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Abstract. Brain tumour segmentation is a widely explored area of research within both medical and engineering domains, 
particularly focusing on Magnetic Resonance Imaging (MRI) as the primary modality for detection. Computer-aided diagnosis 
(CADx) systems play a pivotal role in automating the detection and classification of brain tumours from MRI images. A crucial 
component of CADx systems is the segmentation module, respon- sible for precisely delineating tumour regions. Accurate 
segmentation, with sub-pixel pre- cision, is essential for determining tumor size, and location, and facilitating image-guided 
surgical procedures. In recent years, numerous methods have emerged for segmenting brain  tumours from MRI images. This paper 
presents a comprehensive survey of state-of-the-art segmentation methods, along with an overview of datasets commonly used 
for method development and the evaluation metrics employed. By offering a consolidated overview, this study serves as a 
valuable resource for novice researchers entering this field and pro- vides updated information for researchers already engaged in 
brain tumour segmentation research. 
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1 Introduction 
 

A brain tumor is a mass of either malignant or benign growth that develops in or around the brain. While benign tumors 
are non-cancerous and do not infiltrate neighboring tissues, malignant tumors are cancerous, growing and spreading 
uncontrollably [1, 2]. Malignant brain tumors are notably aggressive and considered among the deadliest cancers, with 
increasing incidence and prevalence [3]. According to the World Health Organization (WHO), as of 2021, the global 
prevalence and incidence of brain tumors were reported at 700,000 and 84,170 respectively 3. 

Brain tumors are categorized by different levels of aggressiveness, graded from I to IV [4]. 
Table 1 summarizes brain tumor subtypes according to their aggressiveness levels. 

 
 

Table 1: Brain tumor subtypes as per WHO Grades 
Brain Tumor Types Subtypes Grades Features 

Benign Pilocytic Astrocytoma I Slow-growing, cerebrum growth 
Low-grade Astrocytoma II Slow-growing, rare spread, common in men and women 

Malignant Anaplastic Astrocytoma III Faster growth, more aggressive 
Glioblastoma IV Rapid growth, less common in children 

 

⋆ Corresponding author 
3 https://www.cancer.net/search/site/brain%20tumour 

 

Various imaging techniques, including Positron Emission Tomography (PET) [5], Computed Tomography (CT) [6], 
and Magnetic Resonance Imaging (MRI) [7], are utilized for brain tumor detection. Among these, MRI is preferred due 
to its detailed soft tissue visualization capabilities. While MRI is the preferred modality, interpreting MRI scans for brain 
tumors requires signif- icant training and expertise, often leading to inter- and intra-observer bias, detection errors, and 
prolonged turnaround times. Hence, Computer-Aided Diagnosis (CADx) systems are essential for interpreting MRI 
scans and detecting abnormalities. These systems have evolved signifi- cantly, transitioning from early rule-based 
image processing methods to more advanced machine 
learning-based approaches [8–10]. 
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This paper provides a systematic overview of the methodological advancements in brain tumor segmentation (BTS) 
methods over the years. It covers data collection protocols, brain anatomy, MRI modality, commonly used datasets, 
evaluation metrics, and a detailed description of BTS systems. 

The rest of the paper is organized as follows: Section 2 presents the data collection protocol, followed by descriptions 
of brain anatomy (Section 3) and MRI modality (Section 4). Section 5 summarizes commonly used datasets, while Section 6 
discusses evaluation metrics. A categorical description of BTS systems is presented in Section 7. Finally, the paper 
concludes in Section 8. 

 
2 Data Collection 

To comprehensively identify relevant publications, primary searches were conducted from 2005 to 2022 across 
various databases, including ACM Digital Library, IEEE Xplore, ScienceDirect, and Springer. Additionally, 
secondary searches were performed to augment the primary results. The bibliography of identified studies was 
meticulously reviewed and considered. In total, 642 primary searches and 100 secondary searches were 
conducted, resulting in a collection of 742 papers. 

Initially, papers were screened based on their titles, resulting in the selection of 598 papers and the rejection 
of 144 papers. Subsequently, abstracts were reviewed, leading to the selection of 300 papers and the rejection 
of 298 papers. Finally, based on full-text assessments, 118 papers were chosen for inclusion in this study due to 
their overall relevance to the topic. 

This comprehensive data collection process ensured the inclusion of a diverse range of relevant research 
publications for the synthesis and analysis presented in this paper. 

 
3 Brain Anatomy 

The brain serves as the central control center for the body, interpreting external stimuli and or- chestrating 
various bodily functions. It comprises three major regions: the cerebrum, cerebellum, and brainstem [11], as 
illustrated in Figure 1. 

1. Cerebrum: The cerebrum, the largest portion of the brain, consists of the right and left hemispheres. It is 
responsible for tasks such as comprehension, touch, vision, hearing, com- munication, logical reasoning, 
learning, and precise movement. The surface of the cerebrum, known as the cerebral cortex, consists of 
white matter and gray matter, housing around 400 million neurons organized in layers. Each hemisphere 
controls the opposite side of the body, and stroke or injury to one hemisphere can lead to paralysis or 
weakness on the opposite side [12]. 
– Frontal lobe: The largest lobe, responsible for emotions, personality, decision-making, planning, 

problem-solving, language production (Broca’s area), and voluntary movement (motor strip). It also 
governs self-awareness, intelligence, and attention. 

 

– Parietal lobe: Located at the top of the brain, it aids in object identification, language comprehension 
(Wernicke’s area), interpretation of sensory information (touch, temper- ature, pain), and spatial perception. 

– Occipital lobe: Positioned at the back of the brain, it processes visual information, including interpretation of 
color, brightness, and motion. 

– Temporal lobe: Situated on the sides of the brain, it handles short-term memory, language comprehension, 
smell, hearing, organization, and sequencing. 

2. Cerebellum: Located beneath the cerebrum, the cerebellum is a small structure about the size of a fist. Its main 
functions include coordination of muscle movements, maintenance of posture, and regulation of balance [13]. 

3. Brainstem: Situated at the base  of  the  brain,  the  brainstem  connects  the  cerebrum  to the spinal cord and serves 
as a relay station for various bodily functions. It regulates vital automatic processes such as breathing, heartbeat, 
body temperature, digestion, sneezing, coughing, vomiting, and the circadian rhythm governing the sleep-wake 
cycle [14]. 

 

Understanding the intricate anatomy and functions of the brain is crucial for interpreting brain imaging data and 
diagnosing neurological disorders accurately. 

 
 

Fig. 1: Brain Anatomy: cerebrum, cerebellum, and brainstem 
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4 MRI (Magnetic Resonance Imaging) 
 

Although it was initially noticed in the 1930s, medical imaging technology was not developed until the 1970s. Nuclear 
magnetic resonance (NMR) is the effect of spinning atoms. Patient’s thought the word ”nuclear” was insulting, so it was 
renamed MRI. Paul Lauterbur demonstrated NMR imaging for the first time in 1973. He changed the field strength, 
causing individual particle signals to fluctuate and allowing him to piece together an image. 

MRI uses the magnetic properties of the brain to generate accurate high - resolution images instead of utilising X-
rays. An MRI scan of the body is used to determine the size of a brain tumour. To identify and treat internal organ 
problems, radiology uses medical imaging. Any portion of the body in any orientation is imaged with a magnetic 
resonance imaging (MRI) scanner (e.g., the head, ligaments and tendons, limbs, belly, etc.). Compared to CT, MRI 
provides a greater soft tissue contrast and can differentiate amongst lipid, water, muscles, as well as other soft tissue (CT 
is usually better at imaging bones). Professionals can use these images to diagnose a variety of diseases and disorders 
and to deliver information. The most typical method used in neurology to view the brain and other cranial structures in 
depth is an MRI scan. It aids in the understanding of anatomy in three planes: axial, sagittal, and transverse [15]. MRI is a 
very safe procedure that most people can have. In some circumstances, however, an MRI scan may not be required. If 
you feel you have metal in your body, you should tell your doctor before undergoing an MRI scan. 

There are different types of MRIs such as: FMRI, S-MRI, DWI MRI. 1) F-MRI (Functional Magnetic 
Resonance Imaging): This technique uses blood flow variations to evaluate brain ac- tivity. 2)DWI MRI 
(Diffusion Weighted Imaging MRI): It is a method to evaluate the micro architecture of the human body and 
functionality of the molecules of the body. 3) S-MRI (Struc- tural MRI): Brain anatomy and diseases can be 
seen with S-MRI imaging. In order to address brain pathology, the suggested essay will focus on S-MRI. S-
MRI captures tissue responses in a variety of ways, resulting in images with varying biological information. 

The following are some examples of S-MRI techniques: 

1. FLAIR MRI: A Magnetic resonance imaging heartbeat sequential that reduces fluid (pri- marily 
Cerebrospinal fluid) while increasing edema. 

2. T1w MRI: A conventional MRI pulse sequence is used to capture variations in tissue length- 
wise calm time (the continual time needed for excited protons to go back to balance). 

3. MRI with T1Gd: Gadolinium, is a contrast enhanced, which is introduced into the body, followed by the 
T1 sequence. This contrast enhancer reduces T1 time, making blood vessels and illnesses like tumours 
appear brighter. 

4. T2w MRI: A conventional MRI pulse sequence is used to capture tissue transverse relaxation 
time (T2) variations. 

Diffusion Weighted Image (DWI) MRI: To evaluate the diffusion of water  particles within cell voxels, 
an MRI imaging technique is used. DWI is widely used to detect hyperinten- sities. It’s involved in MRI to 
swos the greatest contrast and for highlighting the tissues injury within the cerebral infarct and reported 
with the sensitivity and the specificity in the results of the datasets. It is a technical tool for evolution and 
the application is increasing day by day. 

F-MRI (Functional MRI): The science of functional MRI imaging has advanced signifi- cantly since 
Belliveau et al. initial publication, which showed changes in the brain’s MRI imaging signals that are connected 
to labour [16]. In 1990, Ogawaet al described the BOLD contrast ef- fect, and in 1992, two research groups 
used BOLD contrast for functional MRI imaging of the brain [17]. A extremely different performance MRI 
imaging is now . 

For a long time, MRI has been recognised as a reliable tool for tracking pedesis (brownian mo- tion), also 
known as widely used in neuroscientific search and is an important part of the surgical strategic planning for 
brain tumours [18] diffusion. Moseley et al. were the Before conventional MRI imaging of CT, diffusion MRI 
imaging was the first to recognise that acute cerebral in- farction may be seen in 1990. Methods of the 
Diffusion imaging , including as DTI (diffusion tensor imaging) and diffusion or MRI tractography, can be 
used to look at the connections and structure of healthy and diseased brains, as well as suspected strokes [19]. 
Additionally, image analysis during the first throw of a diamagnetic dissimilarity can be used to do the 
measurement of blood flow in target tissues (Perfusion imaging). material or using arterial spin labelling to 
provide a ”virtual” contrast agent [20, 21]. Perfusion imaging, when used in conjunction with diffusion imaging, 
provides for a thorough examination of suspected strokes, tumours, and other illnesses [22–24]. All the 
available brain imaging modalities are compared in Table 2. 
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5 Datasets 

Most of the research in development of BTS systems rely on standard publicly available datasets. BRATS 
datasets are amongst the most commonly used for the BTS methods. BRATS datasets  

 
 

Table 2: Comparison of different modalities 
 

ModalitiesFounder Year     Spectrum Use Pros Cons 

MRI [7] Raymond 
Damadin 

1997 Magnetic 
Waves 

Detailed pictures •Takes images of •Takes time more of the internal or- 
any part of your than that of CT 

gans of the body body. scan. 
• Soft  tissue  con- •MRI   is    ex- trast  is  better pensive  
($1000- with MRI than $1500) 

CT. 

PET [5] Edward J. 1997 Radiotracers  •Double diagnos- •Slow growing 
Hoffman tic clarity 

• Non-disruptive 
(less than 7mm) 
• Less active 
tumours   may not absorb much tracer 

CT [6] Godfrey 1972 Ionizing  radi- Detecting dis- •Simultaneously • Breath hold- 
Hounsfield ation eases and injuries examine bone, ing   which   some 

soft   tissues,   and patients cannot 
blood vessels manage. 
• Highly accurate, •Artefact is com- painless, and mon eg., 
metal 
non-invasive. clips. 

UltrasoundIan Donald 1950 Sound waves   •During preg- •Ionizing radia- •With  increased 
[25] and engineer 

Tom Brown 
nancy,    examine tion,  making  the depth,    a    lower the female repro- 
procedure safer number of  fre- ductive       organs than     diagnostic 
quencies is 

and  development techniques. needed for proper 
of the baby. 
• Identify gall- 
bladder disease. 
• Analyse flow of blood 

• Painless imaging. 
• Bone blocks US waves. 

 

X- W.C. Ront- 1895 Ionizing  radi- checking the •Non-invasive •X-rays are 

Rays [26] gen  ation fractures  (broken and pain less linked to a 
bones) •Medium     image slightly  increased 

   quality risk of cancer 
• Bones absorb 

the radiation 
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Table 3: Comparison of standard datasets 

Dataset Year Source ModalitiesSize Resolution Image 
Format 

References 

MICAII 2021 CBICA T1,T1- 13GB 240*240*155*4DICOM [27, 28] 
BRATS   GD,   

   T2, T2-   

   FLAIR   

BRATS 2020 CBICA T1,T1- 8GB 240*240*155*4.png [30, 31] 
   GD,   

   T2, T2-   

   FLAIR   

IRMA 2020  1GB  [84] 
MICCAI 2019 CBICA T1, 5GB 5k*5k*pixels  .png [85, 87, 88, 95] 
BRATS   T1-GD   

   T2, T2-   

  FLAIR     

LGG- brain 2019 TCGA- FLAIR 1GB   [89] 
tumor seg- LGG      

mentation       

BRATS 2018 CBICA T1, T1c,  1x1x1 mm .png [90, 91, 91, 92, 94, 95, 103] 
   T2 and  isotropic reso-  

   FLAI
R 

  lution  

Figshare 2017    1GB 561*352  pix- [96–99] 
      els  

BRATS 2017 CBICA T1, 
T1-
GD 

  3D (256 × 256 .png 
× 140)pixels 

[37, 98, 106] 

   T2, T2-    

   FLAI
R 

    

BRATS 2016 CBICA T1,   isotropic   res- .png [36, 36] 
   T1-

GD 
  olution (1.125  

   T2, 
FLAIR 

T2-  × 1.125 × 
1.125    mm    ³ 

 

      voxel size)  

BRATS 2015 CBICA T1,   1*1*1 mm .png [37, 101–106] 
   T1-

GD 

    

   T2, T2-    

   FLAI
R 

    

BRATS 2013 CBICA T1,   .png [38, 102, 107, 108] 
   T1-

GD 

    

   T2, T2-    

   FLAI
R 

    

BRATS 2012 CBICA T1,   640 × 480 pix- .png [39, 109–111] 
   T1-

GD 
  els  

   T2, T2-    

FLAIR 
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includes four MRI modalities with corresponding ground truth. BRATS datasets are available in different forms 
like, BRATS 2012, BRATS 2013, BRATS 2014, BRATS 2015, BRATS 2016, 
BRATS 2017, BRATS 2018, BRATS 2019, BRATS, 2020 and recently the BRATS 2021. And 
some other lesser used datasets are: Figshare, LGG brain tumour segmentation, HBTR(Harvard Brain Tumour 
Repository), IRMA etc. 

1. BRATS 2021: This dataset is defined as a collection of mpMRI scans of brain tumours that were gathered by 
various institutions. The original volumes are T1, T1-W, T1Gd (Gadolin- ium), T2-W (T2), and T2 Fluid 
Attenuated Inversion Recovery (T2-FLAIR) from the mpMRI scans are included in the BRATS 2021 challenge. These 
volumes were obtained using different methods and scanners from different institutions. Since then, the 2020 BRATS 
dataset cases 660 to 2000 have been used to update these data. Testing, validation, and training phases of the 
BRATS 2021 challenge had been separated. [27, 28] 

2. BRATS (2020): The EMA (Expectation Maximization Attention) configuration is used to re- trieve so many 
significant aspects while removing duplicated data. The DSC and HD percent- ages of the total tumour are 91.1 and 
4.13 percent, in both. The encoder decoder segmented data method could indeed merge highly-resoluted and low-
resolution data and recognise characteristics at various scales; However, the short-term linkage between the 
encoding and decoding processes is obviously insufficient [29, 30]. 

3. BRATS: 2018 BraTS collection contains 3D MRI scans from 285 people with brain tumours. This study comprised 
210 individuals with malignant high grade glioma (HGG) and 75 patients with benign low grade gliomas (LGG). 
As of 2018, Bakas et al. a slow-growing tumour is LGG. The average lifespan of patients with the this disease is 
often higher than 2 years. The tumour type HGG, on the other hand, develops rapidly. Usually, patients with 
tumours in the HGG group have less than two years to live. This population needs quick medical intervention if 
they have HGG tumours [32, 90]. 

4. Figshare: Cheng devised the concept throughout 2017. The database contains 3064 MRI’S brain’s slices from 233 
people. Brain tumours are classified into 3 categories: meningeal, hy- pophysis, and glioblastoma. The 762 is a phone 
number that can be used in Signal processing circuitry as an example of signal processing. Meningioma necessitates 
708 images, pituitary necessitates 930, and glioma necessitates 1426. (slices). On the Figshare website, the data set is 
available in MATLAB ”.mat” format. A client ID, a distinctive label indicating this same sort of brain tumour, 
image information in 512*512 in uint16 configuration, a scalars chosen to represent the tumour cell bounds involved 
in a specific coordinate values, and support vectors in bitwise input images are all contained in each MAT-file 
[96]. 

5. BRATS 2017: Using MRI to visualize (display) tissue of brain is a very effective method. T1 and T2 MRI system 
configurations are two different types of MRI systems. T1-CE and T2-CE are both T1 and T2 imaging technique 
agreement enhancements. Other altered modalities that are Frequently used are Flair’s and Concentration 
Positron. We was using 4 distinct datasets for this study, which each is including graphic methodologies: IXI 
dataset [control subjects contain 582, three-dimensional objects (256 *256*140), MRI quantities from normal, IXI 
dataset [healthy subjects contain 582, three dimensional objects (256 *256*140), MRI editions from standard, IXI 
dataset [control subjects contain 582, three-dimensional objects (256 *256*140), MRI volumes from normal, Cheng 
datasets include 3064 two-dimensional (512 512) MRI images of three different diseases: meninglial, glioblastoma, 
astrocytoma, and hypophysis. 230 2D (256 256) MRI images of three tumour types were provided by Hazrat- e-
Rasool General Hospital [35]. 

6. BRATS 2016: The MRI techniques employed in this work included fluid attenuation inver- sion recovery, 
spin lattice relaxation-T1, spin lattice relaxation-T2,and spin-lattice relaxation contrast, or spin lattice 

relaxation-T2 (FLAIR). 230 brain scans make up the data, which also includes the centre pixel of the 
patch and 448,000 volume 32*32 modifications that were randomly selected. Thus, 448,000 
patches and labels provide the training data for the sug- gested DCNN (Deep Convolutional neural 
networks). A batch size of 256 will result in 1750 iterations each epoch [36]. 

7. BRATS 2015: The ”Central nervous system Tumour fragmentation” contest is globally known for its available 
to the public set of data, which is particularly used for checking developers’ fragmentation algorithm. The 
term ”Brain Cancer fragmentation” is an abbreviation for ”Brain Tumour Segmentation.” It includes 274 
directories underneath the HGG and LGG categories, which each includes 5 MRI’s images of brain 
tumours, MRI sequences namely Flair, T1, T1c, T2 and OOT are indeed the tumour kinds. For this 
reason, we were using Fluid Attenuated Reversal Retrieval (Flair) and Transverse Relaxation’s duration’s 
(T2) image’s [37]. 

8. BRATS 2013: A brain tumour fragmentation dataset for the 2013 BRATS competition is composed of 
organic and real images that are further divided into HG and LG gliomas, respectively. Twenty instances 
have true HG photos, ten cases have real LG image data, and there are 25 patients who actually have 
both synthetic HG and LG images. For each patient’s instance, MRI sequences and post-Gadolinium T1 
magnetic resonance pictures are available [38]. 

9. BRATS 2012: The imputed sets of data which includes T1-w post-contrast and T2w central nervous 
system MRI images from 550 patients with validated and undiagnosed tumour’s (female’s 246 or male’s 
304). These same patients ranged in age from 15 versus 74 year’s (mean age 48 year’s). The images were 
obtained from a 1.5T MRI medical scanning at Shirdi Sai Cancer Hospital in Manipal, India, between February 
2008 and March 2011. Each slice in the set of 64 obtained from each patient’s scan had a thickness of 2 mm. 
The data collection contained only grayscale images, each measuring 640 x 480 pixels with a pixel size of 
0.11 mm 0.11 mm. Sizes of the tumours ranged from 4 to 41 millimetres (mean size 21 mm). Out of 550 
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patients, 280 cases were treated for benign tumours and 270 patients’ data were found to have malignant 
tumours based on histological analysis of biopsy samples. T1-w and T2w MRI images have been used in the 
experiments because they provide crucial diagnostics and make a clear differentiation between edoema 
and tumour cells [39]. 

10. MICAII (BRATS): Brain tumour MRI scans are part of the publicly accessible collection. The training set 
data contains 259 cases of extremely high gliomas (HG-High Grade) and 76 cases of low-grade gliomas 
(LGG). In the testing dataset, there are 125 samples. Within the training dataset and the images used to 
calculate the regression coefficients, T1, T1ce, T2, and FLAIR seem to represent the four multisensory 
image data. Glioblastoma (GBM/HGG) and gliomas of lower quality: preoperative multimodal MRI 
imaging (LGG). Multi-institutional standard clinically acquired, readily accessible OS, and pathologically 
verified diagnoses are offered as trained, validated, and tested data. In a 2017 study by Bakas, Akbari, 
Sotiras, et al [32, 40]. 

11. LGG-Brain tumour segmentation: Manual This dataset comprises brain MRI images with FLAIR aberrant 
segmentation masks. The photos are a part of the creation of the (TCIA) Cancer Imaging Archive. For at 
least 110 of the patients in the Cancer Genome Atlas (TCGA) LGG dataset, FLAIR-Fluid attenuated 
asymmetry recovery (healing) clump data were avail- able. [33]. 

12. HBTR (Harvard Brain Tumour Repository): The Harvard tumour repository was used in the second set of 
experiments, which included numerous stick shift specialist segmented results on two dimensional slices with 10 
tumours. Due to its online availability, the characterized methods were used to analyze the efficiency of the 
various algorithms. T1w MRI images obtained the with SPGR series at 0.9375 *0.9375* 1.5 mm contiguous sagittal 

slices are used  for the repository contrast images.  This  repository’s  data,  known  as  STAPLE  (Warfield, 
Zou & Wells, 2004), was recently evaluated using a validation framework for comparing the proposed 
approach to several specialist segmentation, which determines specificity, clarity, and total correct 
percent criteria. Using Harvard brain repository data, it is able to match inter - and intra variability 
versus computation reliability. [41]. 

13. IRMA: IRMA -Image Retrieval in Medical Applications is indeed a fully accessible set of data containing 12,677 
unidentifiable CT images and 10,000 analyzed Image data in 193 and 57 classifications, respectively. Choose images 
from the 57-category labeled CT images for recovery experimentations. There are more than 100 graphics divided 
into 17 categories [42], and the number of different image’s subgroups is fairly diverse. For experiments, photographs 
were chosen from these 17 categories, and for categories with fewer than 200 images, all images were chosen. A total of 
200 photographs were chosen at random from each category for a total of more than 200 images. There were a 
total of 3,109 images chosen. Then, in a 4:1 ratio, divide the training and test sets. 

The comparison of all the above mentioned datasets are summarized in Table 3. 

 
6 Evaluation Metrics 

To objectively assess the quality of segmentation techniques, various tumour kinds are first divided into three 
regions that are reciprocally exclusive: 

1. the entire tumour (including several tumour’s frameworks); 
2. the centre of the tumour (excluding edema) and 
3. a tumour that is currently growing in size (the ”enhancing core”). 

The Dice score, Sensitivity, and Specificity are a few of the metrics used to gauge the algo- rithm’s performance in 
each region. A research project must assess how well a machine learning system performs segmentation and 
classification. When only one metric, such as average ac- curacies scored, is employed, a machine learning model may 
yield results that are good when compared to other metrics, such as precision or any other measure. As a result, 
many differ- ent assessment criteria are routinely employed to evaluate and compare the performance of the model 
[43]. In a segmentation task, true positive (TP) pixels are those that are correctly pro- jected to belong to a 
particular class based on the underlying data, whereas true negative (TN) pixels are and those who are classed as not 
people who belong to a specified class. When the model incorrectly associates dots (or pixels) with a class when they 
do not, it produces a false positive (FP). Whenever the theory predicts this same category of a pixel inaccurately, a 
false negative (FN) occurs. TP denotes a tumored category that’s also objective assurance to pertain to a specific class 
predicated just on actual truth, so although TN denotes a tumour category that’s also reliably classified as being not 
belonging towards the specific class. A false positive (FP) is a result in which a cancer cell class that does not exist is 
fully realised. A FN occurs when the prototype predicts the member status of a class incorrectly. As a consequence, the 
fol- lowing paragraphs describe numerous performance measures used in the literary works on brain tumour cells 
automatic segmentation. The dice similarity coefficient (DSC)is used to evaluate the overlap of spatial between the 
segmented model region and the tumour region ground truth. The annotated model findings and the tumour region of 
the ground truth exhibit no spatial overlap, according to the DSC value of 0, where a value denotes total overlap. 
Mathematically, it is evaluated as: 

 
DSC = 

2TP 
 

 

2TP + FN + FP 

 
(1) 
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A Hex score adjusts the true positive rate to match the size distribution of two structures of data. It is 
the same as the F-score (the harmonic mean of a highly precise recollect contour) and it can be 
monotonically changed to a Jaccard’s score. Accuracy (ACC) is a statistic that evaluates a model’s proficiency 
in classifying all possible courses or pixel densities, positive or negative. 

ACC = 
TP + TN 

 
 

FP + FN + TP + TN 
. (2) 

The sensitivity is the proportion of favourable predictions that are accurate when genuine positive samples or 
samples are randomly selected. It is determined whether the model can identify positive samples or pixels. 

 

 

Sensitivity = 
TP 

FP + TP 

 

. (3) 

Specificity which is denoted by SPE is the proportion of actual negatives that are portrayed as negative . It 
represents the proportion of pixels and courses that could not be identified. 

 

 

SPE = 
TN 

TN + FP 

 

. (4) 

Recall (RE) refers to the comprehensiveness of a ML model’s true +ve predictions in relation towards the 
actual truth. It shows how many classes/pixels from our ground truth are used in the model’s analysis. 

RE = 
TN 

TP + FN 
. (5) 

Precision which is denoted by PR, as well widely recognized as positive predictive value (PPV) 
, is a statistical term that refers to a model’s ability to predict. It shows how well the models predicted the 
proportion of positives. 

 

 

PR = 
TP 

TP + FP 

 

. (6) 

The most used metric for incorporating recall and precision is probably the same F1-Score. 
It stands for the harmonic mean of the two. 

F 1 = 
2 ∗ PR ∗ RE 

. (7)
 

PR + RE 
 

The Correlation indicator, commonly known as the intersection over union (IOU), calculates the percentage of 
overlapping between both the output of the model’s prediction and the footnoted regression coefficients mask. 

 
IOU = TP + FP + FN. (8) 

 

7 Computer Aided Segmentation of brain tumour from MRI images 
 

BTS methods take an MRI image as input, pre-process it for improving its quality and finally segment the 
brain tumour from the whole image. This section presents the detailed summary of pre-processing techniques 
and BTS methods used in the literature. 
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Table 4: Comparison of pre-processing techniques (Part 1) 

Pre-processing 
Techniques 

Meaning Applications References 

N4ITK It is a method for reducing This has been used to rec- non-
uniformity and low fre- tify flat fields in microscopic quency 
intensity in MRI im- data. 

ages (bias/gain field). 
Image    Registra- The    overlapping    of    two It is used to combine medical 

[59] 
 
 

 
[45] 

tion 
 
 
 
 

 
Histogram 
Matching 

(or more) photographs for images, satellite images, and 
the purpose of detecting other types of images. 
changes, identifying targets, 
or medical diagnosis is known as image registra- tion. 

The alteration   of   an   im- The   goal   of   histogram 
age’s histogram to fit a de- matching is to take a image 
fined histogram is known as as input and generate an 
histogram matching or his- image based on the shape 

 
 
 
 
 

 
[46] 

togram specification. of a specified (or reference) histogram. 
Normalization MRI images are   captured The  purpose  of  normaliza- under 

different conditions, tion is to make the database devices and 
parameters. design more efficient. 
This degrades the perfor- mance of the MRI analysis methods. 
Thus, normal- ization techniques help to enhance the 
performance by reducing the parametric variations in the 
images. 

Noise Removal Noise removal minimizes The visibility of noise is re- background 
and wideband duced or eliminated using noise while preserving 
signal noise reduction algorithms 

[47, 91] 
 
 
 
 
 
 
 
 
 

[49] 
quality. by smoothing the entire im- age and preserving regions 

near contrast boundaries. 

Image Enhance- The technique of increasing Enhancements are  applied  [50] 
ment the quality and information to images to make it eas- content of raw data before ier 

to interpret and compre- processing is known as im- hend. 

age enhancement. 
Bias   Field   Cor- A predilection field sig- A series of local estimates [51] 
rection nal is a reduced frequency, of tissue gain variation are extremely seamless signal 

used by BFC to calculate a which contaminates Mri’s correction field for the brain 
images data, particularly area. 

those produced by old MRI machines. 
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Table 5: Comparison of pre-processing techniques (Part 2) 

Pre-processing 
Techniques 

Meaning Applications References 

Patch-based Intensity  normalization  be- An   essential   stage   in   the [52] 
Intensity Nor- tween images collected with analysis of MRI brain pic- 
malization different scanners or pulse tures of the central nervous sequence parameters  

using system is patch-based inten- a patch-based generative sity 
normalization. 

model. 
Augmentation The process of modifying The  procedure  of  changing images to 

produce several your data to produce more representations of 
the same samples is referred known as information is known as 
im- ”augmentation” (usually to 

[53] 

age augmentation. prevent overfitting). 
Skull Stripping Skull dissection is one of the In a brain MRI scan, it is initial 

steps  in identifying the process for differentiat- 
[54] 

brain issues. ing brain tissue from other tissues. 
Subsampling By picking a subset of the Subsampling reduces the de- original 

data, subsampling pendency on accurate lo- 
[55] 

minimizes data size. cation inside feature maps generated by CNN 
convolu- tional layers. 

Downsampling      When     transmitting     over Downsampling occurs a 
limited bandwidth or when the spatial resolu- converting to a 
more con- tion is reduced while the strained audio format, two-
dimensional (2D) repre- downsampling is used to sentation 
remains the same. reduce the bit rate. 

Wavelets A wavelet is just a  math- The list of wavelet ap- ematical 
operation that di- plications includes numeri- vides a 
continuous-time sig- cal analysis, signal analysis, nal or function 
into distinct control applications, and the 

[56] 
 
 
 
 

 
[57] 

scale components. analysis and adjusting of au- dio signals. 
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7.1 Pre-processing 

The pre-processing approach improves the quality images of the brain tumour MRI images to make these suitable for 
further analysis. It also contributes to the enhancement of MRI image properties. Increased sensor ratio, better visual 
presence of MRI images data, expulsion of in- consequential loud sounds and back story of unwanted portions, 
attempting to smooth inner part areas, and maintaining relevant edges are some of the requirements [58] for better 
analy- sis. Following are the some techniques of pre-processing that are selectively applied to the MRI images: 

 
N4ITK N4 is a bias field algorithm which corrects bias field and gain field in MRI imaging data. It is a method for 
reducing non-uniformity and low frequency intensity in MRI images (bias/gain field). An adaptation of the well-known N3 
technique for non-parametric non-uniform intensity normalisation is suggested for bias field correction [59]. 

 
Bias Field Correction (BFC) A predilection field signal is a reduced frequency, extremely seamless signal which 
contaminates MRI’s images data, particularly those produced by old MRI machines. Using a number of local 
estimations of tissue gain variation, BFC determines a cor- rection field for the brain region [51]. 

 
Patch based Intensity Normalization A patch-based generative model is used to normalise the intensity of images 
taken with various scanners or pulse sequence settings. In the analysis of MRI brain images of the central nervous 
system, patch-based intensity normalisation is a crucial pre-processing step [52]. 

 
Image Registration In order to assure the spatial correspondence of anatomy across numerous images, multiple images 
are aligned using a technique called image registration [45]. It is an important technique in many biomedical imaging 
systems. These overlaid images enhance the visibility of different and common features that are extremely significant 
for tumour detection. 

 
Histogram Matching It is an easy way for matching one image to the next  in  terms  of calibration. Histogram matching, 
also known as histogram specification, is the change of images histogram to meet a specified histogram. The purpose of 
histogram matching is to take a image as input and create an image based on the design of a predetermined (or 
reference) histogram [46]. 

 
Normalization MRI images are captured under different conditions, devices and parameters. This degrades the 
performance of the MRI analysis methods. Thus, normalization techniques help to enhance the performance by reducing 
the parametric variations in the images [47]. Normliza- tion have some most commnly used techniques like contrast 
streching, Z-score normalization etc. Contrast Stretching is an part of the normalization. An image’s dynamic range, or 
the ”spread” of its histogram, is measured by its contrast. Pictures with weak contrast owing to glare, etc [91]. Intensity 
normalisation is a crucial step in the MRI preparation process when segmenting data using classification and clustering 
methods. Because of confounding effects caused by changes in brain tumour shape, segmenting cancer images is much 
more difficult than fragmenting healthy images. A pathology-resistant normalization method for MRI images was 
presented in order to improve both global and local limitations. To reduce the effect of magnetic field non - uniformity 
all through images acquired, a bias-field correction was applied prior to the segmentation method. 

 

Once pre-processing the multimodal images data, all methodologies must be registered in a sin- gle reference space. A 
linear new identity with Mutual Information (MI) similarity measure and resampling are typically used to ensure voxel-to-
voxel connection throughout all methodologies. The brain’s preliminary processing MRI scans are essential for better 
outcomes. Many machine learning approaches can benefit from the pre-processing phase known as Z-score normalisation. 
Rescaling the features to give them the properties of a standard normal distribution—that is, an average of zero and an SD 
of just one is what standardisation requires. A pre-processing proce- dure called Z-score normalisation can help a lot of 
machine learning methods. Standardization includes scaling the characteristics to have only a zero average and a single 
standard deviation (SD), as in a typical normal distribution. The Z-score, a kind of scale, shows how many stan- dard 
deviations there are from the mean. Z-score can be used to determine if the mean is 0 and standard deviation is 1 of your 
feature distributions. It is helpful when there are a few outliers but not enough that pruning is required [47]. 

 
Noise removal Noise removal minimizes back-ground and wide-band noise while preserving sig- nal quality. Noise 
reduction methods reduce or completely remove the appearance of disturbance by averaging overall entire image and 
preserving regions near intensity boundary lines [49]. 

 
Image  Enhancement  The technique of increasing the quality and information content of raw data before processing is 
known as image enhancement. Enhancements are applied to images to make it easier to interpret and comprehend [50]. 

 
Augmentation The technique of altering images to produce several representations of the same information is known as 
image augmentation. The term “augmentation” refers to the process of modifying your data in order to generate more 
samples (usually to prevent overfitting) [53]. 

http://www.ijcrt.org/


www.ijcrt.org                                                       © 2024 IJCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882 

IJCRT2406878 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h815 
 

 
Skull stripping Due to the complexity of the human brain, the wide range of MRI scanner parameters, and individual 
features, the process of skull stripping is challenging. Poor-quality and low-contrast images make accurate 
segmentation even more difficult. Several powerful skull stripping treatments have been developed to remove these 
impacts. The removal of the skull is one of the initial steps in identifying brain issues. It is the process used to distinguish 
brain tissue by other tissues during a MRI scan of the brain. [54]. 

 
Sub sampling By picking a subset of the original data, subsampling minimizes data size. Subsampling reduces the 
dependency on accurate location inside feature maps generated by CNN convolutional layers [55]. 

 
Down Sampling  MRI images are of super resolution. Several machine learning and deep learn- ing methods have achieved 
better and fast results using lesser resolution images i.e. down sam- pling the images. Down sampling occurs when the 
spatial resolution is reduced while the two- dimensional (2D) representation remains the same [56]. 

 
Wavelets A wavelet  is  just  a  mathematical  operation  that  divides  a  continuous-time  signal or function into distinct 
scale components. The list of wavelet applications includes numerical analysis, signal analysis, control applications, and 
the analysis and adjusting of audio signals [57]. 
 

All the pre-processing techniques are summarized in Tables 4 and 5. 
 

7.2 Segmentation 
 

After pre-processing, brain tumour is extracted from the pre-processed MRI images. BTS meth- ods are classified into 
three primary classes: traditional methods, machine learning (ML) based methods and deep Learning based methods 
[60] (see Figure 2). 

 

Traditional  methods  for  brain  tumour  segmentation  Traditional  segmentation  techniques are broken down into 
four groups based on different concepts and wording: Threshold, region, fuzzy-theory, and edge detection-based 
traditional (conventional) segmentation approaches [61]. 

 
1. Thresholding: Thresholding is the oldest technique which is used for the image segmen- tation methods. Threshold-

based segmentation is the easiest technique. To begin, all pixels within a range are assumed to be of the same type 
[60]. Setting an adequate threshold divides brain tumour images into target and background regions. An improved 
threshold segmen- tation approach Using local information from pixel neighbours, the method enhances noise 
sensitivity in threshold segmentation [62,63]. The image is expected to be made up of regions that belong to distinct 
grey scale of scale ranges during the thresholding procedure. The highs and lows in the image histogram are made up 
of peaks that each indicate a different region. The dips between the peaks here signify a threshold value. The 
threshold-based segmentation approach is straightforward, but choosing the appropriate threshold is crucial because 
the value of a segmented resultant is almost entirely influenced by threshold size. Additionally, the threshold 
segmentation technique was limited to simple picture segmentation, making it challenging to handle increasingly 
complex images. 

2. Region-based segmentation We employ connection to keep distinct elements of the im- age from being 
connected. To begin, we must first specify the seeding of the pixel. We could designate every pixel as seeding the 
pixels or selecting pixels randomly. Extend regions till they contain all of the image pixels. The Watershed algorithm 
and the Region-growing al- gorithm are two popular region-based segmentation algorithms. The Watershed 
algorithm is a set of numerical morphological features used in segmentation. The images to be filtered are 
evaluated to topographical in geographic location in this procedure, with the grey ben- efit of the pixels defining the 
height of the scene. The term ”ponding basin” refers to the neighbourhood minimum and its surroundings. For every 
relatively minimum, it is assumed that highly porous pores exist. The standing water basin would then progressively 
be flooded 

 
 

Fig. 2: Methods for segmenting MRI images of brain tumours 
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as the level of penetration water rises. A dam is a structure that blocks the flow of water from one body of water to 
another. The infiltration process is complete whenever the level of water reaches its highest point. These dams are 
referred to as watersheds. A group of people who work together to solve problems [64]. An innovative method that 
combines watershed and threshold segmentation [65]. The image was initially divided into segments using the 
threshold approach, and then the watershed algorithm was used to divide the segments. The experiments showed that 
the segmented findings obtained using this method had a TPR (temperature, pulse, respiration) of above 90%, 
making them more reliable than any ob- tained using either of the two techniques alone. A straightforward technique 
for segmenting a picture based on regions is known as ”region expanding.” It is categorised as a pixel-based technique 
because it requires the first seed point selection. It’s better then the edge based segmentation techniques because in 
noisy images it is difficult to detect the edges for the segmentation. The area-based edge detection technique has the 
advantages of becoming easy and accurate, allowing for more regional information extraction and making it ideal for seg- 
menting small objects. It is, however, a subtle sound that easily creates gaps in harvested areas. 

3. Fuzzy Theory Segmented algorithms based on fuzzy theory are also well-liked. According to LEI, 
ZHANG, JIA, LIU, and ZHANG [66, 67], fuzzy C-means (FCM) clustering is the approach that uses fuzzy 
theory that is most frequently used in brain tumour MRI image segmentation (Muneer & Joseph, 2018). 
The K FCM technique was created by combining the FCM and K - means algorithms. The investigation 
showed that K-FCM segmented brain tumour MRI images more accurately and with less computational 
complexity than FCM [68]. 

4. Edge Detection-Based Segmentation Methods A technique called edge detection iden- tifies the edges 
of the objects in the photos. It detects the discontinuities in brightness. It segmented the images and 
retrieved data in image processing segmentation and data extrac- tion. The target curve segmentation 
principle works by first acquiring the target region’s edge and then acquiring the target region’s 
contour. The Roberts, Sobel, Canny, but also Prewitt edge detection operators are all widely used [69, 70]. 
The active contour model now has FCM built in. FCM chooses the model’s initial shape for you, reducing 
the amount of time you have to communicate with the computer. Furthermore, the issue of MRI images 
with an unsure border contour and inconsistent intensity has been resolved. 

Machine Learning based methods for brain tumour segmentation According to con- ventional machine learning 
techniques, this same categorised model is trained using predefined criteria for brain tumour segmentation (BTS) 
procedures. They are typically divided into two categories: organizational and sensor. The classifier must determine 
which form of organization so every functionality belongs to at the organizational level, as well as which category so 
every data point is classified as belonging to at the pixel level. A popular machine learning method is K-Nearest 
Neighbors (KNN) [71], Support Vector Machine (SVM) [72], Random Forest (RF) [73], Dictionary Learning [74]. 
 

1. KNN The KNN method was used to segment each brain as though it were a separate database. They got 
highly accurate findings, and each brain picture segmentation took only one minute, which improved 
segmentation efficiency [72]. 

2. SVM For the image segmentation, SVM is proposed. It can reduce the segmentation errors caused by quick 
motion of the objects. SVM was used to fragment brain cancers, keeping into consideration the changing 
attributes on signal strength as well as other MRI image parameters. After that, features have been 
extracted using wavelet transform transformation, 

 
 
 

 
Segmentation 

Techniques 

 

Table 6: Comparison of segmentation techniques (Part 1) 
Description Advantages Limitations References 

 
 

Threshold Seg- Thresholding  is  a  method  for Being simpler to calculate, and As    you    start    reducing    de-  [60, 62, 63] 

mentation segmenting the images in which the speed of operation is faster. tails  to   something   like   a   bi- 

all of the pixels within a range are first 

presumptively of the same kind. A colour 

or grayscale image is transformed into a 

bi- nary image (black and white) by this 

procedure. 

nary variable, thresholding in- variably throws out data that you’ll never be 

willing to use again. 

Region    Segmen- The  technique   of   determining Could   really   properly   distin- It is time consuming to compute   [64, 65, 112] 

tation the regions directly is known as guish between regions with the and sensitive to noise. region based segmentation. The same properties which 

we de- 

main goal is to divide an image scribe. into different regions. 

Fuzzy  Theory Fuzzy       based      segmentation, These systems are dependable Because of the unreliability of [64, 65, 68, 113, 114] which combines the both edge and can 

handle a range of inputs the results they are not usually 

and region based features of the without needing precise input. image, 

which merge the regions 

recursively. 

universally  recognised. 

Edge   Detection      This approach for detecting It recognises different brightness Noise sensitivity, Working on   [69, 70, 115, 116] edges of the items among im- levels. Edge 

detection is used for seamless transition images is 

ages. segmentation and data extrac- proving to be difficult. tion in fields like image process- 

ing and computer vision. 

KNN KNN searches for similar char- It is used for the real time pre- Determining the right value of [117] 

acteristics that are comparable dictions. to those of 

its nearest neigh- 

bours. 

”k” is challenging. 

SVM Both  classification  and  regres- In   high   dimensional    spaces, When we have a large dataset, [118] sion issues can be solved using SVM is more 

effective. It’s used it does not perform well because 

it. for the margin of separation. it needed a training time longer. 
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Segmentation 

Techniques 

 

Table 7: Comparison of segmentation techniques (Part 2) 
Description Advantages Limitations References 

 

 

Random forest Both classification and regres- They have the capacity to han- One of its major flaws is that it [119] sion employ this approach for dle a 

variety of graphic elements performs poorly on data that is 

decision trees. with ease for both classification un-balanced. and regression, and they  are computationally 

efficient. 

Dictionary Learning It is a form of machine learning It is used to analyse the medical 

and signal processing. It found signals. 

a  frame  called  Dictionary.   It is represented sparsely in some 

training data, and sparse repre- sentation is better. 

[74] 

CNN In pattern recognition and ob- It gives the most precise find- It’s needed for the large training [101] ject identification, CNN is often ings. 

It’s a good choice for im- data. Images with different po- 

used for segmenting the images, ages, having a better contrast sitions are classified. and this approach is used for between objects. 

solving complex problems. 

FCN FCN is a semantic segmenta- It is avoided to use the dense tion. It 

segments the boundaries layers that means the fewer pa- of the skin from 

the images. rameters that can make the net- FCN is the first image based 

work faster. 

segmentation which consists of the encoding part for the feature extraction. 

[120], [121] 

Encoder-decoder   It   is    typically    found    in    an Compactable in sizes, high res- The  size  must  be  comparable  [122], [123] 

encoder-decoders configuration. olution. Which is  

training  the  images distinctive feature map. En- 

coder structure is frequently comparable in object 

segmen- tation premised on encoder de- coder 

framework, which is de- rived primarily from core 

classi- fication networks like VGG, etc. 

with the actual sizes always be- cause it uses many encoders and 

decoders. 

 
 

 

 
and the functionality component  was  whittled  down  using  Principal  component  analysis to obtain the best 
characteristics for SVM (support vector machine) clustering [75]. Brain developed an approach in which the picture is 
initially segmented into super-voxels, the tumour is segmented using MRF, the likelihood function is estimated 
simultaneously, and a multistage wavelet filter is used to extract the features. It is suggested a texture and 
contour based automatic segmentation technique [76]. By specifying the grayscale and texture information in various 
areas of the image, one such approach can quickly and accurately segment an image. When utilised to segment the 
brain tumour MRI images, the usual machine learning approach performs worse than a variety of conventional 
segmentation algorithms in terms of algorithmic performance. For instance, the K-nearest Neighbour approach can 
locate tumours in the central nervous system with good accuracy and ease of implementation, although it is 
computationally intensive. The final conclusion is decided by a huge number of support vectors, and the svm 
classifier does have a strong hypothesis. Although the algorithm is simple and has good generalizability, the 
parameters and kernel function selection criteria are more demanding. High anti-noise performance and effective 
over-segmentation handling are two strengths of random forest. It can speed up operations by paralleling 
them, but it’s not very good at processing low-dimensional tumour data is easy to create and the learning-based 
technique is similar to a dimensionality reduction concept in that both reduce computing complexity and speed, 
because both have stricter standards for tumour data. The learning-based technique has a high prediction accuracy 
for brain tumour location, but it requires a lot of computation. 

 
3. Random Forest: It is utilised to separate the normal tissues from the various tumour portions in the MRI image 

voxels. Brain lesions are the type of damage in the brain due to the disease. Lesion segmentation is being done 
with the help of random forest classifiers. Segmenting lesions from images, such as those from mRI, ultrasound, 
or CT scans, entails categorising the pixels in the images into one or more classes. This for both classification and 
regression employ this approach for the decision trees. They have the capacity to handle a variety of the graphic 
elements with ease for both classification and regression and they are computationally efficient. one of the major 
flaws is that it performs poorly on data that is unbalanced [77, 78]. 

 
4. Dictionary Learning: It is a classifier that uses an algorithm to categorise the data. If it turns out to be non-

linear, supervised learning is applied to the data before the information is translated into linear form. Finally, 
dictionary learning is used for regularisation in the final layers. It is a form of machine learning and signal 
processing. It found a frame called Dictionary. It is represented sparsely in some training data, and sparse 
representation is better. It is used to analyse the medical data [79] 

 

Deep Learning based methods for brain  tumour  segmentation  The  central  nervous system MRI classification 
focus on solving on Deep Learning and thus it could be broken down into three types: CNN, Fully Convolutional 
Neural Network (FCN) Magnetic resonance image segmented method for neurological disorders, or even encoder and 
decoder based on different network frameworks. 
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1. Brain tumour segmentation using CNN 
CNN is a weight-sharing technique. It is a type of neural network and significantly reduces the model’s 
complexity. CNN could start with an image sequence, remove outliers instan- taneously, and want to have a 
significant level of nonlinearities to transcription of images, scalability, as well as other changes. There have been 
numerous grid models based on CNNs developed in recent years (convolutional neural networks), such as Network 
[80], VGG [81], GoogleNet, Res-Net [82], etc. In medical image segmentation, they are commonly employed. To 
address the issue of network degradation, follow these steps. It merged a 3D deep neural network with closely 
packed connections, pretrained this same model, and used the weight gained to initialize the model [83]. This 
technique improved the DSC measure when seg- menting brain tumour MRI images. It accumulates a double path 
CNN that uses the output character trait graph from the beginning stage as an additional input to the second stage’s 
CNN. With the use of this technique, segmentation accuracy can be increased while collecting thorough background 
data. It’s used by N4ITK to correct the bias field, multi classification CNN to pre-segment it, and median filtering to 
get the final segmentation results. For the diagnosis of brain tumour magnetic resonance imaging in particular, the 
rise in the DSCs recorded to 90% will have produced great results. The CNN-based segmentation method could 
indeed instantaneously remove the noise and handle close to the edge data, and yet information can be lost during 
the pooling process, and it is difficult to understand. 

2. Brain tumour segmentation using FCN FCN performs better at semantic image seg- mentation. This 
same representation of the input image is unimportant to FCN, but the final convolutions layers will be 
upsampled. This method achieves the same effect as the input vector sized images by anticipating every 
data point whereas trying to retain this same sensory data in the source images. A method of segmenting 
and classifying images at the pixel level is FCN. As a result, the FCN-based linguistic segmented model 

is notably more in line with the specifications for medical picture interpretation. To 
fragment/segment brain tumours, they combine FCN and CRF. The process starts with segmenting 
images of brain tumours,  followed by  training 2D slices inside  the  axial, coronal, and sagittal 
views. The performance and segmentation rate are both higher when compared to more 
established segmentation techniques [83].The most widely used brain tumour segmentation model 
is an FCN-based U-Net, in which the networks are designed to incorporate both an encoded and a 
decoded, A U-Net networks jump connections would code path, using its attributes of both the 
managed to figure out the decoding route to a corresponding point, in order to have the positive 
attributes of the prior findings under coding phase into the decoding process, and therefore start 
learning extra clear plans. 

3. Brain tumour segmentation Using Encoder-Decoder An encoder and a decoder are typically found in 
the encoders-decoders configuration. In addition to obtaining the image’s distinctive feature map, an 
encoder uses neural networks to train and gain knowledge of it as input. After the encoder has supplied a 
feature map that produces the edge detection effect, the decoder’s responsibility is to specify the category 
of each pixel. Encoder structure is frequently comparable in object segmentation premised on encoder 
decoder framework, which is derived primarily from core classification networks like VGG, etc. The 
objective is to use a large database to train network weight parameters. As a result, the decoder’s dif- 
ference reflects the network’s difference to a large measure, which is a major determinant of the 
categorization impact. This framework is more advanced than others in terms of context pixel segmentation 
and outperforms them. Learning the characteristics of sparsely annotated volume images with a three-
dimensional U-Net approach. It built an HDC (Hybrid Dilated Convolution) module on top of the 3D U-
Net to expand neurons’ sensory fields, bypassing the limitation imposed by DCN’s non-linear and non 
extracting features. The amount of design variables and computational time can be cut in half through 
using superficial neu- ral network models. The DSC, TPR, and PPV measures are managed to improve so 
over traditional U-Net structure, using a layered depth cross-modal convolution of cross mode shape 
encoder/decoder framework in mixture with MRI image data from multiple method- ologies, and also 
normalized and number of stages training techniques to fix the issue of outliers [124–126]. All the pre-
processing techniques are summarized in Tables 6 and 7. 

 
 

8 Conclusions 

 
This study provides comprehensive insights into recent advancements in MRI-based brain tumour segmentation 
methods, aiming to establish a strong foundation for researchers inter- ested in developing such methods. Beginning with 
an overview of brain anatomy, followed by a discussion on imaging modalities, this work sets the stage for understanding 
the com- plexities of brain tumour segmentation from MRI images. Various datasets utilized for brain tumour 
segmentation from 2012 to 2021 were reviewed, with the BRATS dataset emerging as the most widely used in the 
literature. Performance evaluation of segmentation methods is commonly conducted using metrics such as dice score, 
sensitivity, specificity, and accuracy. Numerous algorithms, including convolutional, traditional, and deep learning 
methods, are employed for brain tumour classification and segmentation. Recent advancements have seen the proposal 
of new deep learning and machine learning algorithms for research purposes. Future research is expected to focus on 
developing computational segmentation techniques that are faster and more accurate. This may involve exploring 
novel preprocessing tech- niques, such as noise removal, histogram matching, and normalization methods, to enhance 

http://www.ijcrt.org/


www.ijcrt.org                                                       © 2024 IJCRT | Volume 12, Issue 6 June 2024 | ISSN: 2320-2882 

IJCRT2406878 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h819 
 

the segmentation process. 
 

While significant progress has been made in developing systems based on deep learning and image processing for tumour 
segmentation, there remains a need to analyze contextualized functionality during feature extraction and to explore the 
creation of new features. Magnetic resonance-based tumour segmentation techniques have already demonstrated 
promising re- sults in clinical practice, and further advancements in this area are anticipated to yield even better 
outcomes in tumour detection and analysis. 
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