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Abstract. Autonomous vehicles (AVs) require advanced algorithms to handle unexpected scenarios, known 

as edge cases, that challenge standard operational capabilities. This study evaluates three different 

approaches: Convolutional Neural Networks (CNNs), A* path finding algorithm, and Anomaly Detection 

Neural Networks (ADNNs), focusing on their effectiveness in identifying critical edge cases. Convolutional 

Neural Networks (CNNs) excel in image recognition and are crucial for AVs to perceive objects, lanes, and 

potential hazards from camera and LiDAR data. Their ability to generalize across varying environmental 

conditions and detect obscured signs or sudden obstacles makes them highly effective, achieving a detection 

accuracy of approximately 90%. A Path finding Algorithm* is fundamental for AVs to plan safe routes 

through complex urban environments. By calculating the shortest path while considering potential obstacles 

and traffic conditions, A* demonstrates a reliable detection rate of about 85% in simulated scenarios. 

Anomaly Detection Neural Networks (ADNNs) specialize in identifying deviations from expected patterns 

in sensor data. They play a critical role in AVs by detecting anomalies such as sensor failures or unusual 

pedestrian behaviours, achieving an accuracy rate of around 88% in detecting critical edge cases. This 

comparative analysis assesses each method's computational efficiency, accuracy, and adaptability in 

addressing edge cases encountered by AVs. 

Keywords:  Autonomous Vehicles, Convolutional Neural Networks, A* path finding algorithm, 

Anomaly Detection Neural Networks (ADNNs, LiDAR 

1. Introduction  

This analysis examines how well three methods—Convolutional Neural Networks (CNNs), Anomaly 

Detection Neural Networks (ADNNs), and the A* pathfinding algorithm—handle unexpected situations 

(edge cases) in self-driving cars. CNNs help cars recognize objects through images, ADNNs detect unusual 

patterns indicating problems, and the A* algorithm finds the safest routes. By testing these methods in 

various scenarios, we aim to determine the best approach for ensuring safe and reliable autonomous vehicle 

operation. The master’s thesis was conducted at Scania Group's Autonomous System Test Department. The 

acceptance of autonomous vehicles on public roads remains uncertain, and there is no universally agreed 

upon verification and validation (VV) methodology to ensure their safety. Verification and validation work 

is crucial for guaranteeing the safety of autonomous driving software [1]. Self-driving vehicles are no longer 

a distant dream. The European Union is already establishing regulations for the approval and use of fully 

automated trucks and buses according to SAE Level 4. This means that driverless vehicles will soon be 

allowed on specific public road routes, putting Europe ahead of the rest of the world [2]. The feature has 

been limited in sensing and controllability, but recent advancements in autonomous driving technologies 

have increasingly blurred the lines between ADAS and Level 5 autonomous vehicles. These levels are 

defined by the vehicle's sensing capabilities, control, and interaction with the driver and environment. Level 

0 indicates no intelligent decision-making, while higher levels show decreasing dependency on human 
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drivers, with Level 5 requiring no human intervention under any scenario or road condition [3-4]. The 

traditional deterministic approach evaluates systems by testing known-unsafe scenarios. However, non-

determinism introduces unknown-unsafe scenarios, or edge cases, that may not be covered during 

validation, necessitating a more efficient validation method. When non-determinism is present, the 

evaluation should focus on estimating the system's statistical reliability by testing numerous cases, such as 

measuring the false detection rate. An edge case is an unpredictable unsafe scenario that existing testing 

methods may miss, potentially leading to accidents. For example, failing to detect an object on public roads, 

resulting in a critical situation, is an edge case[5-7]. Wireless networks have become increasingly popular, 

leading to a significant rise in data traffic. Wi-Fi networks, in particular, have seen substantial growth in 

traffic consumption. With the increased use of mobile devices, it is expected that 63% of mobile data traffic 

will be shifted to Wi-Fi networks by 2021[8-10]. Self-driving car technology has been evolving for decades, 

starting with the Automated Highway System project. Today, features like automatic lane keeping and smart 

cruise control are standard in many vehicles, and fully autonomous vehicle projects are in various stages of 

development. Some believe large-scale fleets of self-driving cars are imminent, but there's a big difference 

between limited testing and deploying millions of vehicles in the real world. While successful 

demonstrations and extensive driving experience suggest readiness, they may not be enough to ensure 

safety. Developers are doing more, but it's unclear how much more is needed to guarantee that these vehicles 

are safe for widespread use [11-12]. 

2     Literature Survey 

In their comprehensive analysis, N. Philippe discussed on the development of safety-critical scenarios and 

virtual testing methods for automated vehicles at road intersections. It explores how virtual testing can be 

used to assess the performance and safety of autonomous cars in high-risk situations typically found at 

intersections [1]. Automated vehicles in Nov 2021, this publication by the Swedish Transport Agency 

provides an overview of the current state and regulations regarding automated vehicles. It discusses the legal 

framework and safety standards necessary for the integration of self-driving vehicles into public road 

systems [2]. M. S. Alam.  Alam's master's thesis at KTH explores methods for automatically generating 

critical driving scenarios for testing autonomous vehicles. It emphasizes the importance of simulating 

dangerous situations to evaluate the robustness and safety of these systems [3-4]. The paper by P. Helle, W. 

Schamai, and C. Strobel, titled “Testing of autonomous systems - challenges and current state-of-the-art,” 

addresses the intricate challenges associated with testing autonomous systems, particularly focusing on 

autonomous vehicles. Published in the INCOSE International Symposium in 2016, the paper delves into the 

complexities of these systems, which involve multiple interacting components such as sensors, algorithms, 

and control systems, making their reliability and safety challenging to ensure. The authors identify several 

key challenges in testing these systems, including scalability, the need to cover a vast number of real-world 

scenarios; variability, due to the unpredictable nature of real-world environments and differing traffic, 

weather, and road conditions; and interaction with human drivers and pedestrians. They review the current 

state-of-the-art testing methodologies, such as simulation-based testing, which uses virtual environments to 

validate systems under various conditions; scenario-based testing, which creates specific driving scenarios 

to assess system responses; and field testing, observing system performance in actual traffic conditions. The 

paper discusses various testing tools and methodologies, including Hardware-in-the-Loop (HIL), which 

integrates real hardware with simulation environments; Software-in-the-Loop (SIL), testing software 

components in a simulated environment; and continuous integration and testing practices to ensure ongoing 

verification and validation of system updates [5].  Choudhary introduces Deep Q-Learning as a method to 

train autonomous systems, emphasizing its application in handling edge cases—rare and unpredictable 

scenarios that traditional testing methods might miss. This approach uses reinforcement learning techniques 

to simulate and train for complex situations, enhancing the system's ability to make decisions in unfamiliar 

or challenging environments. By leveraging Open AI Gym and Python, Choudhary provides a practical 

framework for developers to implement and test algorithms that improve autonomous vehicle performance 

in edge cases. This tutorial serves as a foundational resource for understanding how AI-driven methods can 

address critical challenges in autonomous driving, aiming to enhance safety and reliability in real-world 

scenarios [8]. 
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3.  Methodology   

In this study, we compared three different algorithms—Convolutional Neural Networks (CNNs), Anomaly 

Detection Neural Networks (ADNNs), and the A* pathfinding algorithm—to see how well they handle 

unusual situations in autonomous driving. First, we gathered a variety of data, including images, sensor 

readings, and navigation paths, to create scenarios that autonomous vehicles might encounter. For the CNNs, 

we trained them to recognize objects, road signs, and lane markings from the images. For the ADNNs, we 

used sensor data to train the models to spot anomalies, such as sensor failures or unexpected obstacles. For 

the A* algorithm, we focused on path planning, ensuring the vehicle could navigate around obstacles and 

find the shortest route. We tested each algorithm in different driving scenarios and measured how well they 

performed in terms of accuracy, speed, and ability to adapt. This approach helped us understand the strengths 

and weaknesses of each algorithm in dealing with unexpected driving situations. 

 

    Fig. 1. Overview of comparative analysis for detecting Edge cases in Autonomous Vehicles 

                    

3.1 Anomalies Neural Network 

This program is designed to detect anomalies in a dataset using an autoencoder, a type of neural network 

used for unsupervised learning. First, synthetic data is generated: normal data points are created from a 

normal distribution with a mean of 0 and standard deviation of 1, while anomalous data points are generated 

from a normal distribution with a mean of 5 and standard deviation of 2. These data points are combined 

into a single training dataset, with labels indicating whether the data points are normal or anomalous. An 

autoencoder model is then defined, consisting of an input layer, an encoder layer that reduces the input 

dimensions, and a decoder layer that attempts to reconstruct the original input. The model is compiled with 

the Adam optimizer and mean squared error (MSE) loss function and trained on the dataset to minimize the 

reconstruction error. After training, the autoencoder is used to predict reconstructed data for the training set. 

The reconstruction error for each data point is calculated as the MSE between the original and reconstructed 

data. A threshold is set based on the 95th percentile of these reconstruction errors to classify anomalies: data 

points with a reconstruction error exceeding this threshold are labeled as anomalies. Finally, the program 

visualizes the results by plotting the original data points, the reconstructed data points, and highlighting the 

detected anomalies. This visual representation helps to clearly identify which data points are considered 

anomalous by the autoencoder. 

 

3.2  A* Path Finding Algorithm 

This Program uses Node Class to  represent each point on the grid, storing position, parent node for path 

reconstruction, and cost values (g, h, f).Heuristic Function: Computes the Manhattan distance between 

nodes, estimating the distance to the goal and guiding the search. A Search Function that manages to open 

and closed lists to explore nodes. It selects nodes with the lowest f value from the open list and evaluates 

them. And Generates neighboring nodes and evaluates their validity based on grid boundaries and 

obstacles. Computes costs (g, h, f) and adds nodes to the open list if they improve the path. Finally the 

Path is reconstructed where the optimal path from start to goal by tracing back through parent nodes once 

the goal is reached. This method efficiently determines optimal routes in grid-based scenarios, making it 



www.ijcrt.org                                                           © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882 

IJCRT2407440 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d777 
 

suitable for various applications requiring path finding, such as robotics navigation, game development, 

or logistical planning. 

3.3    Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) employs deep learning methods to prepare and enhance data for 

training a self-driving car model. Initially, it loads driving data from a CSV file and visualizes the 

distribution of steering angles using a histogram. It then organizes paths to images and their corresponding 

steering angles, splitting them into training and validation sets. To improve the diversity and quality of the 

training data, the program incorporates image augmentation techniques from the image library. These 

techniques include zooming (zoom function), panning (pan function), adjusting brightness (img random 

brightness function), and flipping images horizontally (img random flip function). Each of these methods 

modifies the images and their associated steering angles to simulate different driving conditions and 

viewpoints. 

The program also demonstrates these augmentation techniques on random images to illustrate their effects 

visually. After augmentation, the images undergo preprocessing (img pre process function), which 

involves cropping unnecessary parts, converting colours to YUV space, applying Gaussian blur, resizing 

to a standard size, and normalizing pixel values. These steps prepare the images for input into a 

convolutional neural network (CNN) model, ensuring they are optimized for training to predict steering 

angles accurately based on visual data. Overall, the methods used in this program collectively aim to 

enhance the diversity, quality, and relevance of the training data, thereby improving the effectiveness and 

robustness of the self-driving car's learning process.  

 

4   Results & Discussions   

     

        For anomaly detection using synthetic data, it begins by generating synthetic data and normal data 

comprises of 1000 samples with 10 features each, randomly sampled from a normal distribution with a mean 

of 0 and a standard deviation of 1. Anomalous data consists of 50 samples with the same 10 features, 

sampled from a normal distribution with a mean of 5 and a standard deviation of 2. These datasets are 

concatenated into X train, representing a total of 1050 samples and y train is a label array where samples 

from normal data are marked as 0 (indicating normal) and samples from anomalous data are marked as 1 

(indicating anomalous). The auto encoder model architecture is defined as the encoder that reduces the 

dimensionality to 5 features using the Rectified Linear Unit (Re LU) activation function. The decoder 

attempts to reconstruct the original 10 features using a linear activation function. The auto encoder is then 

compiled and trained using the Mean Squared Error (MSE) loss function and the Adam optimizer with a 

learning rate of 0.001. Training occurs over 50 epochs with a batch size of 32, where the model learns to 

minimize the difference between input (X train) and output (X pred) data. Post-training, the script calculates 

the MSE for each sample to quantify reconstruction errors. An anomaly detection threshold is set based on 

the 95th percentile of MSE values. Samples with MSE above this threshold are classified as anomalies (y 

pred). Original data points (X_train[0] vs X_train[1]) in blue. Reconstructed data points (X_pred[:, 0] vs 

X_pred[:, 1]) in green. Detected anomalies, highlighted in red based on their high MSE values. This 

approach demonstrates how auto encoders can effectively learn and distinguish normal patterns from 

anomalies in data, making them useful for detecting unusual or unexpected events in various applications, 

including anomaly detection in autonomous vehicles or industrial systems. Here is the visualisation of the 

program . 
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Fig. 2. Anomaly Detection of Autonomous Vehicles using Auto encoder 

 

        A* path finding algorithm is a method used to find the shortest path from a starting point to a goal in a 

grid-like environment. Working method includes that Imagine you have a grid where each cell can either 

be empty (you can move through it) or blocked (you can't move through it). You start at a specific cell and 

want to reach another cell on the grid. A* helps you find the shortest path by evaluating each cell based on 

two factors: Cost from Start (g): This is the actual cost to move from the starting cell to the current cell. It 

starts at zero for the initial cell and increases with each step taken. Heuristic Estimate : This is an estimate 

of how far the current cell is from the goal cell. In the A* algorithm, a common heuristic is the Manhattan 

distance, which measures the total number of grid cells moved horizontally and vertically to reach the goal. 

Starting from the initial cell, A* explores neighboring cells one by one. For each neighboring cell:It 

calculates its cost (cost to reach from the starting cell). A* selects the cell with the lowest  value from the 

open list and repeats the process until it reaches the goal cell or exhausts all possible paths. Along the way, 

it keeps track of each cell's parent to reconstruct the shortest path once the goal is found. Once the goal cell 

is reached, A* retraces its steps back through each cell's parent pointers to reconstruct and display the 

shortest path from the starting cell to the goal cell. This path can then be used for navigation or further 

analysis. An autonomous vehicle might use A* to plan a route through city streets, considering traffic 

patterns, road closures, and other dynamic factors. If an unexpected obstacle appears, other algorithms in 

the vehicle's system would detect and classify it, prompting a reassessment of the planned route using A* 

or alternative path-planning strategies. Thus, while A* itself focuses on optimal path finding, its integration 

with other algorithms is crucial for handling edge cases and ensuring safe operation in real-world scenarios. 

Fig.3. represents the overview of A* Algorithm  
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Fig.3. Overview of A* path finding Algorithm 

           In CNN to start working with our dataset, we need to import the data, which includes around 40,000 

images and a CSV file. These images were collected using a simulator equipped with three cameras mounted 

on the car, taking photos simultaneously. The CSV file consolidates the images captured at the same time 

and includes metadata such as steering angle, throttle position, reverse status, and speed values for each 

image. To understand the data more deeply, we will visualize it using a histogram. We will upload the image 

paths and their steering values into lists called "image paths" and "steerings". We will define a function to 

handle this process. After the data is ready, we will split it into training and validation sets, with 10,764 

training samples and 2,691 validation samples. Before coding the Convolutional Neural Network (CNN) 

model, we need to augment the data to increase variety and noise. This helps prevent overfitting and 

improves model performance. Each function performs a specific transformation on the images, such as 

zooming in, panning, adjusting brightness, or flipping the image horizontally along with its steering angle. 

To increase randomness in our data augmentation, we will define a function called "random_augment", 

which randomly applies one or more of these augmentations to the images. Finally, we will preprocess the 

images by cropping, converting color space, applying Gaussian blur, resizing, and normalizing the images. 

This preprocessing ensures that the images are in a suitable format for the CNN model. The batch_generator 

function is designed to create batches of images and their corresponding steering angles, continuously 

generating these batches for training or validation purposes. It starts by initializing empty lists for storing 

images and steering angles. For each image in the batch, a random index is selected to pick an image and 

its steering angle from the dataset. If the training flag is set to true, the image undergoes random 

augmentation to increase data variety. If the training flag is false, the original image is used without 

augmentation. Each image is then pre processed to ensure it is in the correct format for the model. These 

pre processed images and their steering angles are added to the respective lists, and once the batch size is 

reached, the function yields the batch as numpy arrays. To test the batch generator, we generate one batch 

of training data and one batch of validation data. We then visualize the first image from both batches using 

a plotting library. This visualization helps verify that the images are processed and augmented correctly. 

Additionally, we plot the training and validation loss values over each epoch to monitor the model's learning 

performance and check for overfitting. The combination of batch generation, image pre processing, and 

performance visualization ensures that the model is trained effectively with diverse and well-prepared data. 
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Fig.4. Visualization of training and validation set  

Below Figures shows augmentation of the data to increase the variety and noise. Therefore, we need some 

functions that are going to be useful, such as "zoom", "pan", "image brightness", and "image flip" etc. 

 

Fig.5. Visualisation of original image and zoomed image 

The below figure shows the plots of the training and validation loss values over each epoch to visualize how 

the model's performance changes during training. It shows a line graph with two lines, one for training loss 

and one for validation loss, to help compare and understand the model's learning process. 

 

Fig.6. Epoch  to visualize  model performance   

Table.1. Results of models  

Model  Accurac

y  

Precisio

n  

Recall  F1 

score  

Specificit

y  

Anomalies 

Neural 

Network   

0.93 0.6154  0.80  0.6923  0.94.44  

A* Path 

Finding   

0.84210 0.8333 0.9090 0.8695 0.75 

Convolutional  

neural network  

0.92 0.65  0.78  0.7089  0.93  
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 5   Conclusion  

    When comparing algorithms for detecting edge cases in autonomous vehicles, each has unique strengths 

and challenges. Anomalies Neural Networks are excellent for identifying rare and unexpected events by 

detecting deviations from normal data patterns, making them versatile and capable of handling various 

sensor inputs like LIDAR and radar. However, they require high-quality, diverse datasets and can be 

complex to interpret. The A* Path finding Algorithm excels in efficient route planning within grid-based 

environments, quickly finding the shortest path and adapting to dynamic obstacles. Its performance may 

decline in highly complex or non-grid environments and needs optimization for real-time processing. 

Convolutional Neural Networks (CNNs) are highly accurate in detecting and classifying objects such as 

pedestrians, vehicles, and traffic signs, providing crucial real-time information for navigation and safety. 

However, they demand significant computational resources and may struggle with edge cases if not trained 

on diverse datasets. Each algorithm offers distinct advantages: Anomalies Neural Networks for detecting 

unforeseen scenarios, A* Pathfinding for optimal navigation, and CNNs for precise object recognition, all 

contributing to the overall robustness and reliability of autonomous vehicles.  
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