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I.Introduction 

 

     The concept of domination was introduced by Ore and Berge [5].  Let G be a finite, undirected connected 

graph with neither loops nor multiple edges.  A subset D of V(G) is a dominating set of G if every vertex in 

V − D is adjacent to at least one vertex in D.  The minimum cardinality among all dominating sets of G is 

called the domination number γ(G) of G.   For basic definitions and terminologies, we refer Harary [1].   

 

     For vertices u and v in a connected graph G, the detour distance D(u, v) is the length of longest u − v 

path in G.  A u − v path of length D(u, v) is called a u − v detour.  A subset S of V is called a detour set if 

every vertex in G lies on a detour joining a pair of vertices of S.  The detour number dn(G) of G is the 

minimum order of a detour set and any detour set of order dn(G) is called a detour basis of G.  These 

concepts were studied by chartrand [2].   

 

     A subset S of V is called an edge detour set if every edge in G lies on a detour joining a pair of vertices of 

S.  The edge detour number 𝑑𝑛1(𝐺) of G is the minimum order of its edge detour set and any edge detour set 

of order 𝑑𝑛1 is an edge detour basis.  A graph G is called an edge detour graph if it has an edge detour set.  

Edge detour graphs were introduced and studied by Santhakumaran and Athisayanathan [6].   

 

     A set S ⊆ V is said be relatively prime detour dominating set of a graph G if it is a detour set and a 

dominating set with at least two elements and for every pair of vertices u  and v  such that 

(deg(𝑢), deg(𝑣)) = 1.  The minimum cardinality of a relatively prime detour dominating set is called the 

relatively prime detour domination number of a graph G and is denoted by 𝛾𝑟𝑝𝑑𝑛(𝐺).  This concept were 

introduced by C. Jayasekaran and L.G. Binoja [3].   

 

     The helm graph 𝐻𝑛 is a graph obtained from wheel 𝑊𝑛 by attaching a pendent edge to each rim vertex.  It 

contains three types of vertices, the vertex of degree n called apex, n pendant vertices and n vertices of 

degree four.   

 

The complete bipartite graph 𝐾1,𝑝 is called a Star.  The vertex of degree p − 1 in 𝐾1,𝑃−1 is called its 

Center.   
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II.Relatively Prime Edge Detour Domination Number of Graphs 
 

Definition 2.1:  A set S ⊆ V is said to be relatively prime edge detour dominating set of a graph G if it is a 

edge detour set and a dominating set with at least two elements and for every pair of vertices u and v such 

that (deg(u), deg(v)) = 1.  The minimum cardinality of relatively prime edge detour dominating set is 

called the relatively prime edge detour domination number of a graph G and is denoted by 𝛾𝑟𝑝𝑒𝑑(𝐺).  If the 

relatively prime edge detour dominating sets does not exist then the relatively prime edge detour domination 

number is zero.   

 

Example 2.2:  S = {𝑣1, 𝑣3} is a edge detour dominating set.  Also, (deg(𝑣1), deg(𝑣3)) = 1.  Therefore, S is 

a relatively prime edge detour dominating set.  Hence, 𝛾𝑟𝑝𝑒𝑑(𝐺) = 2.    

 

 
Figure 2.1 

 

Theorem 2.3:   

Every end vertex of a graph G belong to every relatively prime edge detour dominating set of G.   

Proof:   

Every relatively prime edge detour dominating set is a dominating set of G.  Therefore, every end 

vertex of a graph G belongs to every relatively prime edge detour dominating set of G.   

 

Theorem 2.4:   

If G is a Path 𝑃𝑛 of order n ≥ 2, then 𝛾𝑟𝑝𝑒𝑑(𝑃𝑛) = {
2        𝑖𝑓 2 ≤ 𝑛 ≤ 4
3        𝑖𝑓 5 ≤ 𝑛 ≤ 7
0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

 

Proof: 

Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be a path 𝑃𝑛.   

 

Case 1:  2 ≤ n ≤ 4  

     Let S be an edge detour dominating set of 𝑃𝑛 .  By theorem 2.3, {𝑣1, 𝑣𝑛} ⊆ S.  Clearly {𝑣1, 𝑣𝑛} is a 

minimum edge detour dominating set of 𝑃𝑛  and (deg(𝑣1), deg(𝑣𝑛)) = 1 .  Therefore, S = {𝑣1, 𝑣𝑛}  is a 

minimum relatively prime edge detour dominating set.  Hence, 𝛾𝑟𝑝𝑒𝑑(𝑃𝑛) = 2.   

 

Case 2:  5 ≤ n ≤ 7  

     Sub case i):  If n = 5 and 6.  In this case, S = {𝑣1, 𝑣3, 𝑣𝑛} is a minimum edge detour dominating set.  

Also, (deg(𝑣1), deg(𝑣3)) = (deg(𝑣3), deg(𝑣𝑛)) = (deg(𝑣1), deg(𝑣𝑛)) = 1 .  Therefore, S  is a minimum 

relatively prime edge detour dominating set.  Hence, 𝛾𝑟𝑝𝑒𝑑(𝑃𝑛) = 3.   

Sub case ii):  If n = 7 .  S = {𝑣1, 𝑣4, 𝑣7}    is a minimum edge detour dominating set.  Also, 

(deg(𝑣1), deg(𝑣7)) = (deg(𝑣1), deg(𝑣4)) = (deg(𝑣4), deg(𝑣7)) = 1 .  Therefore, S  is a minimum 

relatively prime edge detour dominating set.  Hence, 𝛾𝑟𝑝𝑒𝑑(𝑃7) = 3.   

 

Case 3:  n ≥ 3  

     Since the dominating set of 𝑃𝑛 containing at least any two internal vertices 𝑣𝑖 , 𝑣𝑗  ;  3 ≤ i ≠ j ≤ n − 2 and 

(deg(𝑣𝑖), deg(𝑣𝑗)) = 2.  Therefore, relatively prime edge detour dominating set does not exist.  Hence, 

𝛾𝑟𝑝𝑒𝑑(𝑃𝑛) = 0.   

 

Theorem 2.5:    

If G is a Star 𝐾1,𝑛−1(𝑛 ≥ 3), then 𝛾𝑟𝑝𝑒𝑑(𝐺) = 𝑛 − 1.   
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Proof:   

          Let G be the Star 𝐾1,𝑛−1 with 𝑉(𝐾1,𝑛−1) = {𝑣, 𝑣𝑖 ∶  1 ≤ 𝑖 ≤ 𝑛 − 1} and  𝐸(𝐾1,𝑛−1) = {𝑣𝑣𝑖 ∶  1 ≤ 𝑖 ≤
𝑛 − 1}.   

          Let S  be the edge detour dominating set of G .  By theorem 2.3, {𝑣1, 𝑣2, . . . , 𝑣𝑛−1} ⊆ S .  Also, 

{𝑣1, 𝑣2, . . . , 𝑣𝑛−1} is a minimum edge detour dominating set of G and (deg(𝑣𝑖), deg(𝑣𝑗)) = 1 for i ≤ i ≠ j ≤

n − 1.  Therefore, S = {𝑣1, 𝑣2, . . . , 𝑣𝑛−1} is a minimum relatively prime edge detour dominating set.  Hence, 

𝛾𝑟𝑝𝑒𝑑(𝐺) = 𝑛 − 1.   

 

Theorem 2.6:   

If G is a Bistar 𝐵𝑚,𝑛, then 𝛾𝑟𝑝𝑒𝑑(𝐺) = 𝑚 + 𝑛.   

Proof:  

Let G = Bm,n  with 𝑉(𝐺) = {𝑣, 𝑣𝑖 , 𝑢, 𝑢𝑗 ∶  1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}  and  𝐸(𝐺) = {𝑢𝑣, 𝑢𝑢𝑗 , 𝑣𝑣𝑖 ∶  1 ≤

𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}.  Therefore, |𝑉(𝐺)| = 𝑚 + 𝑛.  Let S be a edge detour dominating set of G.  By theorem 

2.3, {𝑣𝑖 , 𝑢𝑗 ∶  1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} ⊆ S.  Clearly, {𝑣1, 𝑣2, . . . , 𝑣𝑚, 𝑢1, 𝑢2, . . . , 𝑢𝑛} itself is a minimum edge 

detour dominating set of G .  Also, (deg(𝑣𝑖), deg(𝑣𝑗)) = (deg(𝑢𝑥), deg(𝑢𝑦)) = (deg(𝑣𝑖), deg(𝑢𝑥)) =

1 ;  1 ≤ i ≠ j ≤ m, 1 ≤ x ≠ y ≤ n.  Therefore, S = {𝑣1, 𝑣2, . . . , 𝑣𝑚 , 𝑢1, 𝑢2, . . . , 𝑢𝑛} is a relatively prime edge 

detour dominating set.  Hence, 𝛾𝑟𝑝𝑒𝑑(𝐺) = 𝑚 + 𝑛.   

 

Theorem 2.7:   

If G is a Complete graph 𝐾𝑝(𝑝 ≥ 2), then 𝛾𝑟𝑝𝑒𝑑(𝐺) = {
2     𝑖𝑓 𝑝 = 2     
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.   

Proof:   

 

Case 1:  If p = 2.   

     Then, {𝑣1, 𝑣2} is the relatively prime edge detour dominating set and 𝛾𝑟𝑝𝑒𝑑(𝐺) = 2.   

 

Case 2:  If p > 2.   

     Every three element subset of V(Kp) is an edge detour dominating set.  Let S = {𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘}.  Since, any 

two vertices in  Kp is adjacent and deg(𝑣𝑖) = p − 1 for all 𝑖.  Also,  (deg(𝑣𝑖), deg(𝑣𝑗)) = (p − 1, p − 1) =

p − 1 = (deg(𝑣𝑖), deg(𝑣𝑘)) = (deg(𝑣𝑗), deg(𝑣𝑘)).  Therefore, {𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘} is not a relatively prime edge 

detour dominating set.  Hence,  𝛾𝑟𝑝𝑒𝑑(𝐺) = 0.   

 

Theorem 2.8:  If G is the complete bipartite graph 𝐾𝑚,𝑛 then,  

𝛾𝑟𝑝𝑒𝑑(𝐺) = {

2     𝑖𝑓 𝑚 = 𝑛 = 1 𝑎𝑛𝑑 (𝑚, 𝑛) = 1 𝑤ℎ𝑒𝑟𝑒 𝑚, 𝑛 ≥ 2
𝑛     𝑖𝑓 𝑚 = 1 ;  𝑛 ≥ 2    (𝑜𝑟)    𝑚   𝑖𝑓 𝑛 = 1 ;  𝑚 ≥ 2
0     𝑖𝑓 (𝑚, 𝑛) ≠ 1 𝑎𝑛𝑑 𝑚, 𝑛 ≥ 2                                     

 

Proof: 

     Let 𝐺 = 𝐾𝑚,𝑛 with bi-partition  𝑉1 = {𝑎1, 𝑎2, . . . , 𝑎𝑚} and  𝑉2 = {𝑏1, 𝑏2, . . . , 𝑏𝑛} and |𝑉(𝐺)| = 𝑚 + 𝑛.   

 

Case 1:  If m = n = 1, then G ≅ K2 and 𝛾𝑟𝑝𝑒𝑑(𝐺) = 2.   

 

Case 2:  If m = 1 and n ≥ 2 or n = 1 and m ≥ 2, then 𝐾𝑚,𝑛 = 𝐾1,𝑛 or 𝐾𝑚,1.  𝑣2 or 𝑣1 is a minimum edge 

detour dominating set of G.   

Hence, 𝛾𝑟𝑝𝑒𝑑(𝐺) = {
𝑛       𝑖𝑓  𝑛 ≥ 2, 𝑚 = 1

𝑚       𝑖𝑓  𝑚 ≥ 2, 𝑛 = 1  
 

 

Case 3:  m = n ≥ 2.  A minimum edge detour dominating set S = {𝑢𝑖, 𝑢𝑖+1, 𝑣𝑗} ;  (deg(𝑢𝑖), deg(𝑣𝑗)) =

(deg(𝑢𝑖+1), deg(𝑣𝑗)) = (m, n)  and (deg(𝑢𝑖), deg(𝑢𝑖+1)) = (m, m) ≠ 1 .  Therefore, S  is not a relatively 

prime edge detour dominating set.  Hence,  𝛾𝑟𝑝𝑒𝑑(𝐺) = 0.   

 

Theorem 2.9:   

If G is a Helm graph 𝐻𝑛, then 𝛾𝑟𝑝𝑒𝑑(𝐺) = 𝑛.   

Proof: 

         Let 𝑣1, 𝑣2, . . . , 𝑣𝑛−1, 𝑣1 be the cycle 𝐶𝑛.  Add a vertex 𝑣 which is adjacent to 𝑣𝑖  ;  1 ≤ i ≤ n − 1.  The 

resultant graph is the Wheel  𝑊𝑝.  For, 1 ≤ i ≤ n − 1 add 𝑢𝑖 which is adjacent to 𝑣𝑖.  The resultant graph is 
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the Helm graph 𝐻𝑛 .  Also, |𝑉(𝐺)| = 2n − 1 ;  deg(𝑣) = n − 1 ;  deg(𝑣𝑖) = 4 ;  deg(𝑢𝑖) = 1 for each i =
1, 2, . . . , n − 1.   

Let S = {v, u1, u2, . . . , un−1} .  Then, S  is a minimum edge detour dominating set of 𝐻𝑛 .  Also, 

(deg(𝑣), deg(𝑢𝑖)) = (n − 1, 1) = 1 ;  1 ≤ i ≤ n − 1  and (deg(𝑢𝑖), deg(𝑢𝑗)) = 1 ;  1 ≤ i ≠ j ≤ n − 1 .  

Therefore, S is a relatively prime edge detour dominating set.  Hence,  𝛾𝑟𝑝𝑒𝑑(𝐺) = 𝑛.   

 

 

Theorem 2.10:   

For n ≥ 2, 𝐶𝑛 ⊙ 𝐾1, then 𝛾𝑟𝑝𝑒𝑑(𝐶𝑛 ⊙ 𝐾1) = 𝑛.   

Proof:   

Let 𝑣1, 𝑣2, . . . , 𝑣𝑛, 𝑣1 be the cycle.  For 1 ≤ i ≤ n, add vertex 𝑢𝑖 which is adjacent to 𝑣𝑖 which is the 

graph 𝐶𝑛 ⊙ 𝐾1.  Therefore, |𝑉(𝐶𝑛 ⊙ 𝐾1)| = 2𝑛.  Also, deg(𝑢𝑖) = 1 and deg(𝑣𝑖) = 3.   

Let S = {𝑢1, 𝑢2, . . . , 𝑢𝑛} .  Then, S  is a minimum edge detour dominating set of 𝐶𝑛 ⊙ 𝐾1 .  Also, 

(deg(𝑢𝑖), deg(𝑢𝑗)) = 1 ;  1 ≤ i , j ≤ n.  Therefore, S is a minimum relatively prime edge detour dominating 

set.  Hence, 𝛾𝑟𝑝𝑒𝑑(𝐶𝑛 ⊙ 𝐾1) = 𝑛.   

 

Theorem 2.11:   

For n ≥ 2, 𝛾𝑟𝑝𝑒𝑑(𝑃𝑛 ⊙ 𝐾1) = 𝑛.   

Proof:   

Let 𝑣1, 𝑣2, . . . , 𝑣𝑛 be the path 𝑃𝑛.   Add a vertex 𝑢𝑖 which is adjacent to 𝑣𝑖 for 1 ≤ i ≤ n.  The resultant 

graph 𝑃𝑛 ⊙ 𝐾1, |𝑉(𝑃𝑛 ⊙ 𝐾1)| = 2𝑛.  Also, deg(𝑣1) = deg(𝑣𝑛) = deg(𝑢𝑖) = 2 ;  1 ≤ i ≤ n and deg(𝑣𝑗) =

3 ;  2 ≤ j ≤ n − 1.   

Let S be a edge dominating set of 𝑃𝑛 ⊙ 𝐾1.  By theorem 2.3, the end vertices {𝑢1, 𝑢2, . . . , 𝑢𝑛} itself is a 

minimum relatively prime edge detour dominating set.  Hence, 𝛾𝑟𝑝𝑒𝑑(𝑃𝑛 ⊙ 𝐾1) = 𝑛.   
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