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Abstract: Deep learning architectures have transformed biomedical image segmentation, enhancing accuracy and efficiency in 

medical diagnostics. This research work presents RES-UNET, integrating ResNet50v2 and UNet for intricate pattern recognition 

in medical imaging. ResNet50v2 as the encoder captures hierarchical features, while UNet's decoder reconstructs high-resolution 

segmentation masks with preserved spatial details. Feature Pyramid Networks (FPN) enrich multi-scale feature fusion, enhancing 

segmentation accuracy. A hybrid loss function combining counter-aware, focal, and generalized dice losses optimizes model 

robustness. Experimental results demonstrate RES-UNET achieves 92% Dice Similarity Coefficient, 86% Jaccard Index, 94% 

sensitivity, and 93% specificity, surpassing traditional methods. RES-UNET shows promise for precise biomedical image 

analysis, offering significant advancements in clinical diagnostics and treatment planning. 

 

Index Terms - Feature Pyramid Networks, Dice Similarity Coefficient, RES-UNET, Pancreatic ductal adenocarcinoma, 

Convolutional Neural Networks 

I. INTRODUCTION 

 

The pancreas is a dual-function organ, serving as both an exocrine gland for digestive enzyme secretion 

and an endocrine gland for hormone regulation. It weighs approximately 100g, with dimensions ranging from 

14 to 25 cm in length and a volume of 72.4 to 25.8 cm³. It has five anatomical divisions: the uncinate process, 

neck, body, and tail. Exocrine pancreas functions by releasing enzymes aiding in fat digestion, while the 

endocrine gland regulates blood sugar levels and nutrient uptake by cells. Pancreatic cancer, also known as 

exocrine pancreas cancer, is a prevalent malignancy, especially in Western countries and Japan. It ranks as 

the second most common cancer in the U.S., contributing to 5% of all cancer-related deaths, predominantly 

affecting African Americans and males over 50. The disease arises from abnormal DNA changes in pancreas 

cells, leading to uncontrolled growth and tumor formation, potentially spreading to the liver, lymph nodes, 

lungs, or bones. Risk factors include smoking, obesity, long-term diabetes, and family history, high intake of 

processed foods and red meat, and chronic pancreatitis. It is anticipated to become the second deadliest 

illness within a decade. Pancreatic cancer has an annual incidence rate of 12.50 per 100,000 individuals, 

constituting 3% of all cancer cases in the U.S. Its prognosis is grim, with a five-year survival rate of less than 

10%. Accurate segmentation of pancreatic tumors from CT scans is crucial for diagnosis, treatment planning, 

and disease monitoring. Manual segmentation by radiologists is time-consuming and subject to variability. 

Deep learning models, such as the U-Net architecture, have demonstrated promise in automating this process. 

The U-Net model is adept at semantic segmentation tasks, including CT image segmentation. It comprises 

two main components: the contracting and expansive paths. The study proposes using multiple U-Nets with 

unique hyper parameters cascaded together for pancreas and tumor segmentation. Kaiming initialization is 

employed to avoid gradient-related issues during initialization. A multi-class cross-entropy loss function is 

suitable for this segmentation task. This approach offers a more efficient and resource-friendly alternative 

compared to other deep learning methods. 

 

Convolutional Neural Networks (CNNs) stand at the forefront of modern deep learning algorithms, 

revolutionizing the field of medical image analysis. Their profound impact extends to the vital task of 

detecting and diagnosing pancreatic ductal adenocarcinoma (PDAC). These specialized networks are 
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meticulously designed to extract intricate features from input data, particularly medical images. Starting with 

rudimentary elements like edges and corners, they progressively ascend to discerning higher-level attributes 

such as texture and shape. In the realm of PDAC diagnosis employing CNNs, the input data typically 

encompasses pre-processed and meticulously segmented medical images. These images, often sourced from 

computed tomography (CT) scans or magnetic resonance imaging (MRI) scans, undergo meticulous isolation 

of the pancreas and tumor regions to facilitate focused analysis. The CNN then leverages these refined 

images, utilizing the learned features extracted from them, to classify them into two pivotal categories: 

PDAC or non-PDAC. To elevate the performance of PDAC diagnosis, particularly in the context of CT 

images, advanced CNN architectures such as U-Net and ResNet50v2 have emerged as indispensable tools. 

The U-Net model, esteemed for its proficiency in semantic segmentation tasks, proves instrumental in 

accurately isolating the pancreas and tumor regions in medical images. Conversely, ResNet50v2, a variant of 

the ResNet architecture, is lauded for its aptitude in deep residual learning. This attribute empowers it to 

effectively capture intricate features in complex image data. By integrating these specialized CNN 

architectures with meticulously pre-processed CT images, medical professionals stand poised to achieve 

highly accurate and dependable diagnoses of PDAC. This approach capitalizes on the remarkable ability of 

CNNs to discern critical features and patterns within medical images, ultimately contributing to the early 

detection and diagnosis of pancreatic cancer. In this thesis, we delve into a comprehensive exploration of the 

application of CNNs, particularly U-Net and ResNet50v2, in the domain of PDAC diagnosis, with the aim of 

significantly advancing our understanding and capabilities in this critical area of medical research and 

practice. 

II. PROPOSED METHODOLOGY 

 

                                                              
 

 

 

 

 
Figure1: Work flow of Deep Learning Model for the prediction of PDAC 

 

The CT scan machine as shown in the figure plays a pivotal role in this diagnostic process. It generates 

high-resolution images of both healthy control subjects and patients with pancreatic cancer. These images 

serve as the raw data for the subsequent steps in the analysis. The CT scan is a powerful medical imaging 

tool that utilizes X-ray technology to create detailed cross-sectional images of the body. It provides a 

comprehensive view of the internal structures, enabling the identification of abnormalities or irregularities in 

the anatomy. The selection of scan images based on the iliac bone is a crucial step in the process. The iliac 

bone is an important anatomical landmark in the pelvic region, and using it as a reference point ensures 

consistency and accuracy in the selection of images. This step helps to focus the analysis on a specific 

region of interest, which is particularly relevant in the case of pancreatic cancer detection where precise 

localization is vital for accurate diagnosis. 

 

The subsequent application of advanced deep learning techniques further enhances the diagnostic process. 

The utilization of Convolutional Neural Networks (CNNs) with a UNet architecture, combined with 

ResNet50v2 with Feature Pyramid Network (FPN), represents a cutting-edge approach to image analysis. 

CNNs are adept at learning hierarchical features in images, which is critical in identifying subtle patterns or 

anomalies indicative of pancreatic cancer. The UNet architecture is specifically designed for biomedical 

image segmentation, making it well-suited for isolating the pancreatic region for detailed analysis. 

Additionally, ResNet50v2 with FPN leverages advanced network architectures and feature extraction 

methods to further improve accuracy and performance. The final step involves the analysis of the results 

using key metrics such as sensitivity, specificity, recall, and precision. These metrics provide a quantitative 

assessment of the model's performance. Sensitivity measures the proportion of true positives, or correctly 

identified cancer cases, while specificity gauges the proportion of true negatives, or correctly identified 
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healthy cases. Recall, also known as true positive rate, indicates the model's ability to correctly identify all 

relevant instances. Precision, on the other hand, assesses the accuracy of positive predictions made by the 

model. 

 

The integrated approach of combining CT scans, image selection based on the iliac bone, and advanced 

Deep learning techniques like CNNs with UNet architecture and ResNet50v2 with FPN, followed by 

rigorous analysis through sensitivity, specificity, recall, and precision, demonstrates a sophisticated and 

promising methodology for detecting pancreatic cancer with a high degree of accuracy and reliability. This 

multidisciplinary approach holds great potential for improving early diagnosis and treatment outcomes for 

patients with pancreatic cancer. 
 

Rafi’s Algorithm for CT image selection 
To diagnose pancreatic ductal adenocarcinoma (PDAC) using CT scans, a sequence of contiguous images, 

resembling a video or a series of frames, were collected to ascertain the presence or absence of PDAC in 

each patient. It is noteworthy that the visibility of the pancreas exhibited variability across different frames, 

akin to a dynamic visual narrative. Clinical experts played a pivotal role in the determination of PDAC, 

scrutinizing specific frames where the pancreas was discernible. To address the inherent challenges 

associated with pancreas identification on CT scans, particularly its similarity in shape and size with 

adjacent abdominal organs, special emphasis was placed on frames showcasing the iliac bone. The presence 

of the iliac bone acted as a dependable marker, affirming the presence of the pancreas. This strategic frame 

selection significantly augmented the accuracy and reliability of PDAC diagnosis within the realm of CT 

scans. 

The algorithm devised for CT image selection further underscored the importance of targeted frame 

curation. Through meticulous preprocessing and the definition of an Analysis Region (AR) focusing on the 

pertinent anatomical area, encompassing regions of interest such as the iliac bone, the algorithm exhibited a 

notable proficiency in isolating frames with optimal diagnostic potential. Dark pixel quantification within 

this defined AR further refined the selection process, emphasizing regions of interest indicative of 

potentially cancerous areas. By identifying frames with the maximum and minimum dark pixels, the 

algorithm effectively established reference values for threshold calculation, refining its ability to distinguish 

informative frames. 

Subsequent application of the threshold criterion resulted in the systematic identification of frames suitable 

for further analysis. Those surpassing the threshold were flagged for subsequent stages, while those falling 

below were prudently discarded. This iterative process, guided by the threshold, ensured that computational 

resources were directed towards images with the highest diagnostic yield, a critical factor in optimizing 

diagnostic accuracy. The integration of the iliac bone as a marker, alongside the algorithm's meticulous 

frame selection, collectively contributed to a marked enhancement in the precision of PDAC diagnosis via 

CT scans. 

The amalgamation of clinical expertise and algorithmic refinement demonstrated a substantial improvement 

in the diagnostic accuracy of PDAC through CT scans. The strategic identification of frames featuring the 

iliac bone, coupled with the algorithm's systematic frame selection based on dark pixel quantification, 

represents a novel approach in enhancing the reliability of PDAC diagnosis. This integrated methodology 

not only leverages the strengths of both clinical acumen and computational precision but also paves the way 

for more nuanced and effective diagnostic protocols in the realm of pancreatic ductal adenocarcinoma 

diagnosis. 
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                                                     Figure 2: Flow chart for CT selection Algorithm. 
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Figure 3: The CT scan images of a patient are shown in this figure. The highlighted images by Red color are the ones that the 

algorithm discards. It is observable that those images that clearly show inside the pancreas are selected to be classified at the next 

stage. 

This work introduces an automated CT image selection algorithm to enhance early detection of pancreatic 

ductal adenocarcinoma (PDAC). The algorithm optimizes diagnostic accuracy by systematically identifying 

CT images with the highest potential for precise analysis. It starts with preprocessing CT scans and defining 

an Analysis Region (AR) of interest [400:550, 400:600]. Dark pixels within this AR (pixel values < 300) are 

quantified as potential indicators of cancerous regions. Next, the algorithm identifies images with maximum 

(mx) and minimum (mm) dark pixels within the AR to establish reference values for threshold calculation. 

The threshold (thr) is computed as half the difference between mx and mm, divided by 2.3. This threshold 

value filters out less informative images. The algorithm iterates through each CT scan, counting dark pixels 

(dp) within the AR. Images with dp > thr proceed to further analysis, while those with dp ≤ thr are 

discarded. Once all CT scans are processed, the algorithm verifies completion and loops back if necessary. 

It concludes by selecting images meeting the threshold criterion for PDAC prediction. This algorithm 

efficiently allocates computational resources to high-information content images, ensuring more accurate 

diagnostic outcomes. 

Hybrid RES-UNET deep learning model for classification 

The RES-UNET model combines ResNet50v2 and U-Net architectures for classifying Pancreatic Ductal 

Adenocarcinoma (PDAC) using CT images. ResNet50v2 acts as the encoder, adept at extracting intricate 

features crucial for PDAC classification. Its residual connections mitigate gradient vanishing, enabling 

effective capture of subtle PDAC-related patterns. The Feature Pyramid Network (FPN) enhances multi-

scale feature integration, crucial for understanding varied anatomical details in CT images. The U-Net 

decoder refines these features into detailed segmentation masks, aiding PDAC classification. By leveraging 

ResNet50v2's feature extraction, FPN's multi-scale understanding, and U-Net's precise segmentation, RES-
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UNET excels in PDAC classification from CT images. This architecture promises to revolutionize PDAC 

diagnosis and treatment by discerning intricate patterns across different scales efficiently. 

 

Figure 4: Block Diagram of the System 

Figure 4 illustrates the process where CT images of Pancreatic Ductal Adenocarcinoma (PDAC) and non-

PDAC cases are input into a ResNet50V2 model for feature extraction. A Feature Pyramid Network (FPN) 

enhances the model's ability to capture features across different scales without a decoder component. The 

model generates a binary segmentation map distinguishing PDAC and non-PDAC regions, from which 

Regions of Interest (ROIs) are extracted. Features from these ROIs refine the model's understanding of 

critical image elements. CNN classifiers predict outcomes for each ROI, and these predictions are 

concatenated to form a comprehensive set of results. This amalgamated prediction determines the presence 

or absence of PDAC, streamlining the diagnostic process. 

Table 1: Architecture of the proposed RES-UNet model 

Level Layer Type Output Size Parameters 

1.  Convolution + BatchNorm + ReLU 32x32x256 262,144 

2.  Convolution + BatchNorm +ReLU 32x32x256 262,144 

3.  Convolution + BatchNorm +ReLU 16x16x512 524,288 

4.  Convolution + BatchNorm +ReLU 16x16x512 2,359,296 

5.  Convolution + BatchNorm +ReLU 16x16x2,048 2,099,200 

6.  BatchNorm + ReLU 16x16x2,048 8,192 

7.  Convolution 16x16x512 1,049,088 

8.  Upsample Variable N/A 

9.  Convolution 16x16x512 524,800 

10.  Concatenation 16x16x1,024 N/A 

11.  Upsample Variable N/A 

12.  Convolution 32x32x512 262,656 

13.  Convolution 8x8x512 9,437,696 

14.  Concatenation 32x32x1,536 N/A 

15.  ReLU 8x8x512 N/A 

16.  Convolution Variable 7,078,400 

17.  Convolution Variable 4,719,104 

18.  Convolution Variable 2,359,808 

19.  Convolution Variable 2,359,808 

20.  Flatten Variable N/A 

21.  Flatten Variable N/A 

22.  Flatten Variable N/A 

23.  Flatten Variable N/A 

24.  Flatten Variable N/A 

25.  Dropout Variable N/A 

26.  Dropout Variable N/A 

27.  Dropout Variable N/A 

28.  Dropout Variable N/A 

29.  Dropout Variable N/A 

30.  Dense 2 921,602 

31.  Dense 2 200,706 
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32.  Dense 2 262,146 

33.  Dense 2 65,538 

34.  Dense 2 16,386 

35.  Concatenation 10 N/A 

36.  Dense (Output) 2 22 

The architecture integrates ResNet50v2 with FPN for hierarchical feature extraction using convolutional 

layers and ReLU activations to capture detailed patterns. FPN enhances multi-scale feature integration 

through concatenation and upsampling, improving abstraction recognition. Transitioning to the UNet 

decoder, convolutional layers with batch normalization and ReLU activations refine features and recover 

spatial information. The decoder's sigmoid output layer generates a segmentation mask for PDAC 

classification, providing detailed predictions based on the input image. 

ResNet50v2 with FPN encoder 

The ResNet50v2 with FPN begins with convolutional operations on the input image X: 

F1 = Conv(X, W1) → BN(F1, γ1, β1) → ReLU(F1) 

F2 = Conv(F1, W2) → BN(F2, γ2, β2) → ReLU(F2) 

F3 = Conv(F2, W3) → BN(F3, γ3, β3) → ReLU(F3) 

F4 = Conv(F3, W4) → BN(F4, γ4, β4) → ReLU(F4) 

F5 = Conv(F4, W5) → BN(F5, γ5, β5) → ReLU(F5) 

FPN integration includes: 

P5 = Conv(F5, WC5_reduced) 

P4 = Concat(Upsample(P5, F4), Conv(F4, WC4_reduced)) 

P3 = Concat(Upsample(P4, F3), Conv(F3, WC3_reduced)) 

P6 = Conv(F5, WP6) 

P7 = Conv(ReLU(P6), WP7) 

These operations form a hierarchical feature extraction process followed by multi-scale feature pyramid 

creation, crucial for handling varying object sizes and patterns in image segmentation tasks. 

 

U-Net Decoder 

The architecture transitions to the UNet decoder, refining features as follows: 

F4 = Conv(Concat(P4, F4), WD4) 

F3 = Conv(Concat(P3, F3), WD3) 

F2 = Conv(Concat(P2, F2), WD2) 

F1 = Conv(Concat(P1, F1), WD11) 

The UNet decoder combines upsampled feature maps (P4 to P1) with corresponding encoder feature maps 

(F4 to F1) using convolution operations (WD4 to WD11). This iterative process refines and integrates 

hierarchical features for accurate segmentation. Dropout layers are strategically utilized for regularization 

throughout, enhancing model robustness by randomly deactivating neurons during training to prevent 
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overfitting. Dense layers further refine features (Di = Dense(Fi)), contributing to the model's ability to 

capture complex patterns and relationships within the data. Concatenation (Fconcat = Concat(D1, D2, D3, 

D4, D5)) consolidates information from dense layers, facilitating multi-scale processing and improving 

segmentation quality. The final dense layer with softmax activation (Y = Softmax(D)) converts refined 

features into class probabilities, enabling precise classification essential for accurate segmentation 

outcomes. In the ResNet50v2 and UNet architecture, feature maps are crucial for tasks like medical image 

segmentation. The ResNet50v2 encoder initially detects basic patterns like edges and textures, evolving into 

more complex and abstract features. These hierarchical feature maps enable the network to discern intricate 

patterns, providing rich features for further processing. The UNet decoder uses transposed convolutional 

layers to upscale and integrate feature maps from the encoder, preserving spatial details essential for 

accurate segmentation masks. This interplay ensures the architecture effectively utilizes visual information. 

These feature maps capture progressively abstracted visual details, empowering the network in precise 

segmentation tasks by preserving spatial accuracy. This approach is pivotal in medical image analysis, 

where detailed information extraction is essential for accurate diagnosis and treatment planning. 

 

 
 

 
Figure 5: Feature Maps 

 

Classification 

 

Convolution Layers: The input ROI undergoes convolution operations where filters (kernels) slide across 

the input, extracting spatial features. Each convolution operation results in feature maps. 

Feature Mapi=Convolution(ROIi,Filteri) 

The activation function, such as the rectified linear unit (ReLU), introduces non-linearity element-wise to the 

feature maps: 

Activated Feature Mapi=ReLU(Feature Mapi) 

 

Pooling layers, like max pooling or average pooling, play a vital role in downsampling the spatial dimensions 

of activated feature maps, preserving essential information: 

Pooled Feature Mapi=MaxPooling(Activated Feature Mapi) 

Pooled Feature Mapi=AveragePooling(Activated Feature Mapi), 
 

The flattening process transforms pooled feature maps into one-dimensional vectors: 

 
Flattened Featurei=Flatten(Pooled Feature Mapi) 

 

Fully connected layers establish connections between neurons across layers to discern complex 

relationships: 

FC Outputi=FullyConnected (Flattened Featurei, Weightsi,Biasesi) 

 

The output layer employs softmax activation for classification tasks, transforming FC output into a 

probability distribution: 
Predictioni=Softmax(FC Outputi) 
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During training, CNNs optimize weights and biases to minimize a designated loss function, often a hybrid 

formulation: 

Final Loss=w1×Counter Aware Loss+w2×Focal Loss+w3×Generalized Dice Loss. 

 

Concatenation combines individual predictions into a unified vector: 

Concatenation=[Prediction1,Prediction2,…,Predictionn] 
 

The final prediction aggregates weighted individual predictions: 

 
 

These operations collectively form a robust framework for processing and analyzing complex visual data, 

crucial for tasks like image analysis and pattern recognition in the diagnosis of pancreatic ductal 

adenocarcinoma. 

 

III. RESULTS AND DISCUSSION 

In this experiment, a deep learning model was trained and validated over the course of 500 epochs. For 

brevity, a representative sample of results from the first 20 epochs is presented here. The performance 

metrics, including training loss, training Dice coefficient, and validation Dice coefficient, were recorded at 

each epoch to assess the model's progress. The initial epochs exhibited a noticeable decrease in training loss 

and an increase in Dice coefficients. The training loss decreased from 1.3 to 1.2, indicating a reduction in 

prediction errors. Simultaneously, the training Dice coefficient improved from 0.75599 to 0.72110, 

signifying enhanced accuracy in segmentation tasks. Additionally, the validation Dice coefficient increased 

from 0.82197 to 0.88970, demonstrating the model's ability to generalize its understanding to unseen data. 

As training progressed, a consistent trend of diminishing training loss and augmented Dice coefficients was 

observed, suggesting that the model effectively learned and improved its predictive capabilities. Notably, 

around the midpoint of training (Epoch 10), both training and validation Dice coefficients approached 0.945 

and 0.701, respectively, indicating a high level of accuracy in segmentation tasks. Towards the latter epochs, 

the model's performance stabilized, with marginal improvements in the Dice coefficients.  

 

Among the evaluated models, CNN [1] shows moderate performance with competitive metrics including 

DSC, Jaccard, Recall, and Precision. Unet and texture [2] demonstrate lower DSC but excel in Recall while 

lagging in Precision. AX-Unet [3] stands out with impressive metrics across the board, particularly in DSC, 

Recall, and Precision. Unet with DenseNet [4] and nnUnet [5] exhibit competitive DSC values, while 3D 

CNN [6] offers strong performance with a high DSC and robust Precision. Fixed Point [7] achieves a 

balanced performance in DSC, Recall, Precision, and specificity. Attention Unet [8] and DenseASPP [9] 

show promising DSC values, though additional metrics are not provided. Cascaded FCN [10] impresses 

with high DSC, Jaccard, Recall, and Precision metrics. 

In the experimented models, the first experimented U-Net model demonstrates excellent performance across 

DSC, Jaccard, Recall, Precision, Sensitivity, and Specificity, indicating balanced performance in identifying 

positive and negative cases. The Hybrid RES-Unet model outperforms with high DSC, Jaccard, Recall, and 

Precision, showing robust metrics in Sensitivity, Specificity, Precision, and Negative Predictive Value. Both 

U-Net and Hybrid RES-Unet emerge as top performers, showcasing exceptional segmentation accuracy and 

balanced performance across multiple metrics. 
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TABLE 2:   Comparison with Existing Work 

 

Methods DSC (%) Jaccard 
(%) 

Recall 
(%) 

Precision 
(%) 

CNN [1] 0.78 0.66 71 74 

Unet and texture [2] 60 ---- 78.0 57.8 

AX-Unet [3] 87.7 78.2 90.9 92.9 

Unet with DenseNet 
[4] 

83 ---- ---- ---- 

nnUnet[5] 71 ---- ---- ---- 

3D CNN[6] 88 71 84 82 

Fixed Point[7] 82.37% 77 71 73 

Attention Unet [8] 84 ---- 84.9 84.1 

DenseASPP 
[9] 

85 ---- ---- ---- 

Cascaded FCN [10] 85.9 75.7 85.2 87.6 

Experimented 
Setup I 
U-Net 
 

88.2 79 82 86 

Sensitivity Specificity 

85 92 

Experimented Setup II 
and Proposed 
Model  
Hybrid RES-Unet 

92 86 90 91 

Sensitivity Specificity 

94 93 

In pancreatic ductal adenocarcinoma images segmentation and classification, our proposed U-Net model 

and Hybrid RESNet50V2 Encoder with U-Net Decoder demonstrate outstanding performance. The U-Net 

model achieves an 88.2% Dice Similarity Coefficient (DSC) and 79% Jaccard Index, with balanced recall 

(82%) and precision (86%), and high specificity (92%) and negative predictive value (90%). The Hybrid 

model surpasses these metrics with a 92% DSC and 86% Jaccard Index, along with excellent recall (90%) 

and precision (91%), and high specificity (93%) and negative predictive value (92%). These models show 

significant promise in clinical applications, accurately identifying and classifying regions of interest in 

biomedical imagery, and exhibit robust performance comparable to advanced techniques on diverse datasets 

like Kaggle and SSIMS and RC Dataset. 
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