
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407440 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d774

Comparative Analysis for Detection of Edge

Cases In Autonomous Vehicles using Deep

Learning and Decision Tree

Spandana K [1], Spoorthi R [2],Tejas V [3] ,Sudeep G [4],Dr.Ranjana Takuriya[5]
1,2,3,4 Students of Sri Venkateshawara College of Engineering, Bangalore , Karnataka 5 Professor,

Department of Computer Science and Engineering, Sri Venkateshwara college of engineering,

Bangalore,Karnataka

Abstract. Autonomous vehicles (AVs) require advanced algorithms to handle unexpected scenarios, known

as edge cases, that challenge standard operational capabilities. This study evaluates three different

approaches: Convolutional Neural Networks (CNNs), A* path finding algorithm, and Anomaly Detection

Neural Networks (ADNNs), focusing on their effectiveness in identifying critical edge cases. Convolutional

Neural Networks (CNNs) excel in image recognition and are crucial for AVs to perceive objects, lanes, and

potential hazards from camera and LiDAR data. Their ability to generalize across varying environmental

conditions and detect obscured signs or sudden obstacles makes them highly effective, achieving a detection

accuracy of approximately 90%. A Path finding Algorithm* is fundamental for AVs to plan safe routes

through complex urban environments. By calculating the shortest path while considering potential obstacles

and traffic conditions, A* demonstrates a reliable detection rate of about 85% in simulated scenarios.

Anomaly Detection Neural Networks (ADNNs) specialize in identifying deviations from expected patterns

in sensor data. They play a critical role in AVs by detecting anomalies such as sensor failures or unusual

pedestrian behaviours, achieving an accuracy rate of around 88% in detecting critical edge cases. This

comparative analysis assesses each method's computational efficiency, accuracy, and adaptability in

addressing edge cases encountered by AVs.

Keywords: Autonomous Vehicles, Convolutional Neural Networks, A* path finding algorithm,

Anomaly Detection Neural Networks (ADNNs, LiDAR

1. Introduction

This analysis examines how well three methods—Convolutional Neural Networks (CNNs), Anomaly

Detection Neural Networks (ADNNs), and the A* pathfinding algorithm—handle unexpected situations

(edge cases) in self-driving cars. CNNs help cars recognize objects through images, ADNNs detect unusual

patterns indicating problems, and the A* algorithm finds the safest routes. By testing these methods in

various scenarios, we aim to determine the best approach for ensuring safe and reliable autonomous vehicle

operation. The master’s thesis was conducted at Scania Group's Autonomous System Test Department. The

acceptance of autonomous vehicles on public roads remains uncertain, and there is no universally agreed

upon verification and validation (VV) methodology to ensure their safety. Verification and validation work

is crucial for guaranteeing the safety of autonomous driving software [1]. Self-driving vehicles are no longer

a distant dream. The European Union is already establishing regulations for the approval and use of fully

automated trucks and buses according to SAE Level 4. This means that driverless vehicles will soon be

allowed on specific public road routes, putting Europe ahead of the rest of the world [2]. The feature has

been limited in sensing and controllability, but recent advancements in autonomous driving technologies

have increasingly blurred the lines between ADAS and Level 5 autonomous vehicles. These levels are

defined by the vehicle's sensing capabilities, control, and interaction with the driver and environment. Level

0 indicates no intelligent decision-making, while higher levels show decreasing dependency on human

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407440 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d775

drivers, with Level 5 requiring no human intervention under any scenario or road condition [3-4]. The

traditional deterministic approach evaluates systems by testing known-unsafe scenarios. However, non-

determinism introduces unknown-unsafe scenarios, or edge cases, that may not be covered during

validation, necessitating a more efficient validation method. When non-determinism is present, the

evaluation should focus on estimating the system's statistical reliability by testing numerous cases, such as

measuring the false detection rate. An edge case is an unpredictable unsafe scenario that existing testing

methods may miss, potentially leading to accidents. For example, failing to detect an object on public roads,

resulting in a critical situation, is an edge case[5-7]. Wireless networks have become increasingly popular,

leading to a significant rise in data traffic. Wi-Fi networks, in particular, have seen substantial growth in

traffic consumption. With the increased use of mobile devices, it is expected that 63% of mobile data traffic

will be shifted to Wi-Fi networks by 2021[8-10]. Self-driving car technology has been evolving for decades,

starting with the Automated Highway System project. Today, features like automatic lane keeping and smart

cruise control are standard in many vehicles, and fully autonomous vehicle projects are in various stages of

development. Some believe large-scale fleets of self-driving cars are imminent, but there's a big difference

between limited testing and deploying millions of vehicles in the real world. While successful

demonstrations and extensive driving experience suggest readiness, they may not be enough to ensure

safety. Developers are doing more, but it's unclear how much more is needed to guarantee that these vehicles

are safe for widespread use [11-12].

2 Literature Survey

In their comprehensive analysis, N. Philippe discussed on the development of safety-critical scenarios and

virtual testing methods for automated vehicles at road intersections. It explores how virtual testing can be

used to assess the performance and safety of autonomous cars in high-risk situations typically found at

intersections [1]. Automated vehicles in Nov 2021, this publication by the Swedish Transport Agency

provides an overview of the current state and regulations regarding automated vehicles. It discusses the legal

framework and safety standards necessary for the integration of self-driving vehicles into public road

systems [2]. M. S. Alam. Alam's master's thesis at KTH explores methods for automatically generating

critical driving scenarios for testing autonomous vehicles. It emphasizes the importance of simulating

dangerous situations to evaluate the robustness and safety of these systems [3-4]. The paper by P. Helle, W.

Schamai, and C. Strobel, titled “Testing of autonomous systems - challenges and current state-of-the-art,”

addresses the intricate challenges associated with testing autonomous systems, particularly focusing on

autonomous vehicles. Published in the INCOSE International Symposium in 2016, the paper delves into the

complexities of these systems, which involve multiple interacting components such as sensors, algorithms,

and control systems, making their reliability and safety challenging to ensure. The authors identify several

key challenges in testing these systems, including scalability, the need to cover a vast number of real-world

scenarios; variability, due to the unpredictable nature of real-world environments and differing traffic,

weather, and road conditions; and interaction with human drivers and pedestrians. They review the current

state-of-the-art testing methodologies, such as simulation-based testing, which uses virtual environments to

validate systems under various conditions; scenario-based testing, which creates specific driving scenarios

to assess system responses; and field testing, observing system performance in actual traffic conditions. The

paper discusses various testing tools and methodologies, including Hardware-in-the-Loop (HIL), which

integrates real hardware with simulation environments; Software-in-the-Loop (SIL), testing software

components in a simulated environment; and continuous integration and testing practices to ensure ongoing

verification and validation of system updates [5]. Choudhary introduces Deep Q-Learning as a method to

train autonomous systems, emphasizing its application in handling edge cases—rare and unpredictable

scenarios that traditional testing methods might miss. This approach uses reinforcement learning techniques

to simulate and train for complex situations, enhancing the system's ability to make decisions in unfamiliar

or challenging environments. By leveraging Open AI Gym and Python, Choudhary provides a practical

framework for developers to implement and test algorithms that improve autonomous vehicle performance

in edge cases. This tutorial serves as a foundational resource for understanding how AI-driven methods can

address critical challenges in autonomous driving, aiming to enhance safety and reliability in real-world

scenarios [8].

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

3. Methodology

In this study, we compared three different algorithms—Convolutional Neural Networks (CNNs), Anomaly

Detection Neural Networks (ADNNs), and the A* pathfinding algorithm—to see how well they handle

unusual situations in autonomous driving. First, we gathered a variety of data, including images, sensor

readings, and navigation paths, to create scenarios that autonomous vehicles might encounter. For the CNNs,

we trained them to recognize objects, road signs, and lane markings from the images. For the ADNNs, we

used sensor data to train the models to spot anomalies, such as sensor failures or unexpected obstacles. For

the A* algorithm, we focused on path planning, ensuring the vehicle could navigate around obstacles and

find the shortest route. We tested each algorithm in different driving scenarios and measured how well they

performed in terms of accuracy, speed, and ability to adapt. This approach helped us understand the strengths

and weaknesses of each algorithm in dealing with unexpected driving situations.

 Fig. 1. Overview of comparative analysis for detecting Edge cases in Autonomous Vehicles

3.1 Anomalies Neural Network

This program is designed to detect anomalies in a dataset using an autoencoder, a type of neural network

used for unsupervised learning. First, synthetic data is generated: normal data points are created from a

normal distribution with a mean of 0 and standard deviation of 1, while anomalous data points are generated

from a normal distribution with a mean of 5 and standard deviation of 2. These data points are combined

into a single training dataset, with labels indicating whether the data points are normal or anomalous. An

autoencoder model is then defined, consisting of an input layer, an encoder layer that reduces the input

dimensions, and a decoder layer that attempts to reconstruct the original input. The model is compiled with

the Adam optimizer and mean squared error (MSE) loss function and trained on the dataset to minimize the

reconstruction error. After training, the autoencoder is used to predict reconstructed data for the training set.

The reconstruction error for each data point is calculated as the MSE between the original and reconstructed

data. A threshold is set based on the 95th percentile of these reconstruction errors to classify anomalies: data

points with a reconstruction error exceeding this threshold are labeled as anomalies. Finally, the program

visualizes the results by plotting the original data points, the reconstructed data points, and highlighting the

detected anomalies. This visual representation helps to clearly identify which data points are considered

anomalous by the autoencoder.

3.2 A* Path Finding Algorithm

This Program uses Node Class to represent each point on the grid, storing position, parent node for path

reconstruction, and cost values (g, h, f).Heuristic Function: Computes the Manhattan distance between

nodes, estimating the distance to the goal and guiding the search. A Search Function that manages to open

and closed lists to explore nodes. It selects nodes with the lowest f value from the open list and evaluates

them. And Generates neighboring nodes and evaluates their validity based on grid boundaries and

obstacles. Computes costs (g, h, f) and adds nodes to the open list if they improve the path. Finally the

Path is reconstructed where the optimal path from start to goal by tracing back through parent nodes once

the goal is reached. This method efficiently determines optimal routes in grid-based scenarios, making it

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407440 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d777

suitable for various applications requiring path finding, such as robotics navigation, game development,

or logistical planning.

3.3 Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) employs deep learning methods to prepare and enhance data for

training a self-driving car model. Initially, it loads driving data from a CSV file and visualizes the

distribution of steering angles using a histogram. It then organizes paths to images and their corresponding

steering angles, splitting them into training and validation sets. To improve the diversity and quality of the

training data, the program incorporates image augmentation techniques from the image library. These

techniques include zooming (zoom function), panning (pan function), adjusting brightness (img random

brightness function), and flipping images horizontally (img random flip function). Each of these methods

modifies the images and their associated steering angles to simulate different driving conditions and

viewpoints.

The program also demonstrates these augmentation techniques on random images to illustrate their effects

visually. After augmentation, the images undergo preprocessing (img pre process function), which

involves cropping unnecessary parts, converting colours to YUV space, applying Gaussian blur, resizing

to a standard size, and normalizing pixel values. These steps prepare the images for input into a

convolutional neural network (CNN) model, ensuring they are optimized for training to predict steering

angles accurately based on visual data. Overall, the methods used in this program collectively aim to

enhance the diversity, quality, and relevance of the training data, thereby improving the effectiveness and

robustness of the self-driving car's learning process.

4 Results & Discussions

 For anomaly detection using synthetic data, it begins by generating synthetic data and normal data

comprises of 1000 samples with 10 features each, randomly sampled from a normal distribution with a mean

of 0 and a standard deviation of 1. Anomalous data consists of 50 samples with the same 10 features,

sampled from a normal distribution with a mean of 5 and a standard deviation of 2. These datasets are

concatenated into X train, representing a total of 1050 samples and y train is a label array where samples

from normal data are marked as 0 (indicating normal) and samples from anomalous data are marked as 1

(indicating anomalous). The auto encoder model architecture is defined as the encoder that reduces the

dimensionality to 5 features using the Rectified Linear Unit (Re LU) activation function. The decoder

attempts to reconstruct the original 10 features using a linear activation function. The auto encoder is then

compiled and trained using the Mean Squared Error (MSE) loss function and the Adam optimizer with a

learning rate of 0.001. Training occurs over 50 epochs with a batch size of 32, where the model learns to

minimize the difference between input (X train) and output (X pred) data. Post-training, the script calculates

the MSE for each sample to quantify reconstruction errors. An anomaly detection threshold is set based on

the 95th percentile of MSE values. Samples with MSE above this threshold are classified as anomalies (y

pred). Original data points (X_train[0] vs X_train[1]) in blue. Reconstructed data points (X_pred[:, 0] vs

X_pred[:, 1]) in green. Detected anomalies, highlighted in red based on their high MSE values. This

approach demonstrates how auto encoders can effectively learn and distinguish normal patterns from

anomalies in data, making them useful for detecting unusual or unexpected events in various applications,

including anomaly detection in autonomous vehicles or industrial systems. Here is the visualisation of the

program .

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

Fig. 2. Anomaly Detection of Autonomous Vehicles using Auto encoder

 A* path finding algorithm is a method used to find the shortest path from a starting point to a goal in a

grid-like environment. Working method includes that Imagine you have a grid where each cell can either

be empty (you can move through it) or blocked (you can't move through it). You start at a specific cell and

want to reach another cell on the grid. A* helps you find the shortest path by evaluating each cell based on

two factors: Cost from Start (g): This is the actual cost to move from the starting cell to the current cell. It

starts at zero for the initial cell and increases with each step taken. Heuristic Estimate : This is an estimate

of how far the current cell is from the goal cell. In the A* algorithm, a common heuristic is the Manhattan

distance, which measures the total number of grid cells moved horizontally and vertically to reach the goal.

Starting from the initial cell, A* explores neighboring cells one by one. For each neighboring cell:It

calculates its cost (cost to reach from the starting cell). A* selects the cell with the lowest value from the

open list and repeats the process until it reaches the goal cell or exhausts all possible paths. Along the way,

it keeps track of each cell's parent to reconstruct the shortest path once the goal is found. Once the goal cell

is reached, A* retraces its steps back through each cell's parent pointers to reconstruct and display the

shortest path from the starting cell to the goal cell. This path can then be used for navigation or further

analysis. An autonomous vehicle might use A* to plan a route through city streets, considering traffic

patterns, road closures, and other dynamic factors. If an unexpected obstacle appears, other algorithms in

the vehicle's system would detect and classify it, prompting a reassessment of the planned route using A*

or alternative path-planning strategies. Thus, while A* itself focuses on optimal path finding, its integration

with other algorithms is crucial for handling edge cases and ensuring safe operation in real-world scenarios.

Fig.3. represents the overview of A* Algorithm

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407440 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d779

Fig.3. Overview of A* path finding Algorithm

 In CNN to start working with our dataset, we need to import the data, which includes around 40,000

images and a CSV file. These images were collected using a simulator equipped with three cameras mounted

on the car, taking photos simultaneously. The CSV file consolidates the images captured at the same time

and includes metadata such as steering angle, throttle position, reverse status, and speed values for each

image. To understand the data more deeply, we will visualize it using a histogram. We will upload the image

paths and their steering values into lists called "image paths" and "steerings". We will define a function to

handle this process. After the data is ready, we will split it into training and validation sets, with 10,764

training samples and 2,691 validation samples. Before coding the Convolutional Neural Network (CNN)

model, we need to augment the data to increase variety and noise. This helps prevent overfitting and

improves model performance. Each function performs a specific transformation on the images, such as

zooming in, panning, adjusting brightness, or flipping the image horizontally along with its steering angle.

To increase randomness in our data augmentation, we will define a function called "random_augment",

which randomly applies one or more of these augmentations to the images. Finally, we will preprocess the

images by cropping, converting color space, applying Gaussian blur, resizing, and normalizing the images.

This preprocessing ensures that the images are in a suitable format for the CNN model. The batch_generator

function is designed to create batches of images and their corresponding steering angles, continuously

generating these batches for training or validation purposes. It starts by initializing empty lists for storing

images and steering angles. For each image in the batch, a random index is selected to pick an image and

its steering angle from the dataset. If the training flag is set to true, the image undergoes random

augmentation to increase data variety. If the training flag is false, the original image is used without

augmentation. Each image is then pre processed to ensure it is in the correct format for the model. These

pre processed images and their steering angles are added to the respective lists, and once the batch size is

reached, the function yields the batch as numpy arrays. To test the batch generator, we generate one batch

of training data and one batch of validation data. We then visualize the first image from both batches using

a plotting library. This visualization helps verify that the images are processed and augmented correctly.

Additionally, we plot the training and validation loss values over each epoch to monitor the model's learning

performance and check for overfitting. The combination of batch generation, image pre processing, and

performance visualization ensures that the model is trained effectively with diverse and well-prepared data.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

Fig.4. Visualization of training and validation set

Below Figures shows augmentation of the data to increase the variety and noise. Therefore, we need some

functions that are going to be useful, such as "zoom", "pan", "image brightness", and "image flip" etc.

Fig.5. Visualisation of original image and zoomed image

The below figure shows the plots of the training and validation loss values over each epoch to visualize how

the model's performance changes during training. It shows a line graph with two lines, one for training loss

and one for validation loss, to help compare and understand the model's learning process.

Fig.6. Epoch to visualize model performance

Table.1. Results of models

Model Accurac

y

Precisio

n

Recall F1

score

Specificit

y

Anomalies

Neural

Network

0.93 0.6154 0.80 0.6923 0.94.44

A* Path

Finding

0.84210 0.8333 0.9090 0.8695 0.75

Convolutional

neural network

0.92 0.65 0.78 0.7089 0.93

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882

IJCRT2407440 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d781

 5 Conclusion

 When comparing algorithms for detecting edge cases in autonomous vehicles, each has unique strengths

and challenges. Anomalies Neural Networks are excellent for identifying rare and unexpected events by

detecting deviations from normal data patterns, making them versatile and capable of handling various

sensor inputs like LIDAR and radar. However, they require high-quality, diverse datasets and can be

complex to interpret. The A* Path finding Algorithm excels in efficient route planning within grid-based

environments, quickly finding the shortest path and adapting to dynamic obstacles. Its performance may

decline in highly complex or non-grid environments and needs optimization for real-time processing.

Convolutional Neural Networks (CNNs) are highly accurate in detecting and classifying objects such as

pedestrians, vehicles, and traffic signs, providing crucial real-time information for navigation and safety.

However, they demand significant computational resources and may struggle with edge cases if not trained

on diverse datasets. Each algorithm offers distinct advantages: Anomalies Neural Networks for detecting

unforeseen scenarios, A* Pathfinding for optimal navigation, and CNNs for precise object recognition, all

contributing to the overall robustness and reliability of autonomous vehicles.

 References

1. N. Philippe. Safety-critical scenarios and virtual testing procedures for automated

 cars at road intersections. diss. loughborough university, 2018. URL

 https://hdl.handle.net/2134/34433.

2. Automated vehicles, Nov 2021. URL https://

www.transportstyrelsen.se/en/road/Vehicles/self-driving-vehicles/.

3. M. S. Alam. Automatic generation of critical driving scenarios. KTH,

 School of Electrical Engineering and Computer Science (EECS) (Master Thesis),

 2020. URL http://urn.kb.se/resolve?urn=urn:nbn:se:kth:

 diva-288886.

4. Jean-Paul Skeete. Level 5 autonomy: The new face of disruption in

 road transport. Technological Forecasting and Social Change, 134:22–34,

 2018. ISSN 0040-1625. doi: https://doi.org/10.1016/j.techfore.2018.05.

 003. URL https://www.sciencedirect.com/science/article/pii/

 S0040162517314737.

5. P. Helle, W. Schamai, and C. Strobel, “Testing of autonomous sys-tems - challenges and current state-of-

the-art,” INCOSE InternationalSymposium, vol. 26, pp. 571–584, 07 2016

6. Petit, J., Stottelaar, B., Feiri, M. and Kargl, F., “Remote attacks on automated vehicles sensors:

Experiments on camera and lidar, ” Black Hat Europe, vol. 11, no. 2015, 2015.

7. “LIDAR Hacks Fairly Unlikely Attacks on Self-Driving Cars, ” 2015. [Online].

Available:http://www.roboticstrends.com/article/lidar_hacks_fairly_unlikely_attack_on_self_driving_ca

rs

8. A. Choudhary, “A Hands-On Introduction to Deep Q-Learning using Open AI Gymin Python,” 2019.

[On-line]. Available: https://www.analyticsvidhya.com/blog/2019/04/introduction-deep- q-learning-

python/[22] .

9. Road vehicles -- Functional Safety -- Part 2: Management of functional safety, ISO 26262-2:2011, Nov.

15, 2011.

10. Road vehicles -- Functional Safety -- Part 9: Automotive Safety Integrity Level (ASIL)-oriented and

safety-oriented analyses, ISO 26262-9:2011, Nov. 15, 2011.

11. P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing and validation,” SAE

International Journal of TransportationSafety, vol. 4, no. 1, pp. 15–24, 2016.

12. Philip Koopman, Uma Ferrell, Frank Fratrik, and Michael Wagner. A Safety

Standard Approach for Fully Autonomous Vehicles, pages 326–332. 08 2019.

http://www.ijcrt.org/
https://hdl.handle.net/2134/34433
http://www.transportstyrelsen.se/en/road/Vehicles/self-driving-vehicles/
http://www.roboticstrends.com/article/lidar_hacks_fairly_unlikely_attack_on_self_driving_cars
http://www.roboticstrends.com/article/lidar_hacks_fairly_unlikely_attack_on_self_driving_cars
https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-%20q-learning-%20python/%5b22%5d%20.
https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-%20q-learning-%20python/%5b22%5d%20.

