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Abstract— A few wearable technologies that take advantage of on- 

body acceleration sensors have been put forth to identify Freezing of Gait 

(FoG) in Parkinson Disease (PD) patients. These devices produce a 

series of rhythmic stimuli in response to the detection of a FoG event, 

enabling the patient to resume the march. Although these methods work 

well at identifying FoG occurrences, they cannot foresee FoG in order 

to stop it from happening. To bridge the gap, a machine learning-based 

method for classifying accelerometer data from Parkinson's disease 

patients is presented in this study. It can identify a pre-FOG phase, 

which helps to further predict the onset of FoG ahead of time. 

Three tri-axial accelerometer sensors—one each on the back, hip, and 

ankle—were used to track the subject's gait. The raw accelerometer data 

was then windowed and non-linear dimensionality reduced to extract 

gait features. Three groups of events (pre-FoG, no-FoG, and FoG) were 

utilized to categorize gait using the k-nearest neighbor method (k-NN). 

The suggested solution's accuracy was evaluated against cutting-edge 

methods. Our research demonstrated that: (i) we were able to detect FoG 

with performances that were better than those of the state-of-the-art 

methods; (ii) we were able to predict FoG by identifying the pre-FoG 

events with an average sensitivity and specificity of, respectively, 

94.1% and 97.1%; and (iii) our algorithm could be used on devices with 

limited resources for the first time in the literature. upcoming uses 

comprise Index Terms—freezing of gait, wearable device, 

accelerometer, explainable machine learning, classification. 

I. INTRODUCTION 

Parkinson’s disease (PD) is the second most common 

neurodegenerative disorder. Falls are the most disabling 

complications of advanced PD leading to increased risk of 

hospitalization, immobilization, comorbidity and disability, 

[1]. Among PD patients, 35-90% fall once a year, and 18-65% 

fall repeatedly (range:4.7-67.7 falls/person/year) [2]. At least 

20% of falls can be attributed to a single PD symptom, known 

as freezing of gait (FoG), which affects around 50% of patients 

[3]. FoG is an episodic gait disturbance lasting up to 30’’ with 

different phenomenology that ranges from complete sudden 

akinesia to milder leg trembling or short shuffling steps 

events, usually described by patients as feeling the feet stuck 

to the floor [4]. FoG is a poorly recognized symptom, because 

of its episodic nature, the bias in the interpretation and report of 

this symptom by patients, and the need of an observer [5]. 

Different treatment strategies have been proposed for FoG, but 

the results are controversial, and evidence of efficacy still 

limited [6]. A minority of patients with FoG respond to 

levodopa, monoamine oxidase inhibitors, deep brain 

stimulation and levodopa-carbidopa intestinal gel, but often 

FoG is caused/worsened by treatment or drug-resistant [7]. 

The high incidence of FoG and the difficulties in its 

assessment and treatment by standard clinical methods have 

led to investigate wearable devices and machine learning 

algorithms [8]. Most of them deal with recognizing FoGevents 

by building on top of offline datasets gathered from thepatients 

through wearable devices equipped with different sensors, 

e.g., accelerometers [9,10], gyroscopes [11], EEG sensors 

[12,13], EMG [13,14], and force and bending sensors[15]. 

These solutions are primarily devoted to study FoG features. 

In some cases, the devices provide patients with rhythmic 

visual, sensory or auditory stimuli upon FoG detection [8,16] 

to reduce its duration. This approach builds on the observation 

that PD patients more easily exit FoG whenthey are externally 

stimulated with a Rhythmic Auditory Stimulation (RAS), 

which focuses the attention during movement [17]. 

Different statistical methods have been investigated to 

increase accuracy of FoG recognition. They include the use 

statistical features over raw sensor signals [18], and the 

freezing index, i.e., the ratio between FoG and no-FoG 

frequency bands [9]. Approaches based on Inertial 

Measurement Unit (IMU) incorporating accelerometer, 

magnetometer and gyroscope sensors [10,11], and using 

different recognition algorithms (i.e. Random Forest, C4.5, 

Naive Bayes, k-NN, Logistic Regression and Support Vector 

Machine (SVM) [18,19,20] or Deep Learning approaches [11, 

21]. High levels of accuracy, and short lag times in FoG and 

pre-FoG detection are key features in this field. A recent 

comprehensive review on performances of wearable sensors 

to detect FoG detection reported 73–100% sensitivity and 67– 

100% specificity [22]. 

While several studies focused on FoG detection, only a small 

number of them assessed pre-FoG recognition. A 

methodology to detect FoG, pre-FoG and no-FoG was 

proposed with 94% accuracy [23]. Furthermore, t-Distributed 

Stochastic Neighbour Embedding (t-SNE) was proposed as 

feature projection algorithm and tested on different machine 

learning models obtaining balanced accuracies of 91%, 90% 

and 82% for FoG, pre-FoG and no-FoG detection, 
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for a wearable system. The future application will be to 

P 

respectively [24]. Other studies based on datasets gathered 

through inertial sensors on the feet and back achieved average 

precision of 83% and recall of 67% [10], while a deep learning 

approach based on the data collected by a single IMU device 

located on the patient’s waist achieved 90% of geometric 

mean between precision and recall [11]. Other approaches to 

detect pre-FoG [25, 26] were based on the recognition of EEG 

pattern [27], the analysis of data gathered by wearable sensors 

[10], electrocardiography and skin-conductance [12,18]. Two 

novel algorithms for FoG prediction, based on the DAPHNET 

dataset and tested on neural network model [23] and a pool of 

machine learning models [24] were also proposed. 

exIencsuutemdmoanryr,eosonulyrcfee-wcotnescthraniinqeudesdheavviceebs,eetnhupsrobpeoinsegdsfuoirted 

predicting pre-FoG patterns in gathered data, and more 

research is necessary on this topic. In addition, almost all the 

methods mentioned above run on a server instance, because of 

the complexity of the pattern recognition and feature 

extraction algorithms, which require high computational 

resources to achieve high sensitivity and specificity, 
hampering their use on small wearable devices. Because of 

combination of features that separates samples of different 

classes. LDA is more effective than PCA when it comes to 

multi-class problem, but it requires to know in advance the 

label of each training data [29]. 

4) kernel LDA (kLDA) is a kernel-based version of LDA. 

Using the kernel substitution, LDA is performed in a new 

feature space, which allows non-linear mappings to be learned 

[30]. 

B. Classification 

To determine which class in a pool of classes best explains 

a new observation, standard classification quantities are used. 

It is the most popular machtirnuee pl eoas ri tni vine+g  profcaelsses,paonsidtivfeeature 

extraction is crucial to its success. Typically, it begins with a 
true positive 

training phase in which a classification algorithm uses a 
training set of D-dimensional data to develop a classifier. Each 

training sample in supervised classification has a class-label 

characteristic that indicates the class to which it belongs. Next, 

a test D-dimensional input sample that has not yet been viewed 

is utilized to predict the class label using the trained classifier.. 

The most common classification quality metrics are [31]: 

 

these limitations, we present a new approach, based on 
Precision = P 

P 
true  positive

 

wearable devices and machine learning algorithms to detect 

 
FoG, pre-FoG and no-FoG in PD patients and that can be 

 

Recall = P 

P 

P false negative 

Specificity = P 
develop an on-demand cueing device to help PD patients to 

overcome FoG and prevent falls. F 1 — 

true Pp o si t i v e  

false pPo s i t i v e+ true negative 
precisiotnrurecnaellgative 
precision+recall 

The rest of the paper is organized as follows. Section II 

introduces preliminary concepts. Section III details the study 

protocol and presents the technical details of the proposed 

methodology. Section IV describes the experimental results, 

including the characteristics of study population. Results are 

then further discussed in Section V. Finally, Section VI draws 

the conclusions with the proposal of future work. 

II. PRELIMINARIES ON MACHINE LEARNING 

A. Feature extraction 

In most classification pipelines, raw data are typically pre- 

processed to project them into different feature spaces where 

classification is made easier (typically, linear). This pre- 

processing stage is known as feature extraction [28]. The most 

used algorithms for feature extraction are summarized in the 

next paragraphs. 

1) Principal Component Analysis (PCA) is the most 

common technique for reducing the dimensionality of a large 

set of possibly correlated features [28]. It consists of a roto- 

translation of the original vector feature space, obtaining anew 

set of bases aligned with the most data variation. The reduction 

consists in projecting the data on a subset of these bases, 

retaining less features than the original ones. 

2) kernel PCA (kPCA) uses the theory of the positive 

definite kernel and reproducing kernel Hilbert space [28] for 

doing (implicitly) PCA on data projected in an infinite- 

dimensional space. The result in the original feature space is a 

non-linear projection way more effective that the original 

PCA, with the additional cost of choosing a proper kernel and 

its parameterization. 

3) Linear Discriminant Analysis (LDA) is a generalization 

of the Fisher’s linear discriminant, a method to find a linear 

wh e⇥r e  precision and recall (also known as sensitivity) measure 

how much the classifier is capable of avoiding false positives, 

and is capable to correctly classify all of the samples of aclass, 

respectively, while specificity and F1-Score measure the 

classifier ability to correctly classify true negatives and the 

harmonic average of precision and recall, respectively. 

III. STUDY PROTOCOL 

The proposed approach addresses the application scenario 

showed in Figure 1. The patient’s gait is monitored by three 

tri-axial accelerometer sensors worn on his/her back, hip and 

ankle. Features are then extracted from the accelerometer’s 

raw data through data windowing and non-linear 

dimensionality reduction. A k-nearest neighbor algorithm (k- 

NN) [28] is finally used to classify patient’s gait in three 

classes of events: pre-FoG, no-FoG and FoG. To address this 

scenario, we developed a workflow composed of two main 

phases: 1) offline training data pre-processing and 2) on 
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Figure 2. Detailed workflow of the offline pre-processing phase. 

device real-time classification, described in detail below. 

A. Offline training data pre-processing 

The input data is constituted by raw values gathered during 

patient’s gait from three accelerometers. In particular, the 

atomic entity of the input is the record, i.e., a vector composed 

of 9 elements (3 per each accelerometer) measuring the 

acceleration of the patient in a specific instant with respect to 

the three axes of a Euclidean space. The number n of records 

in a given interval depends on the accelerometer sampling rate. 

Thus, the input dataset is as a matrix M with n rows and 9 

columns. The final goal is to set up a classification method 

exploiting the k-NN algorithm on time windows, capable of 

 

forecasting when a FoG event is going to happen, i.e., 

is generated from W by extracting 129 statistical features per 

each row of W. Thus, the size of S is m×129. The extracted 

features are similar to those used in a previous study [12], e.g., 

variance, mode, standard deviation, maximum and minimum 

values of raw data. 

2) Data cleaning and preparation: Subsequently, the 

normalization of the values in W and S takes place. A unity- 

based normalization [32] is carried out over the elements of 

both W and S. The goal is to re-scale the values of W and M 

into the range [0, 1] by using equation 1, where X is a generic 

element of the matrix, while Xmin and Xmax are the minimum and 

the maximum value in the matrix: 

 
 X — Xmin 

detecting what we call a pre-FoG event. 

The raw data included in the training matrix M are pre- 

X0 = X  
max — Xmin 

(1) 

 

processed to generate two alternative datasets: a windowed 

dataset W, and a statistical feature dataset S. The pre- 

processing phase performs a data vectorization step, followed 

by data cleaning and preparation, and finalized by a feature 

projection procedure. The detailed workflow is shown in Fig. 

2 and detailed hereafter. 

1) Data vectorization: A low-pass filter is firstly applied to 

the elements of M to obtain a new matrix M′, where the sensor 

noise is reduced. Then, two alternative steps are performed 

starting from M′: data windowing and extraction of statistical 

features. 

In data windowing, the rows of M′ are grouped according to 

time windows of size w seconds with an overlap of t seconds. 

For example, in case the sampling frequency is 1Hz1 with w = 

3 and t = 1, the data included in rows 1-3 of M′ are associated 

to the first-time window and they become, preserving their 

order, the elements of the first row of matrix W. Then, the data 

included in rows from w−t = 2 to w−t+w = 5 of M′ become 

the elements of the second row of W, and so on. The size of W 

is then m×9∗w, where m is the total number of time windows. 

During the extraction of statistical features, a new matrix S 

At this time, the next transformation step, for both matrices, 

is the outlier substitution. An outlier is a value that is more 

than 3 median absolute deviation away from the median [33]. 

Each outlier in W and S is substituted with the corresponding 

nearest not-outlier value. 

At the final step of the pre-processing phase, each row of 

both matrices W and S is associated to a class label that 

represents the movement pattern observed on the patient 

during the corresponding time window. Such labels can be no- 

FoG, FoG and pre-FoG. Consistently with the existing 

literature [10,12], we assume the gait performance of PD 

patients deteriorates in the phase immediately preceding a FoG 

event. The association is assigned such that FoG is used when 

the time window includes at least one sample where the patient 

actually experiences a FoG episode; pre-FoG is assigned to the 

time windows of type no-FoG immediately preceding a FoG 

time window by at maximum s seconds, where reasonable 

values for s are between 2 and 4 seconds; finally, no-FOG is 

used for all the remaining time windows. 

3) Feature projection: In the final step, we use four different 

feature projection algorithms to explore which of them 

performs better in our scenario. The experimental analysis is 

 
 

1 
1Hz is a too low frequency for predicting FoG. It has been assumed for simplifying the 

exemplification. The dataset used in our experiments has been created at 65Hz. 
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performed in four different ways according to the applied 

training features and the number of target classes considered 

for the classification. The four alternatives are: (i) training 

features extracted from W, and 2 classes (FoG, no-FoG); (ii) 

training features extracted from W, and 3 classes (FoG, no- 

FoG, pre-FoG); (iii) training features extracted from S, and 2 

classes (FoG, no-FoG); (iv) training features extracted from S, 

and 3 classes (FoG, no-FoG, pre-FoG). 

For each of the previous alternatives, PCA, kPCA, LDA and 

kLDA are applied for extracting the final projected features to 

be provided to the k-NN classifier. In Section IV, we will show 

that alternatives 1 and 2 associated with the kLDA algorithm 

provide the better results. Finally, as shown in Fig. 3, the 

training data pre-processing phase returns the new training 

features dataset and the transformation matrix that are the 

input for the on device real-time classification phase. 

B. On device real-time classification 

Our system is intended to be used for real-time classification 

of FoG, no-FoG and pre-FoG directly on the patient. Thus, 

after the off-line training data preprocessing, the workflow 

proceeds as shown in Fig. 3. The data gathered by the 

accelerometers on the patient body are transmitted to the 

mobile phone through the Bluetooth Low Energy (BLE) 

protocol. Once the data are received, they are elaborated 

through the same data vectorization process presented in 

Section III.A.1. After vectorization, the data are multiplied 

with the transformation matrix obtained by the offline data 

preprocessing phase, projecting into a reduced features space 

(p1, ..., pf), where, f (≥ 1), defines the number of features 

generated after the projection. In the case of the LDA and 

kLDA algorithms f will be equal to the number of treated 

classes (no-FoG, FoG, and pre-FoG) minus one. Finally, such 

new features are passed to the k-NN classifier that, based on 

the training feature dataset, recognizes the movement as FoG, 

no-FoG or pre-FoG. It is worth noting that the use of the k-NN 

ensures fast performances and no need of an explicit training 

procedure. In fact, we have solely training features that are 
 

Figure 3. On device real-time classification. 

used as comparison w.r.t. the testing data. 

IV. RESULTS 

A. Patient population 

In order to achieve findings that are both expressive and 

comparable to those found in relevant literature, we 

implemented the suggested method using the DAPHNET 

benchmark suite, a commonly used gait dataset that was 

gathered in 2010 as part of the EU FP6 project Daphnet [9]. 

Video and gait data of PD patients who had a history of FoG 

and were able to walk alone during OFF phases were recorded 

as part of the study's original methodology. Severe visual or 

hearing loss, dementia, or indications of other neurological or 

orthopedic conditions were considered exclusion criteria. A 

total of ten patients (7 males, mean age 66.5±4.8, mean disease 

duration 13.7±9.7, mean Hoehn & Yahr score in ON 2.6±0.65) 

were enrolled and participated in the entire study. Eight had 

several FoG events (average of 23.7 FoG events per patient), 

while two did notThe first part of the study s dedicated to 

application of the proposed methodology to the DAPHNET 

dataset, the second to on-line testing of the classification 

performance on different mobile devices, to evaluate its 

suitability on devices with lowcomputational resources. 

B. Dataset pre-processing 

Following the procedure described in Section III.A, starting 

from the DAPHNET data, we generated two different datasets, 

the windowed dataset W and the statistical feature dataset S. 

Both W and S depend on the time window size w and the 

overlapping parameter t to collect short overlapping sequences 

of acceleration values. Thus, we performed grid search on w 

and t; specifically, we varied w in the range [1:6] with step 1, 

and for each t, t assumed values in the range [0:w/2] with step 

0.5, ending up with 27 (w ,t) combinations. For every 

combination (wi, ti), 1 ≤ i ≤ 27, a couple (Wi, Si) of different 

datasets was created. Then, we performed the feature-wise 

data normalization and the outlier removal. Finally, for each 

(Wi, Si), we re-label as pre-FoG all windows immediately 

preceding a FoG window, obtaining a novel class, namely the 

pre-FoG. The introduction of pre- FoG windows shrank the 

distribution of no-FoG windows, on average, of a factor 1/8. 

C. Results for the windowed dataset 

Experimental results are reported in Table I, Table II and 

Table III. The classification of our approach has been cross- 

validated by extracting from DAPHNET training and testing 

partitions using k-fold (k = 3, 5) and leave-one-out schemes on 

individual patient and also cross-patient. It is worth noting that 

training and testing partitions were curated so that no partial 

overlap between windows was present. No significant 

difference was observed with these cross-validation schemes. 

Thus, for lack of space, in the following, we report and 

comment only the results achieved by using k-fold with k = 3. 
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Table I. Average F1-Score, at varying of w and t, respectively, in [1, 6] with step 1 and [0, w/2] with step 0.5. 

 

 
Table II. Average sensitivity, specificity and F1-Score, at varying 

of w and t, respectively, in [1, 6] with step 1 and [0, w/2] with 

step 0.5. 
 

Table III. Comparative sensitivity, specificity and F1-Score of the 

proposed approach with respect to state-of-the art approaches on 

2-Class classification. 

Tables I, II and III refer only to the experiments conducted 

by using the windowed dataset W, because, as shown later in 

Section IV.D, this configuration guarantees the best 

performances with respect to using the statistical feature 

dataset S. The tables report the average results obtained by 

varying w and t, respectively, in the ranges [1, 6] with step 1 

and [0, w/2] with step 0.5. Concerning the feature extraction 

algorithms, for kPCA and kLDA we tested the Gaussian, the 

polynomial and the linear kernel. The best result was obtained 

with the Gaussian kernel that the results in Tables I, II, III refer 

to. The Gaussian kernel parameters have been found by cross 

validation. Specifically, for each patient with FoG episodes, 

Table I shows the average F1-Score, for both 2-Class (no-FoG, 

FoG) and 3-Class (no-FoG, FoG, pre-FoG) cases, achieved by 

applying different strategies for feature projection. Columns 

#no-FoG and #FoG indicate the number of windows that have 

been labelled as normal and freeze of gait, respectively. 

Column #pre-FoG instead refers to the number of windows 

preceding those labelled with FoG. It turns out that, by 

construction, #pre-FoG indicates how many FoG episodes are 

in the data of each patient. As shown, kLDA achieves very 

good results for both 2-Class and 3-Class problems. 

Table II shows the average Sensitivity, Specificity and F1- 

Score among all the 8 patients of Table I. The worst case is 

given by the PCA, while the best results are achieved with 

kLDA. This clearly implies that the classes cannot be linearly 

separated, highlighting the considered problem is challenging. 

Supervised feature extraction approaches (LDA, kLDA) work 

better than the unsupervised counterparts (PCA, kPCA) 

especially in the 3-Class case. In the 2-Class case LDA is 

almost equivalent to PCA probably due to the low 

dimensionality of the former (= 1). 

To analyze more deeply the achieved results, Fig. 4 reports 

two confusion matrices related to patient 3, which, according 

 

 

Figure 4. Worst case (left) and best case (right) confusion matrices 

for Patient 3 at varying (w, t). 

to Table I, exhibits the lowest average F1-Score (84% with 

kLDA). By analyzing the results achieved for each 

configuration of parameters w and t, we discovered that the 

configuration (w=4, t=0.5) provides the worst results, as the 

classifiers erroneously recognizes the instances of FoG and 

pre-FoG as no-FoG (Fig. 4 left panel). On the contrary, the best 

results are achieved by using the configuration (w=2, t=1), 

where the classifier has almost always recognized the correct 

class (Fig. 4, right panel). Similar confusion matrices were 

obtained for the other patients. Selecting the correct (w, t) 

configuration is then fundamental for an effective 

classification. In almost all cases, the configuration (w=2, t=1) 

guarantees the best Sensitivity and Specificity. 

Table III compares our approach, on the DAPHNET dataset, 

with three state-of-the-art techniques [9,18,19]. Only a 

comparison with the 2-Class problem was possible, as the 

considered works do not use the pre-FoG label, since they are 

focused on FoG detection rather than FoG prevention. 

D. Results for the statistical feature dataset 

Previous tables refer to results on the windowed dataset W, 

as the statistical feature dataset S gave worse performance. To 

better clarify the different results achieved by W and S, Fig. 

5(a) and 5(b) present the mapping after applying Gaussian 

kLDA on, respectively, W and S, for patient P1, with w=4 and 

t=1, for the 3-Class problem. kLDA clearly separates samples 

of different classes, i.e., no-Fog (blue), FoG (red) and pre-FoG 

(yellow) on the W dataset (Fig. 5(a)), while this is not true for 

the S dataset (Fig. 5(b)). Similar results, omitted for lack of 

space, were obtained for the other patients. 
 

Figure 5. Results of the kernel linear discriminant analysis on 

Patient P1 with w=4 and t=1 using the (a) windowed dataset and 

(b) statistical feature dataset. Classes are clearly separated in (a), 

the same is not true in (b). 

http://www.ijcrt.org/


www.ijcrt.org                                                         © 2024 IJCRT | Volume 12, Issue 7 July 2024 | ISSN: 2320-2882 

 

IJCRT2407385 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d277 
 

 

kLDA Gaussian On Dataset W kLDA Gaussian On Dataset W kLDA Gaussian On Dataset S kLDA Gaussian On Dataset S 
 
 
 
 
 
 

 

1 1 1 1 

 
0.8 

 
0.8 

 
0.8 

 
0.8 

 
 

0.6 
 

0.6 
 

0.6 
 

0.6 

 
 

0.4 
 

0.4 
 

0.4 
 

0.4 

 
 
 

 
0.2 0.2 0.2 0.2 

 
 
 

 
0 0 0 0 

3 3 3 3 

6 6 6 6 

 
Overlap 0  1 Window Overlap 0  1 Window Overlap 0  1 Window Overlap 0  1 Window 

 
(a) 

  
(b) 

  
(c) 

  
(d) 

 

 
 

 

Figure 6. Average sensitivity (a) and specificity (b) using W, and average sensitivity (c) and specificity (d) using S, obtained with kLDA 

at varying of the window size w and the overlap interval t. 
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Fig. 6 further highlights how the W dataset outperforms theS 

dataset for the 3-Class problem. Fig. 6(a) and 6(b) show, 

respectively, the average Sensitivity and Specificity on W for 

all the possible configurations of (w, t) and for all patients (P1, 

..., P10). Fig. 6(c) and 6(d), instead, show average Sensitivity 

and Specificity on S. In Fig. 6(a) and 6(b) Sensitivity and 

Specificity achieved approximately 98%, while in Fig. 6(c) 

and 6(d) they reached approximately 94% and 70%. 

E. Performance on mobile device 

We evaluated the classification performance on three 

different smartphones in terms of response latency, RAM and 

ROM memory and battery consumption. Table IV shows the 

features of the tested smartphones (upper part) and the 

outcomes (lower part). Latency was the time spent for the 

computation of the workflow presented in Fig. 2, i.e., the time 

elapsed from the reception of the input data gathered from the 

accelerometers till the classification of patient’s gait. The time 

taken to transmit data from the accelerometers to the 

smartphone and the stimulus command from the smartphone 

to the smartwatch is negligible. ROM and RAM memories 

were mainly used to save the transformation matrix and the 

features dataset obtained after the offline training data pre- 

processing phase (Fig. 3). Battery consumption shows the 

average consumed battery for a total of 10 hours. Regarding 

the quality of classification, the results were equal to those 

obtained in computation on an external server machine (Tables 

I, II and III). 
 

Table IV. Device performance metrics. 

V. DISCUSSION 

We presented a methodology based on machine- 

learningalgorithms to classify the PD gait features as pre- 

FoG, FoG,and no-FoG patterns with a wearable system. Our 

results provethe effectiveness of the proposed FoG prediction 

and show thepossibility of implementing our solution on a 

wearable system.We compared the present approach with 

three state-of-the- art ones, in terms of Sensitivity, 

Specificity and F1-Score: the2-Class and 3-Class 

classification (Table III) outline the better performance of the 

proposed algorithm, compared to previous2-Class [9,18,19], 

and 3-Class ones [23,24], with a higher, onaverage over 2%, 

overall accuracy. In particular, our solution with kLDA 

achieved the best results. It is worth noting that thek-NN is a 

less complex classification algorithm than those based, 

respectively, on AdaBoost, SVM, and fast Fouriertransform 

[9,18,19], and is more suited for a real-time classification on 

a wearable device with limited computing andmemory 

resources. Moreover, our approach achieved very good 

results on different configurations of window size w and 

overlap interval t, in particular when the windowed dataset W 

is used (Fig. 6). Finally, 3-Class classification permitted the 

prediction of FoG w seconds in advance. 

One of the main limitations of the existing approaches for 

FoG detection is that the classification phase requires to offload 

the computation to an external server, due to high computing 

resources. On the contrary, we proved our classification 

algorithm can be executed on a resource- constrained device, 

like a smartphone. Classification performance, response 

latency, RAM and ROM memories andbattery consumption did 

not differ significantly among the three mobile devices tested. 

These finding confirm the overall“lightness” of the algorithm, 

thanks to the used classifier and the reduction in the number of 

processed features, with no detrimental effect on the overall 

classification accuracy. This point is of outmost importance 

since, differently from alreadyexisting solutions, it removes the 

need to reach an external server, that may result in 

unpredictable delays. In addition, thesystem can work even in 

absence of an Internet connection. 

Our study has some limitations. The sample size of 

DAPHNET project was small. Moreover, FoG has different 

subtypes and may be caused by different triggers in PD [5,34]. 

FoG events in the DAPHNET dataset [9] were not classified 

according to subtypes, so we could not test if our detection 

algorithm can classify pre-FoG, FoG and no-FoG, with a 

similarly high performance for all FoG subtypes. Further 

studies with larger patients’ samples and different FoG 

subtypes are necessary to confirm the reproducibility of our 

results. Further, we applied the algorithm off-line to a pre- 

existing dataset, so confirmatory studies are necessary to 

evaluate its on-line performances. Finally, computational 

sustainability was tested on smartphones. Our algorithm should 

be tested on devices with even less computationalresources 

(e.g., smartwatches), to support its use on wearable on-demand 

cueing device. 

VI. CONCLUSION AND FUTURE WORK 

PD patients can overcome the impairment of FoG using 

external cueing, a non-pharmacologic treatment.one of the 

pathophysiological mechanisms of FoG, involuntary 

movement, by altering gait to a goal-directed movement that is 

less compromised by Parkinson's disease [35]. Various devices 

have been presented that couple a detecting system with the 

transmission of a cueing stimulus. Only three of these devices, 

out of the five that have been evaluated on PD patients to the 

best of our knowledge, have been found to be beneficial in 

lowering the frequency and duration of FoG [16]. 

Nevertheless, the quality of the studies was generally low 

(quasi-experimental, low statistical power), and the various 

methodologies made it difficult to conduct a meta-analysis or 

a direct comparison. 

The high accuracy and short lag times between pre-FoG 

recognition and cueing administration are critical to a cueing 

on-demand wearable device's overall effectiveness in reducing 

FoG and falls in Parkinson's disease. Subsequent research 

endeavors ought to delve into the online efficacy and precision 

in delivering the cue of our high-performance classification 

system among people with Parkinson's disease. 

. 
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