

very good, as they are near to one for RBF and Sigmoid kernel functions, other Kernels with rang between 

(0.66 -0 .83). Balance values are very good, as they are nearly to 77% except in RBF and Sigmoid kernel 

func- tions. Accuracy values are good as they are nearly to 77% in all kernel functions expect unacceptable 

in RBF, Sigmoid kernel functions. TRP values are good as they are nearly to 80% for all kernel functions 

except for the Sigmoid and RBF kernel functions. FBR values are unacceptable as they are nearly to zero 
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for all kernel functions except for the Cubic, Linear and Quadratic kernel functions. "Area under Curve" 

values are ac- ceptable within the range between (0.50 - 0.84) for all kernel functions. For all performance 

results, better solutions are observed for the Gaussian kernel function than the other five considered kernel 

functions in the KC1version 1 dataset class-level data with all features. 

Table 13. Performance results of SVM kernel functions on KC1 v1 Datasets, using PCA 
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Linear 0.82 0.81 0.73 0.77 0.79 0.82 0.27 0.84 

Quadr
atic 

0.85 0.78 0.67 0.74 0.77 0.85 0.33 0.81 

Cubic 0.79 0.77 0.67 0.72 0.74 0.79 0.33 0.79 

Gaussi
an 

0.75 0.87 0.83 0.79 0.79 0.75 0.02 0.83 

RBF 0.00 0.00 1.00 0.00 0.43 0.00 0.00 0.50 

Sigmoi
d 

0.00 0.00 0.97 0.29 0.00 0.03 0.41 0.51 

 

Table 14. Performance results of SVM kernel functions on KC1 v1 Datasets, using PCA 
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Linear 0.84 0.70 0.48 0.62 0.39 0.84 0.52 0.77 

Quadr
atic 

0.78 0.70 0.52 0.62 0.67 0.78 0.48 0.67 

Cubic 0.71 0.71 0.58 0.64 0.66 0.71 0.42 0.65 

Gaussi
an 

0.90 0.69 0.40 0.57 0.70 0.90 0.60 0.08 

RBF 0.70 0.65 0.73 0.71 0.72 0.70 0.27 0.71 

Sigmoi
d 

0.43 0.68 0.86 0.59 0.68 0.43 0.14 0.65 

 

From Table 14, it can be noted that for all kernel functions the Recall values and Precision values 

are acceptable. For all kernel functions, specificity values are unacceptable, except for functions in the 

Sigmoid and RBF kernels. Balance values with a range of (0.57- 0.71) are very good. Accuracy values 

are good for all kernel functions because they are nearly 66%. All ker- nel functions are good at the TRP 

and FBR values. "Area Under Curve" values are acceptable with a range of (0.65 - 0.80) for all kernel 

functions. For all perfor- mance results, better solutions are observed for the Gaussian kernel function 

than the other five considered kernel functions in the KC1version 1 dataset class-level data with selected 

features. Dataset used in class-level data were improved in Recall, Precision, Balance, TPR and FPR, 

there was no improvement in Area Under Curve and another performance was getting bad in- cluding 

Specificity and Accuracy. It is due to a function of the kernel, the selected features that were used and we 

don't know how the mechanism of selection entities in cross-validation. 
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VI. CONCLUSION 

 

Software Defect Prediction is a vital task during software development to help testing team to focus on 

defect proneness modules. To support that, various machine learning methods have been used to build 

models that can predict faulty modules based on da- tasets collected from software industries. Among 

them, Support vector machine has shown good performance for this problem, but there are no prior studies 

exam- ined the performance of kernel functions for defect prediction problem. Thus, this research we will 

exam- ine the performance of support vector machine with different kernel functions over different 

datasets col- lected from software data repositories. The results demonstrate that there is no kernel function 

that can give stable performance across different experimental settings. In addition, the use of feature 

subset selection using PCA did improve accuracy of kernel functions over some datasets. In CM1 Dataset, 

better solutions are observed for the Quadratic kernel function than the other five kernel functions with all 

and selection fea- tures. In KC1 Dataset, better solutions are observed for the RBF kernel function than the 

other five kernel functions with all and selection features. In PC1 Da- taset, better solutions are observed 

for the Cubic kernel function than the other five kernel functions considered with all features, but when 

select some features, the better solutions are observed for the Gaussian kernel function than the other five 

kernel functions. In JM1 Dataset, better solutions are observed for the Gaussian kernel function than the 

other five kernel functions with all features, but when select some features, better solutions are observed 

for the RBF kernel function than the other five kernel functions. In Class-level data for KC1version 1 

dataset, better solutions are observed for the Gaussian kernel function than the other five con- sidered 

kernel functions in all and selected features. In in the KC1version 2 dataset class-level Dataset better 

solutions are observed for the Gaussian kernel function than the other five kernel functions considered 

with all and selected features. The results were different within the Dataset because each Dataset has a 

different num- ber of entities, some data have 125 such as KC1version 2 class-level data, other datasets 

have 10,000 entities and this affects the cross-validation selection process. For some datasets the selected 

features perform better in the same Dataset and in other datasets there is no improvement at all. 
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