ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Multipliers In Td-Algebras

¹ N Nagamani, ² E. Paramanathan ¹Assistant Professor ¹SRM-Easwari Engineering College, Chennai-89

²Assistant Professor, SRM-Easwari Engineering College, Chennai-89 Chennai-89, India

Abstract: In this paper, we present the concept of a Multiplier on a Td-algebra and get a few properties of Multipliers of Td-algebra.

Index Terms - Td-algebras, multiplier, commutative, positive implicative.

I. INTRODUCTION

Y.Imai and adequate.Iseki[1, 2, 4,and 5] introduced instructions of summary algebras: BCK-algebras and BCI-algebras.it is recognized that the magnificence of BCK-algebras is a proper subclass of the class of BCI-algebras.Hu. Q. P and Lix [4]are introducedon right BCH-algebras. due to the fact then, several authors have studied BH-algebras. mainly, Q. Zhang, E. H. Roh and H.S. Kim [8] brought on d-algebras. The belief of d-algebra, every other generalization of the belief of BCK-algebra, was introduced by using Negger[8].

They have got studied the houses of multipliers on them in addition to properties of those algebraic systems using the belief of a multiplier on them. but the houses of multipliers on d-algebra, an crucial magnificence of algebras containing the class of BCK-algebras, have not been investigated to this point. So with this motivation, on this paper we recommended the idea about a multiplier on an Td-algebra and acquire a few houses of multipliers about Td-algebra.

II. Preliminaries

Definition 2.1[1, 2, 5] An algebra (X, *, 0) of type (2,0) is known as a BCK-algebra if it satisfies the subsequent conditions:

 $\begin{array}{l} 1 \cdot \left(\left(\alpha \ast \beta \right) \ast \left(\alpha \ast z \right) \right) \ast \left(z \ast \beta \right) = 0. \left(\left(\alpha \ast \beta \right) \ast \left(\alpha \ast z \right) \right) \ast \left(z \ast \beta \right) = 0 \\ 2 \cdot \left(\alpha \ast \left(\alpha \ast \beta \right) \right) \ast \beta = 0 \left(\alpha \ast \left(\alpha \ast \beta \right) \right) \ast \beta = 0 \\ 3 \cdot \alpha \ast \alpha = 0 \alpha \ast \alpha = 0 \\ 4 \cdot \alpha \ast \beta = 0, \beta \ast \alpha = 0 \Rightarrow \alpha = \beta \alpha \ast \beta = 0, \beta \ast \alpha = 0 \Rightarrow \alpha = \beta \\ 5 \cdot 0 \ast \alpha = 0 \text{ for all } \alpha, \beta, z \in X0 \ast \alpha = 0 \text{ for all } \alpha, \beta, z \in X \end{array}$

Definition 2.2. [8] A nonempty set X with a consistent and a two fold operation * is called a d - polynomial math in case it fulfills the taking after sayings.

$$1^{\alpha * \alpha} = 0^{\alpha * \alpha} = 0$$

2. $0 * \alpha = 0 0 * \alpha = 0$
3. $\alpha * \beta = 0, \beta * \alpha = 0 \Rightarrow \alpha = y \alpha * \beta = 0, \beta * \alpha = 0 \Rightarrow \alpha = y \text{ for all } \alpha, \beta \in X\alpha, \beta \in X\alpha$

Remark: 2.3. It's far obvious from above definitions that every BCK-algebra is a d-algebra. the following suggests that converse isn't always authentic, in preferred.

Example 2.4. let $X = \{0, 1, m, n, p, q\}$ be a hard and fast with the binary operation * described by using

*	0	1	m	n	р	q
0	0	0	0	0	0	0
1	1	0	0	0	0	0
m	m	m	0	0	0	0
n	n	n	1	0	0	0
р	р	m	1	1	0	0
q	q	q	n	n	1	0

Then (X, *, 0) *, 0 is BH-algebra.

A BH – algebra X is stated to be medial if l * (l * m) = ml * (l * m) = m for all $l, m \in X.l, m \in X.$

Definition 2.5 Permit S be a nonempty subset of a d-algebra X, then S is referred to as sub algebra of X if $\alpha * \beta \in S \alpha * \beta \in S$ for all $\alpha, \beta \in S \alpha, \beta \in S$.

Definition 2.6 allow X is a d-algebra and U,V are any non empty subsets of X. We outline a subset U*V of X as follows. $U^*V = \{\alpha^*\beta | \alpha \in U, \beta \in V\}$

Definition: 2.7 let (X,*) be a d-algebra. Let τ be the collection of subsets of X. τ is said to be a topology on X. If

- 1. $X, \emptyset \in \tau X, \emptyset \in \tau$
- 2. Arbitrary union of members of τ is in τ
- 3. Finite intersection of members of τ is in τ .

Definition 2.8 Allow (X,*) be a d-algebra and τ a topology on X. Then $X=(X,*,0,\tau)$ is known as a topological d-algebra, (it's miles denoted by way of Td-algebra) if the operation "*" is non-stop or equivalently for any α , $\beta \in X$ and for any open set W of $\alpha*\beta$ there exist open units U and V respectively such that U*V is a subset of .

III. MULTIPLIERS ON TD- ALGEBRAS

Inside the sequel will denote Td-algebra with steady 0 and binary operation until otherwise specific . We now show our outcomes.

Definition 3.1. A character map $f: X \to X f: X \to X$ satisfying f(x * y) = f(x) * yf(x * y) = f(x) * y, for all $x, y \in Xx, y \in X$, is called a multiplier on XX.

Example 3.2. Let $X = \{0, \alpha, \beta\} X = \{0, \alpha, \beta\}$ with the binary operation ** defined by

*	0	α	β
0	0	0	0
α	β	0	β
β	α	α	0

Then XX is a Td-algebra. Let $f: X \to Xf: X \to X$ be defined by $(x) = \{0 \text{ if } x = 0, 11 \text{ if } x = 2 \ (x) = \{0 \text{ if } x = 0, 11 \text{ if } x = 2 \ \text{. Then } ff \text{ is a expand on } XX.$

Remark 3.3: If XX is a Td-algebra with binary operation **, then we outline a binary relation $\leq \leq \text{ on } XX \text{ by } x \leq yx \leq y \text{ if and most effective if } x * y = 0x * y = 0, x, y \in Xx, y \in X$

Proposition 3.4. Allow XX is a Td-algebra and f a multiplier on XX, then

- $\begin{array}{l} \mathcal{F}(0) = 0\mathcal{F}(0) = 0\\ 2 \quad \mathcal{F}(\alpha) \le \alpha \ \forall \alpha \in X \ and \ \mathcal{F}(\alpha) \le \alpha \ \forall \alpha \in X \ and \end{array}$
- 3. If $X \le YX \le Y$ then $\mathcal{F}(\alpha) \le \beta \quad \forall \alpha, y \in X\mathcal{F}(\alpha) \le \beta \quad \forall \alpha, y \in X$

Proof. 1. $\mathcal{F}(0) = \mathcal{F}(0 * \mathcal{F}(0)) = \mathcal{F}(0) * \mathcal{F}(0) = 0 * 0 = 0$

$$\mathcal{F}(0) = \mathcal{F}(0 * \mathcal{F}(0)) = \mathcal{F}(0) * \mathcal{F}(0) = 0 * 0 = 0$$

Let
$$\alpha \in X, \alpha \in X$$
, Then $0 = \mathcal{F}(0) = \mathcal{F}(\alpha * \alpha)0 = \mathcal{F}(0) = \mathcal{F}(\alpha * \alpha)$

$$= \mathcal{F}(\alpha) * \alpha \text{ so } \mathcal{F}(\alpha) \leq \alpha$$

2. Let $\alpha, \beta \in X\alpha, \beta \in X$ and $x \le \beta x \le \beta$. Then $\alpha * y = 0 \text{ so } 0 = \mathcal{F}(0) = \mathcal{F}(\alpha * \beta) = \mathcal{F}(\alpha) * \beta$ $\alpha * y = 0 \text{ so } 0 = \mathcal{F}(0) = \mathcal{F}(\alpha * \beta) = \mathcal{F}(\alpha) * \beta$ Thus $\mathcal{F}(\alpha) \le \beta \mathcal{F}(\alpha) \le \beta$.

Proposition 3.5. Permit \mathcal{FF} and \mathcal{GG} is expand on XX, formerly their composition \mathcal{FGFG} is a expand on XX.

Proof: Let
$$\alpha, \beta \in X\alpha, \beta \in X$$
 Next.
 $(\mathcal{FG})(\alpha * \alpha) = \mathcal{F}(\mathcal{G}(\alpha * \beta)) = \mathcal{F}(\mathcal{G}(\alpha) * \beta)(\mathcal{FG})(\alpha * \alpha) = \mathcal{F}(\mathcal{G}(\alpha * \beta)) = \mathcal{F}(\mathcal{G}(\alpha) * \beta)$
 $\mathcal{F}(\mathcal{G}(\alpha)) * \beta = (\mathcal{FG})(\alpha) * \beta \mathcal{F}(\mathcal{G}(\alpha)) * \beta = (\mathcal{FG})(\alpha) * \beta$

So, \mathcal{FGFG} be a expand on XX.

Definition 3.6. A Td-algebra XX is said to be positive implicative if (x * y) * z = (x * z) * (y * z) for all $x, y, z \in X(x * y) * z = (x * z) * (y * z)$ for all $x, y, z \in X$.

Let M(X)M(X) denotes the collection of all multipliers on X. Obviously. $0: X \to X0: X \to X$ defined by 0(X) = 00(X) = 0 for all $x \in X x \in X$ and $I: X \to XI: X \to X$ defined by I(x) = xI(x) = x for all $x \in Xx \in X$ are in M(X)M(X). So M(X)M(X) is non-contempt.

Definition 3.7. Cause XX be a effective implicative Td-algebra and M(X)M(X) be the collection of all multipliers on XX. We characterize a binary operation ** on M(X)M(X) by $(\mathcal{F} * \mathcal{G})(x) = \mathcal{F}(x) * \mathcal{G}(x)$ $(\mathcal{F} * \mathcal{G})(x) = \mathcal{F}(x) * \mathcal{G}(x)$ for $x \in Xx \in X$ and $\mathcal{F}, \mathcal{G} \in M(X).\mathcal{F}, \mathcal{G} \in M(X)$.

Theorem 3.8. Let XX be a effective implicative Td-algebra. Then $(M(\alpha), *, 0)(M(\alpha), *, 0)$ is a effective implicative Td-algebra.

Proof: Let X be implicative Td-algebra . Let $\mathcal{G}, \mathcal{F} \in M(X)$. $\mathcal{G}, \mathcal{F} \in M(X)$. Then

$$(\mathcal{G} * \mathcal{F})(\alpha * \beta) = (\mathcal{G}(\alpha * \beta)) * (\mathcal{F}(\alpha * \beta))$$

$$= (\mathcal{G}(\alpha) * \beta) * (\mathcal{F}(\alpha) * \beta)$$
$$= (\mathcal{G}(\alpha) * \beta) * (\mathcal{F}(\alpha) * \beta)$$

$$= (\mathcal{G}(\alpha) * \mathcal{F}(\alpha)) * ((\mathcal{G} * \mathcal{F})(\alpha)) * \beta$$

So $\mathcal{G} * \mathcal{F} \in M(X)$. $\mathcal{G} * \mathcal{F} \in M(X)$. Let $\mathcal{F} \in M(X)$. Then

$$(O * \mathcal{F})(\alpha) = O(\alpha) * \mathcal{F}(\alpha) = 0 * \mathcal{F}(\alpha) = 0 = O(\alpha)$$

for all $\alpha \in X. \alpha \in X.$ So $O * \mathcal{F} = 0O * \mathcal{F} = 0$ for all $\mathcal{F} \in M(X).\mathcal{F} \in M(X)$.

Now for
$$\mathcal{F} \in M(X)\mathcal{F} \in M(X)$$
, we have $(\mathcal{F} * \mathcal{F})(\alpha) = \mathcal{F}(\alpha) * \mathcal{F}(\alpha) = 0 = O(\alpha)$

$$(\mathcal{F} * \mathcal{F})(\alpha) = \mathcal{F}(\alpha) * \mathcal{F}(\alpha) = 0 = O(\alpha) \text{ for all } \alpha \in X. \ \alpha \in X. \text{ so } \mathcal{F} * \mathcal{F} = 0 \mathcal{F} * \mathcal{F} = 0$$

Let $\mathcal{G}, \mathcal{F} \in M(X)\mathcal{G}, \mathcal{F} \in M(X)$ be such that $\mathcal{F} * \mathcal{G} = 0$ and $\mathcal{G} * \mathcal{F} = 0\mathcal{F} * \mathcal{G} = 0$ and $\mathcal{G} * \mathcal{F} = 0$

This implies $(\mathcal{F} * \mathcal{G})(\alpha) = 0$ and $(\mathcal{G} * \mathcal{F})(\alpha) = 0$ $(\mathcal{F} * \mathcal{G})(\alpha) = 0$ and $(\mathcal{G} * \mathcal{F})(\alpha) = 0$ for all $x \in X$.

That is

$$\mathcal{F}(\alpha) * \mathcal{G}(\alpha) = 0$$
 and $\mathcal{G}(\alpha) * \mathcal{F}(\alpha) = 0 \mathcal{F}(\alpha) * \mathcal{G}(\alpha) = 0$ and $\mathcal{G}(\alpha) * \mathcal{F}(\alpha) = 0$

Which implies $\mathcal{F}(\alpha) = \mathcal{G}(\alpha)\mathcal{F}(\alpha) = \mathcal{G}(\alpha)$ for all $\alpha \in X\alpha \in X$. Thus $\mathcal{F} = \mathcal{GF} = \mathcal{G}$. Hence M(X)M(X) is a Td-algebra.

Now we show that it is a effective implicative. Let \mathcal{F}, \mathcal{G} and $h \in M(X)\mathcal{F}, \mathcal{G}$ and $h \in M(X)$.

Then $((\mathcal{F} * \mathcal{G}) * h)(\alpha) = ((\mathcal{F} * \mathcal{G})(\alpha)) * h(\alpha) = (\mathcal{F}(\alpha) * \mathcal{G}(\alpha)) * h(\alpha)$

$$((\mathcal{F} * \mathcal{G}) * h)(\alpha) = ((\mathcal{F} * \mathcal{G})(\alpha)) * h(\alpha) = (\mathcal{F}(\alpha) * \mathcal{G}(\alpha)) * h(\alpha)$$
$$= (\mathcal{F}(\alpha) * h(\alpha)) * (\mathcal{G}(\alpha) * h(\alpha)) = ((\mathcal{F} * h)(\alpha)) * ((\mathcal{G} * h)(\alpha))$$

$$= (\mathcal{F}(\alpha) * h(\alpha)) * (\mathcal{G}(\alpha) * h(\alpha)) = ((\mathcal{F} * h)(\alpha)) * ((\mathcal{G} * h)(\alpha))$$
$$= ((\mathcal{F} * h) * (\mathcal{G} * h))(\alpha) = ((\mathcal{F} * h) * (\mathcal{G} * h))(\alpha)$$

For all $x \in Xx \in X$

Hence $(\mathcal{F} * \mathcal{G}) * h = (\mathcal{F} * \mathcal{G}) * (\mathcal{F} * h)(\mathcal{F} * \mathcal{G}) * h = (\mathcal{F} * \mathcal{G}) * (\mathcal{F} * h)$

Thus M(X)M(X) is an implicative Td-algebra.

Theorem 3.9. Let XX be a Td-algebra and \mathcal{FF} a multiplier on XX. If f is 1-1 then ff is the identity map on XX.

Proof : Let \mathcal{FF} be 1-1. Let $\alpha \in X\alpha \in X$. Then $\mathcal{F}(\alpha * \mathcal{F}(\alpha)) = \mathcal{F}(\alpha) * \mathcal{F}(\alpha) = 0 = \mathcal{F}(0)$

 $\mathcal{F}(\alpha * \mathcal{F}(\alpha)) = \mathcal{F}(\alpha) * \mathcal{F}(\alpha) = 0 = \mathcal{F}(0)$

Suddenly $\alpha * f(\alpha) = 0, \alpha * f(\alpha) = 0$, which $\alpha \leq \mathcal{F}(\alpha), \alpha \leq \mathcal{F}(\alpha)$. Since $\mathcal{F}(\alpha) \leq \alpha$. $\mathcal{F}(\alpha) \leq \alpha$. by pro 3.4(2)

for all $\alpha \alpha$, there fore $\mathcal{F}(\alpha) = \alpha \mathcal{F}(\alpha) = \alpha$. Hence $\mathcal{F} \mathcal{F}$ is the identity map.

Let ff be a multiplier on XX. We define ker (f) ker (f) by

 $ker \ (\mathcal{F}) = \{\alpha: \alpha \in X \ and \ \mathcal{F}(\alpha) = 0\}. ker \ ker \ (\mathcal{F}) = \{\alpha: \alpha \in X \ and \ \mathcal{F}(\alpha) = 0\}.$

Proposition 3.10. Commission XX be a Td-algebra and \mathcal{F} \mathcal{F} a multiplier on XX. Then

- 1) ker (\mathcal{F}) ker (\mathcal{F}) is a sub algebra of XX and
- 2) If \mathcal{FF} is 1-1, then ker ker $(\mathcal{F}) = \{0\}$ ker ker $(\mathcal{F}) = \{0\}$

Proof: 1) Let $\alpha, \beta \in ker \ ker \ (\mathcal{F}) \ \alpha, \beta \in ker \ ker \ (\mathcal{F})$. Then $\mathcal{F}(\alpha) = 0 \mathcal{F}(\alpha) = 0$ and $\mathcal{F}(\beta) = 0$ $\mathcal{F}(\beta) = 0$. So

 $\mathcal{F}(\alpha*\beta)=\mathcal{F}(\alpha)*\beta=0*\beta=0\mathcal{F}(\alpha*\beta)=\mathcal{F}(\alpha)*\beta=0*\beta=0_{.} \text{ Thus } \alpha*\beta\in ker\ ker\ (\mathcal{F})\,,$

 $\alpha * \beta \in ker \ ker \ (\mathcal{F})$, which implies $ker(\mathcal{F})ker(\mathcal{F})$ is a sub algebra of XX.

2) Let f be one to one. Let $\alpha \in ker ker (\mathcal{F}) . \alpha \in ker ker (\mathcal{F}) . So \mathcal{F}(\alpha) = 0 = \mathcal{F}(0)$

$$\mathcal{F}(\alpha) = 0 = \mathcal{F}(0). \text{ Thus } \alpha = 0\alpha = 0. \text{ So ker ker } (\mathcal{F}) = \{0\}. \text{ker ker } (\mathcal{F}) = \{0\}.$$

Definition 3.11. Let Td-algebra XX is said commutative if $\alpha * (\alpha * \beta) = \beta * (\beta * \alpha) \forall \alpha, \beta \in X$.

 $\alpha * (\alpha * \beta) = \beta * (\beta * \alpha) \forall \quad \alpha, \beta \in X.$

Proposition 3.12. Sanction XX be a commutative Td- algebra pleasurable $\alpha = 0 = \alpha \alpha = 0 = \alpha$, $\alpha \in X$, $\alpha \in X$. Let \mathcal{FF}

be as multiplier on XX. If $\alpha \in Ker(\mathcal{F})\alpha \in Ker(\mathcal{F})$ and $\beta \leq \alpha, \beta \leq \alpha$, then $\beta \in ker(\mathcal{F})\beta \in ker(\mathcal{F})$.

Proof: Let $\alpha \in ker \ ker \ (\mathcal{F}) \ \alpha \in ker \ ker \ (\mathcal{F})$ and $\beta \leq \alpha \beta \leq \alpha$. Then $\mathcal{F}(\alpha) = 0 \mathcal{F}(\alpha) = 0$ and $(\beta * \alpha) = 0$

$$\begin{aligned} (\beta * \alpha) &= 0\\ \text{Now} \ \mathcal{F}(\beta) &= \mathcal{F}(\beta * 0) = \mathcal{F}(\beta * (\beta * \alpha)) = \mathcal{F}(\alpha * (\alpha * \beta))\\ \mathcal{F}(\beta) &= \mathcal{F}(\beta * 0) = \mathcal{F}(\beta * (\beta * \alpha)) = \mathcal{F}(\alpha * (\alpha * \beta))\\ &= \mathcal{F}(\alpha) * (\alpha * \beta) = 0 * (\alpha * \beta) = 0 \qquad \qquad = \mathcal{F}(\alpha) * (\alpha * \beta) = 0 * (\alpha * \beta) = 0 \end{aligned}$$

So $\alpha \in ker (\mathcal{F}) \alpha \in ker (\mathcal{F})$

Theorem 3.13. Allow *XX* be a Td-algebra pleasant $\alpha = 0 = \alpha \alpha = 0 = \alpha$ for every $\alpha \in X\alpha \in X$. Let \mathcal{FF} be a multiplier

IJCRT2407578 International Journal of Creative Research Thoughts (IJCRT) <u>www.ijcrt.org</u> f27

on XX, which is likewise an endomorphism on XX. Then ker (\mathcal{F}) is a Td-perfect of XX.

Proof: Manifestly, $0 \in ker \ ker \ (\mathcal{F}) \ 0 \in ker \ ker \ (\mathcal{F})$. Therefore $ker \ (\mathcal{F})ker \ (\mathcal{F})$ is nonempty. let $\alpha * \beta \in ker \ ker \ (\mathcal{F}) \ \alpha * \beta \in ker \ ker \ (\mathcal{F})$ and

 $\beta \in ker (\mathcal{F})\beta \in ker (\mathcal{F})$. Then $\mathcal{F}(\beta) = 0\mathcal{F}(\beta) = 0$. Also $\mathcal{F}(\alpha * \beta) = 0 \mathcal{F}(\alpha * \beta) = 0$, which implies

$$0 = \mathcal{F}(\alpha) * \mathcal{F}(\beta) = \mathcal{F}(\alpha) * 0 = \mathcal{F}(\alpha) 0 = \mathcal{F}(\alpha) * \mathcal{F}(\beta) = \mathcal{F}(\alpha) * 0 = \mathcal{F}(\alpha)$$

Thus $\alpha \in ker \ (\mathcal{F}) \ . \alpha \in ker \ ker \ (\mathcal{F})$.

Let $\alpha \in ker \ ker \ (\mathcal{F}) \ \alpha \in ker \ ker \ (\mathcal{F})$ and $\beta \in X\beta \in X$. Then $\mathcal{F}(\alpha * \beta) = \mathcal{F}(\alpha) * \beta = 0 * \beta = 0$

$$\mathcal{F}(\alpha * \beta) = \mathcal{F}(\alpha) * \beta = 0 * \beta = 0$$

So $\alpha * \beta \in ker \ (\mathcal{F})\alpha * \beta \in ker \ (\mathcal{F})$. Hence $ker \ (\mathcal{F})ker \ (\mathcal{F})$ is a Td-ideal of XX .

Definition 3.14. Cause XX be a Td-algebra and \mathcal{FF} a multiplier on XX. Then the set

 $Fix(\mathcal{F}) = \{\alpha : \alpha \in X \text{ and } \mathcal{F}(\alpha) = \alpha\}Fix(\mathcal{F}) = \{\alpha : \alpha \in X \text{ and } \mathcal{F}(\alpha) = \alpha\}$ is called the set of fixed factors of \mathcal{FF} .

Proposition 3.15. If XX is a Td- algebra and \mathcal{FF} a multiplier on X. Then fix \mathcal{FF} is a sub algebra of X.

Proof: Because $\mathcal{F}(0) = 0\mathcal{F}(0) = 0$, so $Fix(\mathcal{F})Fix(\mathcal{F})$ is non-empty. Allow $\alpha, \beta \in Fix(\mathcal{F}).\alpha, \beta \in Fix(\mathcal{F}).$ Then

$$\mathcal{F}(\alpha) = \alpha, \mathcal{F}(\beta) = \beta \mathcal{F}(\alpha) = \alpha, \mathcal{F}(\beta) = \beta \text{ Thus } \mathcal{F}(\alpha * \beta) = \mathcal{F}(\alpha) * \beta = \alpha * \beta$$

 $\mathcal{F}(\alpha * \beta) = \mathcal{F}(\alpha) * \beta = \alpha * \beta$ so $\alpha * \beta \in Fix(\mathcal{F}) \alpha * \beta \in Fix(\mathcal{F})$. Hence $Fix(\mathcal{F})Fix(\mathcal{F})$ is a subalgebra of XX.

Definition 3.16. If XX be Td- algebra and f a multiplier on X. f is referred to as idempotent if $f^{\circ}f = f \cdot f^{\circ}f$ $f^{\circ}f = f \cdot f^{\circ}f$ can be denoted by means of $f^2 \cdot f^2$.

Theorem 3.17. let X be a wonderful implicative Td-algebra which satisfies $\alpha * 0 = \alpha \alpha * 0 = \alpha$ for every $\alpha \in X \alpha \in X$. If

 $\mathcal{F}_1, \mathcal{F}_2 \mathcal{F}_1, \mathcal{F}_2 \text{ is two idempotent multipliers on } XX$. If $\mathcal{F}_1 \circ \mathcal{F}_2 = \mathcal{F}_2 \circ \mathcal{F}_1$, then $\mathcal{F}_1 * \mathcal{F}_2$

 $\mathcal{F}_1 \circ \mathcal{F}_2 = \mathcal{F}_2 \circ \mathcal{F}_1$, then $\mathcal{F}_1 * \mathcal{F}_2$ is an idempotent multiplier on XX.

Proof: We know that, we get that $f_1 f_2 f_1 f_2$ is a multiplier on X. Now $((\mathcal{F}_1 * \mathcal{F}_2)^{\circ}(\mathcal{F}_1 * \mathcal{F}_2))(\alpha) = (\mathcal{F}_1 * \mathcal{F}_2)((\mathcal{F}_1 * \mathcal{F}_2)(\alpha)) = (\mathcal{F}_1 * \mathcal{F}_2)(\mathcal{F}_1(\alpha) * \mathcal{F}_2(\alpha))$

$$= \left(\mathcal{F}_1(\mathcal{F}_1(\alpha) * \mathcal{F}_2(\alpha))\right) * \left(\mathcal{F}(\mathcal{F}_1(\alpha) * \mathcal{F}_2(\alpha))\right)$$

$$= (\mathcal{F}_{1}(\mathcal{F}_{1}(\alpha) * \mathcal{F}_{2}(\alpha))) * (\mathcal{F}(\mathcal{F}_{1}(\alpha) * \mathcal{F}_{2}(\alpha)))$$

$$= ((\mathcal{F}_{1}^{\circ}(\mathcal{F}_{1})(\alpha) * \mathcal{F}_{2}(\alpha)) * ((\mathcal{F}_{2}^{\circ}\mathcal{F}_{1})(\alpha)\mathcal{F}_{2}(\alpha)))$$

$$= (\mathcal{F}_{1}(\alpha)\mathcal{F}_{2}(\alpha)) * (((\mathcal{F}_{1}^{\circ}\mathcal{F}_{2})(\alpha) * \mathcal{F}_{2}(\alpha)))$$

$$= (\mathcal{F}_{1}(\alpha)\mathcal{F}_{2}(\alpha)) * (((\mathcal{F}_{1}^{\circ}\mathcal{F}_{2})(\alpha) * \mathcal{F}_{2}(\alpha)))$$

$$= (\mathcal{F}_{1}(\alpha) * \mathcal{F}_{2}(\alpha)) * ((\mathcal{F}_{1}(\mathcal{F}_{2}(\alpha)\mathcal{F}_{2}(\alpha))))$$

$$= ((\mathcal{F}_{1} * \mathcal{F}_{2})(\alpha)) * ((\mathcal{F}_{1}(0)) = ((\mathcal{F}_{1} * \mathcal{F}_{2})(\alpha)) * 0$$

 $=(\mathcal{F}_1*\mathcal{F}_2)(\alpha).=(\mathcal{F}_1*\mathcal{F}_2)(\alpha).$

 $\mathcal{F}_{1} * \mathcal{F}_{2})((\mathcal{F}_{1} * \mathcal{F}_{2}) = f_{1} * \mathcal{F}_{2}(\mathcal{F}_{1} * \mathcal{F}_{2})((\mathcal{F}_{1} * \mathcal{F}_{2}) = f_{1} * \mathcal{F}_{2}. \text{Hence } f_{1} * \mathcal{F}_{2}f_{1} * \mathcal{F}_{2} \text{ is idempotent.}$

REFERENCES

[1] Y. Imai and K. Iseki, on axiom systems of propositional calculi XIV, Proc. Japan Acad 42 (1966), 19-22.

[2] K. Iseki, An algebra related with a propositional calculi, Proc. Japan Acad 42 (1966), 26-29

[3] Hu. Q. P and Lix: "On proper BCH-algebras", Math. Japan30(1985) (659-669)

[4] Lee. D. S and Rye. D. N: "Notes on topological BCK-algebras", Sci. Math. 2 (1998), 231-235.

[5] Iseki K and Tanaka S: "An introduction to theory of BCK-algebras", Math. Japan, 23(1978), 1-26.

[6] Muhammad Anwar Chaudhry and Faisal Ali "Multipliers in d-algebras" world Applied Science Journal 18(11): 1649-1653,2012.

[7] J. Neggers and H.S. Kim, on "d-algebras", Math. Slovaca 49 (1996), 19-26.

[8] Jansi. M and Thiruveni. V: "Topological structures on BCH-algebras", Vol.6, Issue 12, December 2017.