ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

STRONG HOP STEINER DOMINATION IN GRAPHS

¹S. GOMATHI RADHA, ²K.RAMALAKSHMI, ³A. MAHALAKSHMI ¹M.Phil Scholar, ²Assistant Professor, ³Assistant Professor Department of Mathematics, Sri Sarada College for Women (Autonomous), Tirunelveli, Tamilnadu, India.

Abstract

Let G = (V, E) be a connected graph. A Steiner dominating set $S \subseteq V$ is said to be Strong hop steiner dominating set if every vertex $v \in V - S$ is strongly dominated by some $u \in S$ and for every vertex $v \in V - S$ there exists $u \in S$ such that d(u, v) = 2. The minimum cardinality of a strong hop steiner dominating set of G is its strong hop steiner domination number and is denoted by $\gamma_{sths}(G)$. In this paper, we determine the strong hopsteiner domination number of some special graphs. Some general properties satisfied by this concept are studied.

Keywords: Steiner dominating set, Hop dominating set, Strong dominating set, Strong hop steiner dominating set.

1.INTRODUCTION

A vertex in a graph G dominates itself and its neighbors. A set of vertices D in a graph G is a **dominating** set if each vertex of G is dominated by some vertex of D. The **domination number** $\gamma(G)$ of G is the minimum cardinality of a dominating set of G.

The concept of Steiner number of a graph was introduced by G. Chatrand and P. Zhang [2]. For a nonempty set W of vertices in a connected graph G, the **Steiner distance** d(W) of W is the minimum size of a connected subgraph of G containing W. Necessarily, each such subgraph is a tree and is called a Steiner tree with respect to W or a Steiner W-tree. It is to be noted that d(W) = d(u, v), when $W = \{u, v\}$. If v is an end vertex of a Steiner W-tree, then $v \in W$. Also if W is connected, then any Steiner W-tree contains the elements of W only. The set of all vertices of G that lie on some Steiner W-tree is denoted by S(W). If S(W) = V, then W is called a **Steiner set** for G. A Steiner set of minimum cardinality is a minimum Steiner set or simply a s-set of G and this cardinality is the **Steiner number s(G)** of G.

 $N(v) = \{ u \in V(G) : uv \in E(G) \}$ is called the neighborhood of the vertex v in G. A vertex v is an **extreme** vertex of a graph G if the subgraph induced by its neighbors is complete. If e = uv is an edge of a graph G with d(u) = 1 and d(v) > 1, then we call e a pendant edge, u a leaf or end vertex and v a support vertex.Each extreme vertex of a graph G belongs to every Steiner set of G. In particular, each end-vertex of G belongs to every Steiner set of G.

The concept of Steiner domination number of a graph was introduced by J. John et al., [4]. Let G be a connected graph. A set of vertices W in G is called a **Steiner dominating set** if W is both a Steiner set and a dominating set. The minimum cardinality of a Steiner dominating set of G is its **Steiner domination number** and is denoted by $\gamma_s(G)$. A Steiner dominating set of size $\gamma_s(G)$ is said to be a γ_s -set of G.

The concept of hop domination was introduced by Ayyaswamy and Natarajan [1]. A set $S \subseteq V$ of a graph G = (V, E) is a hop dominating set of G iffor every vertex $v \in V - S$ there exists $u \in S$ such that d(u, v) = 2.

The concept of strong domination was introduced by Sampathkumar and Pushpa Latha [5]. For a graph G and $uv \in E(G)$, we say *u* strongly dominates *v* if deg $(u) \ge deg(v)$. A subset S of V(G) is a **strong dominating set** (sd-set) if every vertex $v \in V - S$ is strongly dominated by some $u \in S$. The strong domination number $\gamma_{st}(G)$ is the minimum cardinality of a sd-set.

An Fire cracker F(m,n) is a graph obtained by the series of interconnected m copies of n stars by linking one leaf from each.A Ladder graph L_n is a graph defined by $L_n = P_n \times K_2$ where P_n is path with n vertices and \times denotes the Cartesian product and K_2 is a complete graph with two vertices.A Helm graph H_n is a graph obtained by attaching a single edge and node to each node of the outer circuit of wheel graph W_n .

2.STRONG HOP STEINER DOMINATION NUMBER OF A GRAPH

Definition 2.1Let G = (V, E) be a connected graph. A Steiner dominating set $S \subseteq V$ is said to be **Strong** hop steiner dominating set if every vertex $v \in V - S$ is strongly dominated by some $u \in S$ and for every vertex $v \in V - S$ there exists $u \in S$ such that d(u, v) = 2. The minimum cardinality of a strong hop steiner dominating set of G is its strong hop steiner domination number and is denoted by $\gamma_{sths}(G)$.

Example 2.2: For the graph G in Figure 2.1, $S = \{v_1, v_5, v_8, v_9\}$ is a minimum strong hop steiner dominating set of G so that $\gamma_{sths}(G) = 4$

figure 2.1

Observation 2.3:Each extreme vertex of a connected graph G belongs to every strong hop steiner dominating set.

Observation 2.4: If G is a connected graph of order n, then

 $2 \le \max\{\gamma_s(G), \gamma_h(G), \gamma_{st}\} \le \gamma_{sths}(G) \le n$

3.STRONG HOP STEINER DOMINATION NUMBER OF SOME STANDARD GRAPHS.

Theorem 3.1: For the complete graph K_n ($n \le 2$), $\gamma_{sths}(K_n) = n$.

Proof:

Since every vertex of a complete graph K_n ($n \le 2$) is an extreme vertex, the vertex set of K_n is the unique strong hop steiner dominating set of K_n .

Thus the strong hop steiner domination number, $\gamma_{sths}(K_n) = n$.

Theorem 3.2: Let $n \ge 5 \& k \ge 2$ be a positive integer, then for a path graph P_n ,

$$\gamma_{sths}(P_n) = \begin{cases} k+1, & \text{when } n = 3k-1 \text{ and } 3k+1\\ k+2, & \text{when } n = 3k \end{cases}$$

Proof:

Given $n \ge 5$ is a positive integer.

Let $V(P_n) = \{v_1, v_2, \dots, v_n\}$ so that it is of order n.

Here we consider two cases,

Case 1:

When n = 3k - 1 and n = 3k + 1, where k = 2,3,...

then $V(P_{3k-1}) = \{v_1, v_2, \dots, v_{3k-1}\}$ and $V(P_{3k+1}) = \{v_1, v_2, \dots, v_{3k+1}\}$ and it is of order 3k - 1 and 3k + 1 respectively.

To get minimum strong hop steiner dominating set of P_{3k-1} and P_{3k+1} .

Consider the set $S_1 = \{v_1, v_4, v_7, v_{10}, v_{13}, v_{16}, v_{19}, \dots, v_{3k+1}, \dots, v_n / n = 3k - 1 \text{ and } 3k + 1\}.$

=> The set S_1 is a steiner dominating set and also for every vertex $v_i \in V - S_1$ there exists $v_j \in S_1$ such that $d(v_i, v_j) = 2$ and also that every vertex $v_i \in V - S_1$ is strongly dominated by some $v_j \in S_1$.

Thus S_1 is a minimum strong hop steiner dominating set.

::
$$\gamma_{sths}(P_{3k-1}) = \gamma_{sths}(P_{3k+1}) = k + 1$$
, where k=2, 3,...

Case 2:

When n = 3k, where k = 2,3, ...

then $V(P_{3k}) = \{v_1, v_2, ..., v_{3k}\}$ and it is of order 3k.

To get minimum strong hop steiner dominating set of P_{3k} .

Here we consider two subcases,

Subcase 1:

When 3k is even,

Consider the set $S_2 = \left\{ v_1, v_4, \dots, v_{\left[\frac{3k}{2}\right]}, v_{\left[\frac{3k}{2}\right]+1}, \dots, v_{3k} \right\}$.

=> The set S_2 is a steiner dominating set and also for every vertex $v_i \in V - S_2$ there exists $v_j \in S_2$ such that $d(v_i, v_j) = 2$ and also that every vertex $v_i \in V - S_2$ is strongly dominated by some $v_j \in S_2$.

Thus S_2 is a minimum strong hop steiner dominating set.

 $\therefore \gamma_{sths}(P_{3k}) = k + 2$, when 3k is even.

Subcase 2:

When 3k is odd,

Consider the set $S_3 = \left\{ v_1, v_4, \dots, v_{\left[\frac{3k}{2}\right]-1}, v_{\left[\frac{3k}{2}\right]}, v_{\left[\frac{3k}{2}\right]+1}, \dots, v_{3k} \right\}.$

=> The set S_3 is a steiner dominating set and also for every vertex $v_i \in V - S_3$ there exists $v_j \in S_3$ such that $d(v_i, v_j) = 2$ and also that every vertex $v_i \in V - S_3$ is strongly dominated by some $v_j \in S_3$.

Thus S_3 is a minimum strong hop steiner dominating set.

 $\therefore \gamma_{sths}(P_{3k}) = k + 2, \text{ when } 3k \text{ is odd.}$

Hence in both the subcase, $\gamma_{sths}(P_{3k}) = k + 2$ where k=2,3,...

$$\therefore \gamma_{sths}(P_n) = \begin{cases} k+1, & when \ n = 3k - 1 \ and \ 3k + 1 \\ k+2, & when \ n = 3k \end{cases}$$

Illustration:

1) For the path graph P_5 in the figure 3.1, $S_1 = \{v_1, v_4, v_5\}$ so that $\gamma_{sths}(P_5) = 3$.

2) For the path graph P_6 in the figure 3.2, $S_2 = \{v_1, v_3, v_4, v_6\}$ so that $\gamma_{sths}(P_6) = 4$.

3) For the path graph P_7 in the figure 3.3, $S_3 = \{v_1, v_4, v_7\}$ so that $\gamma_{sths}(P_7) = 3$.

figure 3.3

Corollary 3.3: For the path graph P_n ($n \ge 5$), the end vertices belongs to the strong hop steiner dominating set.

Observation 3.4: For any $n \ge 2$, $\gamma_{sths}(K_{1,n}) = n + 1$.

4. STRONG HOP STEINER DOMINATION NUMBER OF SOME SPECIAL GRAPHS.

Theorem 4.1: Let $m \ge 2$, $n \ge 4$ be a positive integer. For a fire cracker graph F(m,n),

$$\gamma_{sths}(F(m,n)) = m(n-1)$$

Proof:

Given: $m, n \ge 2$ be a positive integer

Let $V(F(m, n)) = \{v_1, v_2, ..., v_m\} \cup \{v_{ij}/i = 1, 2, ..., m; j = 1, 2, ..., n - 1\}$ and it is of order *mn*.

Consider the set $S = \{v_1, v_2, \dots v_m\},\$

We observe that any vertex in V - S is adjacent with at least one vertex of S.

 \therefore S is the minimum dominating set.

But S is not a strong hop steiner dominating set.

Let $W = \{v_{ij} | i = 1, 2, ..., m; j = 2, ..., n - 1\}$ is the set of all pendant vertices and it is of order n-1.

Since every end vertex is an extreme vertex, W is the set of all extreme vertices.

To get a minimum strong hop steiner dominating set of F(m, n),

Consider the set $S_1 = \{v_1, v_2, \dots, v_m\} \cup W$

 $=>S_1$ consists of all extreme verteices.

By observation 2.3, S_1 is the minimum hop steiner dominating set, and also that every vertex belongs to $V - S_1$ is strongly dominated by some vertex belongs to S_1 .

 $\therefore \gamma_{sths}(F(m,n)) = |S_1| = m(n-1).$

 $\therefore \gamma_{sths}(F(m,n)) = m(n-1).$

Illustration:

For the fire cracker graph F(3,4), in the figure 4.1, $S_1 = \{v_1, v_2, v_3, v_{12}, v_{13}, v_{22}, v_{23}, v_{32}, v_{33}\}$ so that $\gamma_{sths}(F(3,4)) = 9$.

Figure 4.1

Theorem 4.2: Let $n \ge 7$ be a positive integer. The Ladder graph L_n has same hop steiner domination number for the set of five consecutive ladder graph.

$$\gamma_{sths}(L_{5k-3}) = \gamma_{sths}(L_{5k-2}) = \gamma_{sths}(L_{5k-1}) = \gamma_{sths}(L_{5k}) = \gamma_{sths}(L_{5k+1}) = m + 5$$

where m is a $(k-1)^{\text{th}}$ odd numbers.

Proof:

Given $n \ge 7$ is a positive integer.

Let m be the (k-1)th odd number

Let $V(L_n) = \{v_{i,1}, v_{i,2}, \dots, v_{i,n} / i = 1, 2; n = 1, 2, 3, \dots\}$ so that it is of order 2*n*.

To get a minimum strong hop steiner dominating set of L_n ,

Consider the set $S_1 = \{v_{i,1}, v_{i,6}, v_{i,11}, v_{i,16}, v_{i,21}, v_{i,26}, \dots, v_{i,n}/i = 1,2; k = 2,3, \dots\}$

=> The set S_1 is a steiner dominating set and also for every vertex $v_i \in V - S_1$ there exists $v_j \in S_1$ such that $d(v_i, v_j) = 2$ and every vertex $v_i \in V - S_1$ is strongly dominated by some $v_j \in S_1$

Thus S_1 is a minimum strong hop steiner dominating set.

$$\frac{\cdot \gamma_{sths}}{L_n} = |S_1| = m + 5.$$

$$\therefore \gamma_{sths}(L_{5k-3}) = \gamma_{sths}(L_{5k-2}) = \gamma_{sths}(L_{5k-1}) = \gamma_{sths}(L_{5k}) = \gamma_{sths}(L_{5k+1}) = m + 5,$$

where m is a $(k-1)^{th}$ odd numbers.

Illustration:

For the Ladder graph L_7 , in the figure 4.2, $W_3 = \{v_{11}, v_{21}, v_{16}, v_{26}, v_{17}, v_{27}\}$ so that $\gamma_{trs}(L_7) = 6$.

REFERENCE:

[1] M. Aouchiche and P. Hansen, A Survey of Nordhaus Gaddum type relation, Discrete Applied Mathematics, 161 (2013), 466-546.

[2]. G. Chartand and P. Zhang, "The Steiner Number of a Graph", *Discrete Mathematics*, Vol. 242, pp. 41-54, 2002.

[3] G. Chartrand, F. Harary, M. Hossain and K. Schultz, Exact 2-step domination in graphs, Mathematica Bohemica, 120(2): 125-134, 1995.

[4]. J. John, G. Edwin and P. Sudhahar, "The Steiner Domination number of a graph", *International Journal of Mathematics and Computer application Research*, Volume 3, Issue 3, pp.37-42, 2013.

[5]. E. Sampathkumar and L. Pushpa Latha, Straong weak domination and domination balance in a graph, Discrete Mathematics, Vol. 161, (1996), 235-242.