

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Sheffer's A - Type Generating Function On The Polynomial

Dr. Ram Kumar Sinha
Associate Professor in Mathematics, Ramchandra Chandravansi Institute of Technology, Bishrampur, Palamu, Jharkhand- 822132

Abstract

In this paper, some simple inequalities have been used to obtain some equation with summation $\mathrm{T}_{\mathrm{k}}(\mathrm{x})$ where the value of $k=0$ to $k=r s+s-1$, so $T_{r s+s-1}(x)$ is of degree rs exactly and that $T_{k}(x)$ is always of degree less than equal to rs which shows that $\left\{\emptyset_{n}(x)\right\}$ is of sheffer's $\mathrm{A}-$ type $\mathrm{rs}=\mathrm{m}$. This process the result to extend the theorem to the case when the generating function is of the form

A (t$) \psi[\mathrm{xH}(\mathrm{t})+\mathrm{g}(\mathrm{t})] \quad$ we develop the work of J. L. Goldbery [1]
Key Word:- Generating function, Degree, Polynomials , inequalities, Differential operator Introduction

1. Introduction:-

If a set of Polynomial $\left\{\phi_{n}(x)\right\}$ is defined by
(1.1)

$$
\left\{\begin{array}{l}
\sum_{n=0}^{\infty} \phi_{n}(x) t^{n}=A(t) \psi[x H(t)] \text { with } \\
\sum_{n=0}^{\infty} \psi_{n} t^{n}=\psi(t), \psi_{n} \neq 0, \sum_{n=0}^{\infty} a_{n} t^{n}=A(t), a_{0} \neq 0 \\
\text { and } \sum_{n=0}^{\infty} h_{n} t^{n+1}=H(t), h_{0} \neq 0,
\end{array}\right.
$$

then a necessary and sufficient condition for $\left\{\phi_{n}(x)\right\}$ to be Sheffer A-type $\mathrm{m}>\mathrm{o}$ has been proved by J.L. Goldberg [1].
The object of this paper is to extend the theorem to the case when the generating Function is of the form A (t) $\psi[\mathrm{xH}(\mathrm{t})+\mathrm{g}(\mathrm{t})]$.
2. Some results and theorems for a necessary and sufficient condition for $\left\{\phi_{n}(x)\right\}$ to be Sheffer A- type $\mathrm{m}>0$ has been proved by J. L. Goldberg [1].
Before providing the main theorem, let us first prove the following,
Theorem (1):- A necessary and sufficient condition that the set of polynomials $\left\{\phi_{n}(x)\right\}$ be of σ-type Zero with
2.1 $\quad \sigma \equiv D \prod_{i=1}^{q}\left[\left(x+\frac{g(t)}{H(t)}\right) D+b_{i}-1\right]$ is that $\phi_{n}(x)$ possesses the generating function in
2.2

$$
A(t) o^{F q}\left(-; b_{1}, b_{2}, \ldots ., b_{q} ; x H(t)+g(t)\right)=\sum_{n=0}^{\infty} \phi_{n}(x) t^{n}
$$

in which
2.3
$H(t) \sum_{n=0}^{\infty} h_{n} t,{ }^{n+1} h_{0} \neq 0, A(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, a_{0} \neq 0$
and
$g(t)=\sum_{n=0}^{\infty} g_{n} t^{n+2}$

Let us assume that (2.2) along with (2.3) is true. Then $\left\{\phi_{n}(x)\right\}$ is a simple set. The function $\mathrm{H}(\mathrm{t})$ has a formal inverse J (t) defined by $\mathrm{J}(\mathrm{H}(\mathrm{t}))=\mathrm{H}(\mathrm{J}(\mathrm{t}))=\mathrm{t}$, so that.
2.4
$\mathcal{J}(t)=\sum_{n=0}^{\infty} c_{n} t^{n+1}, c_{\circ} \neq 0, c_{n}$ are constants.
The function $y={ }_{0} f_{q}\left(-; b_{1}, \ldots \ldots, b_{q} ; z\right)$ is a solution of the differential equation,
2.5

$$
\left[\theta_{2} \stackrel{q}{I=1},\left(\theta_{2}+b_{i^{-1}}\right)-z\right] y=0 ; \theta_{2}=z \frac{d}{d z} .
$$

Taking $\mathrm{z}=[\mathrm{xH}(\mathrm{t})+\mathrm{g}(\mathrm{t})$ is is easy to show from (2.5) that
$J(\sigma) \sum_{n=0}^{\infty} \phi_{n}(x) t^{n}=\sum_{n=1}^{\infty} \phi_{n-1}(x) t^{n}$.
Therefore $\mathrm{J}(\sigma) \phi_{0}(x)=0$ and $J(\sigma) \phi_{n}(x)=\phi_{n-1}(x), n \leq 1$.
Hence $\left\{\phi_{n}(x)\right\}$ is of σ-type zero.
Next let us assume that $\left\{\phi_{n}(x)\right\}$ is of Sheffer σ - type zero and belongs to an operator $\mathrm{J}(\sigma)$ of the form (2.4).
Then the function $\mathrm{J}(\mathrm{t})$ has a formal inverse $\mathrm{H}(\mathrm{t})$ given by (2.3)
On the basis of the above assumptions the necessity part follows easily.
Now, let the set $\left\{\phi_{n}(x)\right\}$ be defined by
2.7

$$
\left\{\begin{array}{l}
\sum_{n=0}^{\infty} \phi_{n}(x) t^{n}=A(t) \psi[x H(t)+g(t)], \text { with } \\
\sum_{n=0}^{\infty} \psi_{n} t^{n}=\psi(t), \psi_{n} \neq 0, \sum_{n=0}^{\infty} a_{n} t^{n}=A(t), a_{\circ} \neq 0 \\
\sum_{n=0}^{\infty} h_{n} t^{n+1}=H(t), h_{\circ} \neq 0 \text { and } \sum_{n=0}^{\infty} g_{n} t^{n+2}=g(t) .
\end{array}\right.
$$

Theorem (2):- If $\left\{\phi_{n}(x)\right\}$ is defined by (2.7) then a necessary and sufficient condition for $\left\{\phi_{n}(x)\right\}$ to be sheffer Atype $m(>0)$ is that there exist a positive integer r. which divides m, and numbers $b_{1}, b_{2}, \ldots \ldots, b_{r}$; neither zero nor negative integers, such that
2.8 $\psi\left[\mathrm{xH}(\mathrm{t})+\mathrm{g}(\mathrm{t})=\mathrm{o}_{0} \mathrm{f}_{\mathrm{r}}\left[-; \mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{r}} ; \propto\{\mathrm{xH}(\mathrm{t})+\mathrm{g}(\mathrm{t})\}\right]\right.$

For some non-zero constant \propto, with $\mathrm{H}^{-1}(\mathrm{t})$ a polynomial of degree $\mathrm{s}=\frac{m}{r}$ exactly.
Since $\psi_{n} \neq 0(n \geq 0)$, so $\left\{\phi_{n}(x)\right\}$ is a simple set; say $\phi_{n}(\mathrm{x})=a_{n} x_{n}+\mathrm{O}\left(\mathrm{x}^{\mathrm{n}-1}\right), a_{n} \neq 0(n \geq 0)$.
Therefore there exist a unique differential operator $\mathrm{J}\left(\mathrm{x}_{1} \mathrm{D}\right)$ such that

$$
\begin{array}{r}
\mathrm{J}(\mathrm{x}, \mathrm{D}) \phi_{n}(\mathrm{x})=\phi_{n-1}(\mathrm{x}), \mathrm{n} \geq 1 \text { where } \\
J(x, D)=\sum_{n=0}^{\infty} T_{n}(x) D^{n+1}, D=\frac{d}{d x} \text { and }
\end{array}
$$

$$
\mathrm{T}_{\mathrm{n}}(\mathrm{x})=\mathrm{t}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}+\mathrm{O}\left(\mathrm{x}^{\mathrm{n}-1}\right) \text {, a polynomial of degree } \leq \mathrm{n} \text {. Since } a_{\circ} \neq 0 \text { we have } t_{\circ} \neq 0 .
$$

Let $\quad H^{-1}(t)$ be the formal power series inverse of $H(t)$.
Now, let us first assume that $\left\{\phi_{n}(x)\right\}$ is of sheffer A-type $\mathrm{m}>0$. Then from.

$$
\mathrm{J}(\mathrm{x}, \mathrm{D}) \phi_{n}(\mathrm{x})=\phi_{n-1}(x) \text { we have }
$$

$2.9 \mathrm{n} \propto_{n}\left\{t_{0}+(n-1) \mathrm{t}_{1}+\ldots+(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\mathrm{m}) \mathrm{t}_{\mathrm{m}}\right\}=\propto_{n-1}, n=1,2 \ldots \ldots$
obtained by equating coefficients $\mathrm{x}^{\mathrm{n}-1}$. (2.9) can be written as

$2.11 \alpha_{n}=\frac{\alpha_{o}}{C^{n} n!\prod_{k=1}^{r}\left(b_{k}\right)_{n}}, \quad\left(\mathrm{~b}_{\mathrm{k}}\right)_{\mathrm{n}}=\mathrm{b}_{\mathrm{k}}\left(\mathrm{b}_{\mathrm{k}}+1\right) \ldots\left(\mathrm{b}_{\mathrm{k}}+\mathrm{n}-1\right)$.
Also we have .

$$
\propto_{n}=a_{\circ} h_{\circ}{ }^{\mathrm{n}} \psi_{n} \text { which yields together with (2.11), }
$$

2.12

$$
\sum_{n=0}^{\infty} \phi_{n}(x) t^{n}=A(t) o^{F_{r}}\left[-; b_{1}, \ldots . b_{r} ; \propto\{x H(t)+g(t)\}\right], \propto=\left(C h_{\circ}\right)^{-1} \neq 0
$$

Now to show that $\mathrm{H}-1(\mathrm{t})$ is a polynomial in t of degree $\mathrm{s}\left(\frac{m}{r}=s\right)$.

$$
\left\{\phi_{n}(x)\right\} \quad \text { is } \sigma \text { - type zero with } \sigma \equiv D \prod_{k=1}^{r}\left\{\left(x+\frac{g}{H}\right) D+b_{k^{-1}}\right\} . \text { (follows from theorem } 1 \text {). }
$$

So, there exist a unique differential operator $\mathrm{J}^{*}(\sigma)$ such that
2.13

$$
J^{*}(\sigma) \phi_{n}(x)=\sum_{k=0}^{\infty} \gamma k\left\{D \prod_{i=1}^{r}\left(x+\frac{g(t)}{h(t)}\right) D+b_{i^{-1}}\right\}^{k+1} \quad \phi_{n}(x)=\phi_{n-1(x)(n=1,2, \ldots .)}
$$

Since $\mathrm{J}(\mathrm{x}, \mathrm{D})$ is unique so (2.13) can be rearranged in terms of powers of D into $\mathrm{J}(\mathrm{x}, \mathrm{D})$. Then $\mathrm{T}_{\mathrm{k}}(\mathrm{x})$ are of highest degree m if and only it $r s=m$.

Thus $\quad J^{*}(t)=\sum_{k=0}^{s-1} \gamma k t^{k+1}$.
But $\mathrm{H}^{-1}(\mathrm{t})=\mathrm{J}^{*}(\mathrm{t})$ (follows from theorem 1) and so $\mathrm{H}^{-1}(\mathrm{t})$ is a polynomial in t of degree $\mathrm{s}=\frac{m}{r}$ which proves the necessity.
Next let there exist a positive integer r which divides m and numbers $\mathrm{b}_{1}, \ldots . \mathrm{b}_{\mathrm{r}}$ such that (2.8) holds for some non-zero constant σ with $\mathrm{H}^{-1}(\mathrm{t})$ a polynomial of degree $\frac{m}{r}=\mathrm{s}$ exactly. Then we are to show that $\left\{\phi_{n}(x)\right\}$ is of sheffer A- type $\mathrm{m}>0$. From the above hypothesis $\left\{\phi_{n}(x)\right\}$ is of σ-type zero with

2.14

$$
\sigma \equiv D \prod_{k=1}^{r}\left\{\left(x+\frac{g}{H}\right) D+b_{k^{-1}}\right\} \text { Also Since } \mathrm{J}^{*}(\mathrm{t})=\mathrm{H}^{-1}(\mathrm{t}) \text {, so we have }
$$

$$
\begin{aligned}
& \sum_{k=0}^{s-1} \gamma k\left\{D \prod_{i=1}^{r}\left(\left(x+\frac{g}{H}\right) D+b_{i^{-1}}\right)\right\} \phi_{n}^{k+1}(x)=\sum_{k=0}^{r s+s-1} T_{k}(x) \\
& . D^{k+1} \phi_{n}(\mathrm{x})=\phi_{n-1}(x)(s \geq 1) \text { for } n=1,2, \ldots \ldots .
\end{aligned}
$$

CONCLUSION:-

From (2.14) $T_{\text {rss }+-1}(x)$ is of degree rs exactly and that $T_{k}(x)$ is always of degree $\leq r s$. This proves the necessary and sufficient condition for $\left\{\phi_{n}(x)\right\}$ to be of Sheffer A type $m>0$, Now Sheffer A type rs $=m$. The choice $g_{n}=0(n=1$, $2, \ldots \ldots$.) reduces the theorem (2) to that of J. L. Goldberg's theorems and results.

REFERENCES

1. Goldberg, J. L. - Proc. Amer, math. Soc. 77 (1966), PP. 170.
2. Rainville. E. D. - Special Functions, 1960.
3. J. M. Kaber - 1997
